学术信息网 西电导航 关于 使用说明 搜索 系统首页 登录 控制面板 收藏 梁毅的留言板
新增栏目0

学术论文:

[1] Yi Liang,Kun Sun,et al.An Adaptive Hierarchical Detection Method for Ship Targets in High-Resolution SAR Images[J],Remote Sensing,2020,12(2):303.(JCR 2区,SCI:000515569800102)

[2] Yi Liang,Guofei Li,et al.A Nonparametric Paired Echo Suppression Method for Helicopter-Borne SAR Imaging[J],IEEE Geoscience and Remote Sensing Letters,2020,17(12),pp:2080-2084.(JCR 2区)

[3] Yi Liang,Yanfeng Dang,et al.A Two-Step Processing Method for Diving-Mode Squint SAR Imaging With Subaperture Data[J],IEEE Transactions on Geoscience and Remote Sensing,2020,58(2),pp:811-825.(JCR 1区,SCI:000510710600005)

[4] Yi Liang, Kun Sun, et al.New SAR platform positioning method based on improved Gauss-Newton-genetic hybrid algorithm[J].IET Radar,Sonar & Navigation.2019,13(7),pp:1154-1161.(JCR 3区,SCI:00047433590)

[5] Yi Liang,Guofei Li,et al.A Fast Time-Domain SAR Imaging and Corresponding Autofocus Method Based on Hybrid Coordinate System[J],IEEE Transactions on Geoscience and Remote Sensing,2019,57(11),pp:8627-8640.(JCR 1区,SCI:000496155200022)

[6] Yi Liang, Yuanyuan Huai, et al.A Modified ω-k Algorithm for HS-SAR Small-aperture Data Imaging,IEEE Transactions on Geoscience and Remote Sensing,2016,54(6),pp:3710-3721.(JCR 1区,SCI:000377477100048)

[7] Yi Liang, Zhenyu Li, et al.A High-Order Phase Correction Approach for Focusing HS-SAR Small-Aperture Data of High-Speed Moving Platforms,IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2015,8(9),pp:4551-4561.(JCR 2区,SCI:000367323300031)

[8] Liang Yi,Wang Hongxian,Zhang Long,Bao Zheng.An Approach to Forward Looking FMCW Radar Imaging Based on Two-dimensional Chirp-Z Transform. SCIENCE CHINA Information Sciences,2010,53(8),pp:1653-1665.(JCR2区)

[9] Yi LIANG,Long ZHANG,Mengdao XING,Zheng BAO.High speed ground moving target detection research using triangular modulation FMCW[J].Frontiers of Electrical and Electronic Engineering in China.2009,4(2),pp:127-133.

[10] Liang Yi,Wang Hongxian,Xing Mengdao,Bao Zheng.Imaging Study of High Squint SAR Based on FMCW[C].Asian and Pacific Conference on Synthetic Aperture Radar,2007,Huangshan.pp:6-9. 

[11]Gang Zhang, Liang Yi, Chen Shuxuan, Xing Mengdao, Li Zhenfang, “Super-resolution forward-looking imaging method for maneuvering platform with optimized dictionary and extended sparsity adaptive matching pursuit,” IET Radar, Sonar & Navigation, 2022, 16(5), pp:912-923.  

[12] Zhang G, Liang Yi,Suo Z, et al. Modified ERMA With Generalized Resampling for Maneuvering Highly Squinted TOPS SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2020, PP(99):1-5.

[13]Liang Y. J, Liang Yi, Zhang G,Xing M. A modified design method of pulse repetition frequency for synthetic aperture radar system based on the single point equivalent squint model. IET Radar Sonar Navig. 2021;1–12. https://doi.org/10.1049/rsn2.12081

[14]Sun K, Liang Yi, Ma X, Huai Y, Xing M. DSDet: A Lightweight Densely Connected Sparsely Activated Detector for Ship Target Detection in High-Resolution SAR Images. Remote Sensing. 2021; 13(14):2743. https://doi.org/10.3390/rs13142743

