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Abstract

It is gradually accepted that the loss of orthogonality of the gradients in a conjugate
gradient algorithm may decelerate the convergence rate to some extent. The Dai—Kou
conjugate gradient algorithm (SIAM J Optim 23(1):296-320, 2013), called CGOPT,
has attracted many researchers’ attentions due to its numerical efficiency. In this paper,
we present an improved Dai—Kou conjugate gradient algorithm for unconstrained opti-
mization, which only consists of two kinds of iterations. In the improved Dai—Kou
conjugate gradient algorithm, we develop a new quasi-Newton method to improve the
orthogonality by solving the subproblem in the subspace and design a modified strat-
egy for the choice of the initial stepsize for improving the numerical performance.
The global convergence of the improved Dai—Kou conjugate gradient algorithm is
established without the strict assumptions in the convergence analysis of other lim-
ited memory conjugate gradient methods. Some numerical results suggest that the
improved Dai—Kou conjugate gradient algorithm (CGOPT (2.0)) yields a tremen-
dous improvement over the original Dai—-Kou CG algorithm (CGOPT (1.0)) and is
slightly superior to the latest limited memory conjugate gradient software package
CG_DESCENT (6.8) developed by Hager and Zhang (SIAM J Optim 23(4):2150-
2168, 2013) for the CUTETr library.
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1 Introduction
Consider the following unconstrained optimization problem

min f(x), (1)

xeR"
where f : R” — R is continuously differentiable and its gradient is denoted by g.
Throughout this paper, gx = g(xx), fi = f(Xk), Sk—1 = Xk — Xk—1, Yk—1 =
8k — 8k—1 and Amax (+) represents the maximum eigenvalue function. If x € R” and
S C R* then dist {x, S} = inf {|ly — x|,y € S}.
Conjugate gradient (CG) algorithms are a class of powerful algorithms for large
scale unconstrained optimization. CG algorithms take the following form

Xk41 =Xk +oxdy, k=0,1,2,..., 2)

where oy is the stepsize and dy is the search direction given by

do = —go, dr+1 = —8k+1+ Brdk, k=0, 3)

where S is usually called conjugate parameter.

Different choices of S lead to different CG algorithms. Some well-known formulae
for B are called the Fletcher—Reeves (FR) [1], Hestenes—Stiefel (HS) [2], Polak—
Ribiere—Polyak (PRP) [3,4] and Dai—Yuan (DY) [7] formulae, and are given by

g1l ﬁHS_gﬁ4m ﬂpm,_g@4n ﬁDy_|mM4W

’ k. 4 k - ’ kK —

lgill? di i lgill? di i

In 2005, Hager and Zhang [9] proposed an efficient CG algorithm (CG_DESCENT)
with

FR
,Bk =

T T
nz _ SketYk Ikl g

B , )
k dlye  dly dly

where 6 is a parameter, and established the convergence of CG_DESCENT with
the standard Wolfe line search. And the numerical results in [9,20] indicated that
CG_DESCENT with the approximate Wolfe line search (AWolfe line search):

ogld < g(xp +ond) dp < (28 — 1) g{ di.,

where 0 < § < 0.5and § <o < 1, is very efficient.

By taking a multiple of the memoryless BFGS direction of Perry [6] and Shanno [5]
and projecting it into the manifold {—g+1 + sdi : s € R}, Dai and Kou [8] recently
developed a family of CG algorithms (CGOPT). We also call it Dai—Kou CG algorithms
for short) with the improved Wolfe line search:

f G+ ande) = f ) +min {e £ Gl gl e + ik} (5)
gk + andi) ' di > 0 gjl di. ©)
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where 0 < 6,0 <8 <o < 1,0 < fjg and Y 7, < 400, and the numerical results
k>0
in [8] suggested that CGOPT with the following parameter:

i1k _ llyell® &y 1dk
dl i dlye dlyi

DK
,Bk =

(N

is the most efficient. CG_DESCENT and CGOPT are both popular and quite efficient
CG software packages. Some recent advances about CG method can be found in
[10-16].

