学术信息网 西电导航 关于 使用说明 搜索 系统首页 登录 控制面板 收藏 白雪茹的留言板
论文成果


第一/通讯作者代表作

  1. High resolution radar imaging in low SNR environments based on expectation propagation. IEEE Trans. on Geoscience and Remote Sensing. Preprint.
  2. JTF analysis of micromotion targets based on single-window variational inference. IEEE Trans. on Geoscience and Remote Sensing. Preprint.
  3. Spatial-temporal ensemble convolution for sequence SAR target classification. IEEE Trans. on Geoscience and Remote Sensing. Preprint.
  4. Robust Pol-ISAR target recognition based on ST-MC-DCNN. IEEE Trans. on Geoscience and Remote Sensing. Dec. 2019, vol. 57, no. 12, pp. 9912–9927. (SCI, IF: 5.630)
  5. Radar-based human gait recognition using dual-channel deep convolutional neural network. IEEE Trans. on Geoscience and Remote Sensing. Dec. 2019, vol. 57, no. 12, pp. 9767–9778. (SCI, IF: 5.630)
  6. Sequence SAR image classification based on bidirectional convolution-recurrent network. IEEE Trans. on Geoscience and Remote Sensing. Nov. 2019, vol. 57, no. 11, pp. 9223–9235. (SCI: 000496155200065, IF: 5.630)
  7. Radar image series denoising of space targets based on Gaussian process regression. IEEE Trans. on Geoscience and Remote Sensing. Jul. 2019, vol. 57, no. 7, pp. 4659–4669.  (SCI: 000473436000040, IF: 5.630)
  8. High-resolution radar imaging in complex environments based on Bayesian learning with mixture models. IEEE Trans. on Geoscience and Remote Sensing. Feb, 2019, vol. 57, no. 2, pp. 972–984.  (SCI: 000456936500027, IF: 5.630)
  9. SAR ATR of ground vehicles based on LM-BN-CNN. IEEE Trans. on Geoscience and Remote Sensing. Jul. 2018, vol. 56, no. 12, pp. 7282–7293. (SCI: 000451621000034, IF: 5.630)
  10. High-resolution sparse subband imaging based on Bayesian learning with hierarchical priors. IEEE Trans. on Geoscience and Remote Sensing.  Aug. 2018, vol. 56, no. 8. pp. 4568-4580.  (SCI: 000439980200022, IF: 5.630)
  11. High-resolution radar imaging of space targets based on HRRP series.  IEEE Trans.  on Geoscience and Remote Sensing. May. 2014, vol. 52, no. 5. pp. 2369-2381. (SCI: 000332484700008, EI: 20141217495305, IF: 5.630)
  12. Sparse subband imaging of space targets in high-speed motion. IEEE Trans.  on Geoscience and Remote Sensing. Jul. 2013, vol. 51, no. 7. pp. 4144-4154. (SCI: 000320943700005, EI: 20132916512161, IF: 5.630)
  13. A novel method for imaging of group targets moving in a formation. IEEE Trans.  on Geoscience and Remote Sensing. Jan. 2012, vol. 50, no. 1, pp. 221-231. (SCI: 000298782000018, EI: 20120214670427, IF: 5.630)
  14. High-resolution three-dimensional imaging of spinning space debris. IEEE Trans.  on Geoscience and Remote Sensing. Jul. 2009, vol. 47, no. 4,  pp. 2352-2362. (SCI: 000267437300023, EI: 20093112231520, IF: 5.630)
  15. Imaging of micromotion targets with rotating parts based on empirical-mode decomposition. IEEE Trans.  on Geoscience and Remote Sensing. Nov. 2008, vol. 46, no. 11, pp. 3514-3523. (SCI: 000261309100014, EI: 20084911766021, IF: 5.630)
  16. High-resolution 3D imaging of precession cone-shaped targets. IEEE Trans. on Antennas and Propagation. Aug. 2014, vol. 62, no. 8, pp. 4209-4219. (SCI: 000340450200033, EI: 20143418081411, IF: 4.435)
  17. Obtaining JTF-signature of space-debris from incomplete and phase-corrupted data. IEEE Trans. on Aerospace and Electronic Systems, Feb, 2017, vol. 53, no. 3, pp. 1169-1180. (SCI: 000403288600008, IF: 2.797)
  18. Radar imaging of micromotion targets from corrupted data.  IEEE Trans. on Aerospace and Electronic Systems, Dec. 2016., vol. 52, no. 6, pp. 2789-2802. (SCI: 000395804700013, IF: 2.797)
  19. Imaging of rotation-symmetric space targets based on electromagnetic modeling. IEEE Trans. on Aerospace and Electronic Systems, Jul. 2014, vol. 50, no. 3. pp. 1680-1689. (SCI: 000346791100008, EI: 20145200373460, IF: 2.797)
  20. High-resolution 3-D imaging of group rotating targets. IEEE Trans. on Aerospace and Electronic Systems, Apr. 2014, vol. 50, no. 2. (SCI: 000344364500021, EI: 20143118005601, IF: 2.797)
  21. High-resolution radar imaging of air-targets from sparse azimuth data. IEEE Trans. on Aerospace and Electronic Systems, Apr. 2012, vol. 48, no. 2, pp. 1643-1655. (SCI: 000302647400046, EI: 20121714958066, IF: 2.797).
  22. High resolution ISAR imaging of targets with rotating parts. IEEE Trans. on Aerospace and Electronic Systems. Dec. 2011, vol. 47, no. 4, pp. 2530-2543. (SCI: 000297339000016, EI: 20114214425783, IF: 2.797).
  23. SAR ATR of ground vehicles based on ESENet, Remote Sensing, 2019, vol. 11, no. 1316. pp. 1–16. (SCI, IF: 4.118).
  24. High-resolution three-dimensional imaging of space targets in micromotion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Jul. 2015, vol. 8, no. 7, pp. 3428-3440. (SCI: 000359538700017, EI: 20153401190865, IF: 3.392).
  25. Scaling the 3-D image of spinning space debris via bistatic inverse synthetic aperture radar. IEEE Geoscience and Remote Sensing Letters. Jul. 2010, vol. 7, no. 3, pp. 430-434. (SCI: 000282088300003, EI: 20102913082151, IF: 3.534)
  26. Narrow-band radar imaging of spinning targets. SCIENCE CHINA Information Sciences. Apr. 2011. vol. 54, no. 4, pp. 873-883. (SCI: 000289902100015, EI: IP51262523, IF: 2.731)
  27. 窄带雷达自旋目标成像. 中国科学F辑, 2010年11月, vol. 40, no. 11, pp. 1508 -1518.
  28. 空中微动旋转目标的二维ISAR成像算法. 电子学报,2009年9月,vol. 37, 9, pp. 1937-1943. (EI: 20094512438017, 入选2013年度中国精品科技期刊顶尖学术论文, F5000)