[15] Yanfeng Dang, Yi liang, Bowen Bie, Jinshan Ding, Yuhong Zhang. A Range Perturbation Approach for Correcting Spatially Variant Range Envelope in Diving Highly Squinted SAR with Nonlinear Trajectory. IEEE Geoscience and Remote Sensing Letters, 2018,3:1-5.DOI: 10.1109/LGRS.2018.2812158(JCR3区,IF=2.761)

[16] Zhenyu Li, Mendao Xing, Wenjie Xing, Yi Liang, et al.A Modified Equivalent Range Model and Wavenumber-Domain Imaging Approach for High-Resolution-High-Squint SAR With Curved Trajectory,IEEE Transactions on Geoscience and Remote Sensing,2017,55(7),pp:3721 - 3734

[17] Zhenyu Li, Yi Liang, et al.Focusing of Highly Squinted SAR Data With Frequency Nonlinear Chirp Scaling,IEEE Geoscience and Remote Sensing Letters,2016,13(1),pp:23-27.(JCR3区,SCI:000368193000005)

[18] Yuanyuan Huai, Yi Liang, et al.An Inverse Extended Omega-K Algorithm for SAR Raw Data Simulation with Trajectory Deviation,IEEE Geoscience and Remote Sensing Letters,2016,13(6),pp:826-830.(JCR3区,SCI:000378261100017)

[19] Letian Zeng, Yi Liang, et al.Two-dimensional Autofocus Technique for High-resolution Spotlight Synthetic Aperture Radar,IET Signal Processing,2016,10(6),pp:699-707.(JCR4区,SCI:000381223200016)

[20] Zhenyu Li, Yi Liang, et al.A Frequency-Domain Imaging Algorithm for Highly Squinted SAR Mounted on Maneuvering Platforms With Nonlinear Trajectory,IEEE Transactions on Geoscience and Remote Sensing,2016,54(7),pp:4023 - 4038

[21] Letian Zeng, Yi Liang, et al.A Novel Motion Compensation Approach for Airborne Spotlight SAR of High-Resolution and High-Squint Mode,IEEE Geoscience and Remote Sensing Letters,2016,13(3),pp:429-433.(JCR3区,SCI:000371824700027 )

[22] Zhenyu Li, Yi Liang, et al.An Improved Range Model and Omega-K-Based Imaging Algorithm for High-Squint SAR With Curved Trajectory and Constant Acceleration,IEEE Geoscience and Remote Sensing Letters,2016,13(5),pp:656-660.(JCR3区,SCI:000375274700010)

[23] Zhenyu Li, Yi Liang, et al.Equivalent hyperbolic range model for synthetic aperture radar with curved track,Electronics Letters,2016,52(14),pp:1252-1253.(JCR4区,SCI:000379846400034)

[24] Wang Hongxian,Liang Yi,Xing Mengdao,Zhang Shouhong.ISAR Imaging via Sparse Frequency-Stepped Chirp Signal[J].SCIENCE CHINA Information Sciences,2012, 55(4),pp:877-888.

[25] Qisong Wu,Yi Liang,Mengdao Xing,Chengwei Qiu,Zheng Bao and Tat-Soon YEO. Focusing of Tandem Bistatic Configuration Data with Range Migration Algorithm. IEEE Transactions on Geoscience and Remote Sensing Letter.2010,8(1),pp:88-92.

[26] Wang Hongxian,Liang Yi,Xing Mengdao,Zhang Shouhong.Subimage Fusion for High-Resolution ISAR Imaging [C].The 3rd International Congress on Image and Signal Processing (CISP'10),Yantai,China,Oct.16–18,2010,Vol.5:2260–2264.

[27] GUO Liang,XING Mendao,LIANG Yi,TANG Yu.Modified Frequency Scaling Algorithm for Synthetic Aperture Imaging Ladar Imaging through the Turbulence, The Chinese Journal of Electronics.2009,18(1),pp:187-191.

[28] 梁毅, 李晴晴, 孙昆等. 利用SAR图像匹配的弹体定位新方法[J]. 西安电子科技大学学报,2018,45(6):1-6.

[29] 梁毅,李燕平,邢孟道,保铮.一种平行航线双基聚束式FMCW SAR的两步处理方法[J].电子学报,已录用.

[30] 梁毅,王虹现,邢孟道,保铮.同航线双基调频连续波SAR改进距离徙动算法[J].西安电子科技大学学报,2011,38(1),pp:71-79.