Recently, Hager and Zhang [16] observed that for some ill-conditioned strictly
convex quadratic problems, CG method with the exact line search might converge
very slowly, while the unscaled limited memory BFGS algorithm (L-BFGS) [18,19]
with the same line search converges quickly, although these two methods should yield
exactly the same iterates in theory. They also monitored that the orthogonality of the
successive gradients loses quickly during the iterations of CG method, while this is
not true for the L-BFGS method. Based on the above observations, Hager and Zhang
[16] thought that the slow convergence rate of CG method might be caused by the loss
of orthogonality, first combined the limited memory technique with CG algorithm
and presented a limited memory CG method (CG_DESCENT (6.0)), which can be
regarded as a preconditioned CG method with the following three preconditioners:

Po=1, Po=2ZB\ 28, Po=ZuBi 28 + o ZiZ 8)
where oy is given by (4.2) of [16], ék+1 is an approximation to the Hessian matrix
of f at the subspace spanned by the previous search directions, and Z; and Zj are
the matrices whose columns are the orthogonal basis for the above subspace and its
complement, respectively. And the convergence of the limited memory CG method
[16] with the standard Wolfe line search is established by imposing the following
assumptions on the preconditioners (8):

1Pl < vo, g1 Pegisr = villgnl®, df PO de = pollded®, 9)

where yo > 0, 1 > 0 and y» > 0. The numerical results in [16] suggested that
CG_DESCENT (6.0) has a significant improvement over the memoryless version
CG_DESCENT (5.3).

Though the limited memory CG method [16] is surprisingly effective, there are still
some drawbacks: (i) CG_DESCENT (6.0) with the AWolfe line search has illustrated
very nice numerical performance, but there is no guarantee for the convergence of
CG_DESCENT with the AWolfe line search [20]. While CG_DESCENT (6.0) with
the standard Wolfe line search is globally convergent, but it performs significantly
worse than CG_DESCENT (6.0) with the AWolfe line search; (ii) The assumptions (9),
which are imposed on the preconditioners in the convergence analysis are relatively
strict and not easy to verify in practice; (iii) The limited memory CG method [16]
consists three kinds of iterations corresponding to the three preconditioners (8), which
makes the limited memory CG method complicated.
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To deal with the above three drawbacks in the limited memory CG method [16],
we present an improved Dai—Kou CG algorithm for unconstrained optimization in
this paper, which only consists of two kinds of iterations. In the improved Dai—Kou
CG algorithm, in order to improve the orthogonality, we develop a new quasi-Newton
method for solving the subproblem in the subspace spanned by the previous search
directions. Motivated by the choice of the initial stepsize in [8], we also design a
modified strategy for choosing the initial stepsize. The convergence of the improved
Dai—Kou CG algorithm is established without the assumptions (9). Some numerical
results are presented, which indicate that the improved Dai—Kou CG algorithm not
only has a tremendous improvement over the original Dai—Kou CG algorithm but also
outperforms the latest limited memory CG software package CG_DESCENT (6.8)
[16].

The rest of the paper is organized as follows. In the next section, we develop a new
quasi-Newton method in the subspace spanned by some previous search directions for
improving the orthogonality, design a modified strategy for choosing the initial stepsize
and present an improved Dai—Kou CG algorithm for unconstrained optimization. In
Sect. 3, we establish the global convergence of the improved Dai—Kou CG algorithm
without the assumptions (9). In Sect. 4, some numerical experiments are conducted to
examine the effectiveness of the improved Dai—Kou CG algorithm. Conclusions are
made in the last section.

2 The improved Dai-Kou CG algorithm

In the section, we develop a new quasi-Newton method for the subproblem in the
subspace to improve the orthogonality, in which the search direction will be always
transformed to the full space R"”. A modified strategy for the choice of the initial
stepsize is also designed later. We finally describe an improved Dai—Kou CG algorithm
in detail, which only consists of two kinds of iterations.

We first consider the preconditioned version of CG algorithm (3) with (7). Suppose
that Py is a symmetric and positive definite preconditioner, the search direction of the
preconditioned CG algorithm (3) with (7) is

dis1 = —Pegi + BEPK dy, (10)
where

r T
prPK — 81 Py i Peyi gk+1dk.
d yi dlye  dl i

(1)

Clearly, if Py = I, then the search direction (10) reduces to the original CG direc-
tion (3) with (7). In order to establish the convergence and improve the numerical
performance, we take the following truncated form:

diy1 = —Pegis1 + B PK dy, (12)
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where