 

合作文章代表作

  1. A method for 3-D ISAR imaging of space debris. IEEE Trans. on Aerospace and Electronic Systems. Apr. 2019, vol. 55, no. 2. pp. 864–876. (SCI: 000464942600026, IF: 2.797)
  2. A modified EM algorithm for ISAR scatterer trajectory matrix completion, IEEE Trans. on Geoscience and Remote Sensing. Jul. 2018, vol. 56, no. 7. pp. 3953-3962.  (SCI: 000436418200025, IF: 5.630)
  3. Joint cross-range scaling and 3-D geometry reconstruction of ISAR targets based on factorization method, IEEE Trans. on Image Processing. 2016, vol. 25, no. 4. pp.1740-1750. (SCI: 000372415900007, IF:6.790).
  4. Narrow-band interference suppression for SAR based on independent component analysis. IEEE Trans. on Geoscience and Remote Sensing. Oct. 2013, vol. 51, no. 10. pp.4952-4960.  (SCI: 000325377900006, EI: 20134216849062, IF: 5.630)
  5.  A large scene deceptive jamming method for space-borne SAR. IEEE Trans. on Geoscience and Remote Sensing. Aug. 2013, vol. 51, no. 8. pp. 4486-4495. (SCI: 000322394600013, EI: 20133216594682, IF: 5.630)
  6. Analysis of wide angle radar imaging. IET Proc. Radar, Sonar & Navigation. Apr. 2011, vol. 5, no. 4, pp. 449-457. (SCI: 000288742100008, EI: 11883177, IF: 2.015)
  7. Narrow-band interference suppression for SAR based on complex empirical  mode decomposition. IEEE Geoscience and Remote Sensing Letters. Jul. 2009,  vol. 6, no. 2, pp. 423-427. (SCI: 000267764800013, EI: 20093112232028, IF: 3.534)

 

会议论文 

  1. A novel ISAR autofocusing method based on Bayesian inference, IET International Radar Conference, 17-19 Oct. 2018, Nanjing, China. (Best paper award)
  2. Few-Shot SAR ATR Based on Conv-BiLSTM Prototypical Networks. 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar, 26-29 Nov. 2019, Xiamen, China.
  3. JTF Reconstruction of Micromotion Targets based on Bayesian Inference. 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar, 26-29 Nov. 2019, Xiamen, China.
  4. Robust ISAR Target Recognition Based on IC-STNs. 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar, 26-29 Nov. 2019, Xiamen, China.
  5. 2D-Temporal Convolution for Target Recognition of SAR Sequence Image. 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar, 26-29 Nov. 2019, Xiamen, China.
  6. High-resolution radar imaging with unknown noise, International Conference on Radar 2018, 27-30 Aug. 2018, Brisbane, Australia.
  7. Deep CNN for micromotion recognition of space targets, 2016 CIE International Conference on Radar, 10-12 Oct. 2016, Guangzhou, China, pp. 808-812.
  8. JTF-based radar imaging of micromotion targets from corrupted data, 2016 CIE International Conference on Radar, 10-12 Oct. 2016, Guangzhou, China, pp. 2409-2412.
  9. High-resolution 3-D imaging of micromotion targets from RID imaging series. IGARSS2016, Jul. 10-15, 2016, Beijing, China.
  10. Recent advances in ISAR imaging of micromotion targets. IET International Radar Conference, Oct. 14-16, 2015, Hangzhou, China.  (Invited Talk)
  11. High-resolution radar imaging of aerospace targets with micromotion. IGARSS2014, Jul. 13-18, 2014, Quebec, Canada. (EI: 000349688101099)
  12. Analysis of the azimuth resolution of bistatic SAR. 2013 International Conference on Radar, Sep. 9-12, 2013, Adelaide, Australia. (EI: 20140117155661) 
  13. Micro-Doppler analysis and imaging of air-planes with rotating parts. APSAR2009, Oct. 26-30, 2009, Xi'an, China.  (EI: 20101212789240)