[31] 梁毅,王虹现,邢孟道,保铮.FMCW SAR慢速动目标参数估计与成像[J].系统工程与电子技术,2011,33(5),pp:1001-1006.

[32] 梁毅,王虹现,张龙,保铮.基于二维Chirp-Z变换的前视FMCW雷达成像新方法[J].中国科学信息科学,2010,40(5),pp:719-731.

[33] 梁毅,王虹现,邢孟道,保铮.基于FMCW的大斜视SAR成像研究[J].电子与信息学报,2009, 31(4). pp:776-780.

[34] 梁毅,井伟,邢孟道,保铮.一种下视三维FMCW SAR成像的新方法[J].自然科学进,2009,19(5),pp:575-584.

[35] 梁毅,高昭昭,邢孟道,保铮.调频连续波(FMCW)聚束式SAR成像研究[J].西安电子科技大学学报,2009,36(6),pp:972-978.

[36] 梁毅,郭亮,邢孟道,保铮.一种斜视FMCW SAR的等效正侧视处理方法[J].电子学报, 2009,37(6),pp:1159-1164.

[37] 梁毅,周峰,邢孟道,保铮.采用调频连续波(FMCW)的高速动目标检测研究[J].西安电子科技大学学报, 2008, 35(4),pp:586-591.

[38] 梁毅,王虹现,邢孟道,保铮.调频连续波SAR信号分析与成像研究[J].电子与信息学报. 2008,30(5),pp:1017-1021.

[39] 梁毅,王虹现,邢孟道,保铮.调频连续波SAR系统设计[C].第十届全国雷达学术年会,2008,北京,pp:1284-1288.

[40] 梁毅,周峰,邢孟道,保铮.采用调频连续波(FMCW)的高速动目标检测研究[J].西安电子科技大学学报, 2008, 35(4),pp:586-591.

[41] 王虹现,梁毅,邢孟道,张守宏.基于稀疏信号表示的空间碎片成像[J].宇航学报,2011,32(10),pp:2194-2199.

[42] 李学仕,梁毅,李蓓蕾,邢孟道.基于SPECAN处理的斜视SAR实时成像算法及其FPGA实现[J].系统工程与电子技术,2011,33(12),pp:2618-2622.

[43] 王虹现,梁毅,邢孟道,张守宏.基于稀疏线性调频步进信号的ISAR成像[J].中国科学信息科学,2010,41(12),pp:1529-1540.

[44] 高昭昭,梁毅,邢孟道,张守宏.双基地逆合成孔径雷达成像分析[J].系统工程与电子技术,2009,31(5),pp:1055-1059.

[45] 郭亮,邢孟道,梁毅,唐禹.合成孔径成像激光雷达成像算法研究.光子学报,2009,38(2),pp:448-452.

[46] 郭亮,邢孟道,梁毅,唐禹.一种机载合成孔径成像激光雷达聚束模式成像算法.光学学报,2008,28(6),pp:1183-1190.

 

    授权专利:

     