PDK _ |8is 19k |

IBPDK+=maX{ ,ﬂk}, e = ’
k k dl Pl dy

(13)

where 1 € [0, 1) and Pk_1 denotes the pseudoinverse of Py. It is noted that 7 in (13)
is originated from

T
|gk+1dk‘
= —p>x = 14
Nk n T d; (14)

T
8ics 19k suggested by Dai and Kou [8]. The idea

dl dy
behind is to give more opportunities for the case of ,3,5’ bkt — ﬂ,f DK,

The improved Dai—Kou CG algorithm mainly consists of the following two kinds
of iterations:

(1) Standard CG iteration

The search direction in the standard CG iteration corresponds to (12) with P, = I,
namely,

which is based on the scheme ny = n

DK |8 1|
dit1 = =8k+1 +max  B7", —n——— r dj. (15)
d;, dy
The standard CG iteration will be interrupted if the current gradient g is not approx-
imately orthogonal to the following subspace:

Sk = span{di—1,dr—2, ..., dr—m},

where m is a positive integer, and then the iteration turns to the following subspace
iteration.

(2) Subspace iteration

When the orthogonality of the sequence of gradients in the CG algorithm is lost,
the iteration switches from the standard CG iteration to the subspace iteration. In the
subspace iteration described in Sect. 2.1, a new quasi-Newton method in the subspace
Sk is developed to improve the orthogonality, in which the search direction will be
always transformed to the full space R”. The main part of the resulting search direction
can be regarded as a preconditioned CG direction.

If the orthogonality is improved, the iteration will depart the subspace, and the stan-
dard CG iteration (15) is evoked immediately. While the limited memory CG algorithm
[16], which consists of three kinds of iterations: standard CG iteration, subspace iter-
ation and a special preconditioned CG iteration with the complicated preconditioner
corresponding to the third term in (8), first performs the special preconditioned CG
iteration.
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2.1 A new quasi-Newton method in the subspace for improving the orthogonality

Let S € R™™™ be such a matrix whose columns are di_1, di—2, . .., dx—n. We sup-
pose that the columns of Sy are linearly independent. It is also observed that the case of
linear dependence rarely occurs. Let the QR factorization of S; be Sy = Zx Ry, where
the columns of Z; € R form the normal orthogonal basis of Sy and R; € R”*™
is the upper triangular matrix with positive diagonal entries.

If gi is nearly in the subspace S, then CG algorithm has lost the orthogonality
which can be detected by the distance of the current gradient g; and the subspace Sk:

dist {gk, Sk} < 7o llgell, (16)

where 0 < 79 < 1 is small. Since the columns of Z; form the normal orthogonal basis
of S, it is not difficult to obtain from the definition of dist {gy, S} that (16) can be
written as

2
(1= ) el = | 2 | an

The inequality (17) implies that the trial search direction (15) almost belongs to the
subspace Si. In the case, it seems that it is better to optimize in the subspace S than
to continue the iteration in the full space R”, since the subspace Sy has not been
fully utilized and the dimension of the subspace Sy, is usually small. As a result, we
temporarily terminate the standard CG iteration and turn to optimize the objective
function over S:

min f (xx 4+ 2). (18)

ZESk

If the gradient gi1 becomes sufficiently orthogonal to the subspace, which can be
measured by dist {gx+1, St} > 71 llgk+1]l, where 0 < g < 71 < 1, then the iteration
will leave the subspace Si. Similar to (17), the above inequality can be written as

2
(1=7) Ngws1 1P = | 20 gi | 19)

It is a challenging task to solve the special subproblem (18). In [16], Hager and
Zhang used the L-BFGS method [18,19] to solve the subproblem (18), which causes
that the assumptions (9) are imposed on the preconditioners in the convergence analysis
of the limited memory CG algorithm. It seems, however, that it is not easy to verify
the assumptions (9) in practice. Since the dimension of the subspace S is often small,
quasi-Newton method might be a good choice.

For general unconstrained optimization (1), the search direction in quasi-Newton
method is the form of dy = — B} ! gk, where By is a symmetric and positive definite
approximation to the Hessian matrix.
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Biglari et al. [21] developed a modified BFGS method, in which By satisfies the
modified secant equation

Biyisk = y,’:, (20)
where

2(fx — fert) + (g + a1 s
SkTyk

A
Vi = (1 + 1k ) Yk = Yk Yk (1)

and f;, = 2. It is noted that if #z = 0, then (20) corresponds to the standard secant
equation, and if ;, = 1, then (20) corresponds to the modified secant equation proposed
by Wei et al. [22].