序号 授权专利号 专利名称
 1 202110099049.7 基于稀疏 贝叶斯学习的机载三维异构阵DOA估计方法
             2              202010697539.2     MPT-MDPT的 ISAR舰船目标成像方法  
             3               202010547467.3 一种高效全局直角坐标投影融合的改进FFBP成像方法
                4 202010021589.9   颠簸平台无人机载 S  AR实时成像处  理方法
                5 201911199605.7 基于最大稳定极值 区域的SAR图像舰船目标检测方法
                6 201911199874.3 基于自适应分层高分辨SAR图像的舰船目标检测方法
                7 201911170891.4 基于SBL的 捷变频雷达自适应目标重构方法
                8 201911170802.6    基于 StOMP的捷变频雷  达稀疏场景目标重构方法
                9 201911081074.1 基于轮廓特征的无人机载SAR图像匹配方法
               10 201910942025.6 一种基于时间变标的子孔径大斜视SAR成像处理方法
11 201910794748.6 基于CPU和多GPU的异构平台SAR回波仿真并行方法
12 201910576771.8 一种普适的SAR成像PRF优化设计方法
13 201910414485.1 一种颠簸平台SAR三维运动误差估计方法
14 201910354530.9 基于混合坐标系的颠簸平台SAR快速时域成像方法
15 201810342866.9 基于FPGA的参数可调的 线性调频信号产生装置及其产生方法
16 201810251048.8 基于两级滤波的俯冲段 大斜视SAR子孔径成像空变校正方法
17 201810144442.1   基于改进S IFT的SAR图像匹配方法  
18 201810144429.6 基于改进高斯牛顿- 遗传混合算法的弹体定位方法
19 201710111407.5   种基于空间域支 撑区融合的SAR成像方法
20 201610569791.9   一种曲线轨迹下大斜视SAR频域成像方法
21 201610473505.9 基于二维自聚焦的高分辨聚束SAR自聚焦成像方法
22 201610345313.X 基于逆扩展Omega-K算法的非理想轨迹SAR回波获取方法
23 201510324082.X  种改进的高分辨率SAR成像自聚焦方法
24 201510051776.0  一种子孔径SAR大斜视改进Omega‑K成像方法
25 201410720663.0   基于LabVIEW的弹载SAR回波仿真及成像方法
26 201410718693.8  基于GPU的合成孔径雷达回波仿真方法
27 201410122328.0  弹载SAR子孔径前斜视高阶非线性调频变标成像方法
28 202210627169.4  基于稀疏贝叶斯学习框架的机动平台前视超分辨成像方法
29 201911036303.8 一种颠簸平台SAR的非参数化成对回波抑制方法
30 202011298241.0 一种基于扩展波数谱重构的高机动平台TOPS SAR成像方法
31 201911100821.1 基于非参数迭代自适应的捷变频雷达目标重构方法
32 201911335093.2 基于局部轮廓点与形状特征融合的异源图像配准方法
33 202010637429.7 一种高分辨运动舰船SAR成像的自聚焦方法
34 202110532305.7 基于非参数迭代自适应的机载三维异构阵DOA估计方法
35  202011583253.8 基于稀疏谱恢复的机载三维异构阵杂波抑制方法
36 202110042319.0 基于CSS-Delaunay的异源图像配准方法
37 201810058866.6 基于无插值融合快速后向投影的雷达视频成像方法
38 201711330497.3  基于反射天线的太赫兹雷达前视成像方法
39 201710724088.5 基于卡尔曼滤波的星载雷达成像参数在线估计方法
40 201710397878.7 基于重叠孔径的毫米波雷达视频成像方法
41 201710384713.6 基于合成孔径技术的毫米波视频成像系统及方法
42 201710384715.5 基于GPU的视频SAR回波仿真并行实现方法
43 201611079232.6 基于物理光学的太赫兹雷达回波成像方 
44 201610344733.6 基于 斜距模型下的大斜视SAR曲线轨迹波数域成像方法
45 201610156968.2  基于单片FPGA的弹载SAR成像系统
46 202110287389.2  基于多尺度引导滤波的高动态红外图像细节增强方法
47 CN20211578521.7  基于深度学习的多目标检测识别方法
48 202110270457.4 基于二阶 段分组注意力残差机制的光谱图像压缩重建方法
49 202210311581.5   于多头自注意力的激光点云特征提取方法及装置
50 202210278183.8 基于多尺度 STL-SRU残差网络的定标红外非均匀性校正方法
51 202210311588.7  一种 激光雷达点云体素化方法及装置
52 202011587399.X  基于对称融合网络的红外可见光融合识别方法
53 202011242885.8  基于SRU与残差网络的递归红外图像非均匀校正方法
54 202011392344.3  基于残差自注意力和生成对抗网络的图像增强方法
55 202011401703.7   基于生成对抗网络的肌电信号降噪和分类方法
56 202011392343.9   基于混合域注意力的有限像素红外无人机目标检测方法
57 202110268450.9  基于双通道特征迁移网络的单帧图像超分辨率重建方法
58 201910680271.9 无监督SAR图像去噪方法
59 201210387088.8  基于稀疏探测频率信号的ISAR成像方法 
60 201110156311.3  基于FPGA的脉冲压缩优化方法
61 201110122834.6 基于FPGASAR成像信号处理数据转置方式