These above secant equations are usually superior to the standard secant equation
in the sense that the resulting Hessian approximation contains more accurate curvature
information.

Li and Fukushima [23] presented a cautious BFGS method for nonconvex uncon-
strained optimization, in which By is given by

Bksk‘YkTBk ,kakT . skTyk o
- s - > v
Bk+] = k SkTBkSk SkT)’k HSkHZ ”gk ” P
By, otherwise,

where v > 0 and @ > 0.

Motivated by the above quasi-Newton methods, we develop a new quasi-Newton
method for solving the subproblem (18).

In what follows, the symbol with hat means that it belongs to the subspace S,
distinguishing from the symbols in the full space R”.

Let X = (&1, %2, ..., im)T € R™. The subproblem (18) can be written as
min /(%) = f (v + B1dior + Sadia + o Sndicm) (22)
X

It follows from the QR decomposition of Sy that g; = ZkT grand yp = Z kT Vk. Since
the quasi-Newton direction in the subspace is always transformed to the full space,
we can easily obtain dy = Zd, §kT§k = skTyk, §kT§k = ngsk, gszH@k = ng+lsk’

A2 2
I5c” = llscll? and fix = fi.
According to [24,25],

. 2(fk—1 —fk+§kT§k—1)
e = ATA -1 (23)
Sk—1Yk—1

is a quantity showing how f is close to a quadratic on the line segment between x|
and xy. If the following condition [26,27] holds, namely,
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fk <t or  max {f -1} < . (24)

where 71 and 1, are small positives and 71 < 12, f might be very close to a quadratic
function on the line segment between x| and Xi.

Now we consider the choice of #; in the subspace version of the modified secant
equation (20). When the condition (24) holds, it is natural to use the standard secant
equation based on the above observation, which indicates that 7z = 0. According to
[28], if ||ISk |l > 1, the Wei’s secant equation is expected to be more accurate than the
Biglari’s secant equation, while if ||5;|| < 1, the Biglari’s secant equation performs
better than the Wei’s secant equation. Therefore, if || 5k ||2 > 1.5, we choose the Wei’s
secant equation. Otherwise, we choose the Biglari’s secant equation. As a result, we
determined #; as

0, if (24) holds,
=141, if (24)does not hold and || > 1.5, (25)
2, if (24) does not hold and |3 | < 1.5

in the subspace version of the modified secant equation (20).
Motivated by the cautious BFGS method proposed by Li and Fukushima [23], we

R N TS
will set By, to the unit matrix I € R™*" when % > v, where v > 1078, In addition,
TS

Bk will be set to I after it is updated / times, where
I = max (mz, 45) . (26)

Therefore, the search direction of the new quasi-Newton method for solving the sub-
problem (22) can be described as

~ A1 oA
div1 = =By 8k+1, o
where ék+l is given by
A BssT B procl . 53
) By — B9y S i mod (k1) # 0 and Bt = v,
Biy1 =1 . S BiSk Sk Yk S S (28)
I, otherwise,

where mod (k, I) denotes the residue for k modulo /, y; is given by

2 (= fir) + (@i + 87 50)

Ve=|1+u = Vr
Sk Yk
2(fx — fir) + (ghsk + 88 si)\ . a4 .
- (1 +1 T( SEUSE LY e = vied (29)
Sk Yk
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and f is determined by (25). In order to improve the numerical performance and
analyze the convergence, we restrict yx in (29) as

vk = min {max {ry, vk}, r2}, (30)

where 1070 < | < r, < 10%. Clearly, §7 5 > 0, and thus it is not difficult to

verify that §k+1 is symmetric and positive definite when By is symmetric and positive
definite and §kT yi > 0.

In our algorithm, the search direction (27) in the subspace will be transformed to
the full space R" at each subspace iteration, namely,

di+1 = — Prgr+1, (31)
where

P, = ZkB Zk , (32)

k+1

and Bk+1 is given by (28).
Obviously, if Bk+1 * I then it follows from (28) and (29) that 4 Bk 11 Yk = Sk,
and thus Py in (32) satisfies

1
Py = —sk. (33)
Yk

For ,BPDK in (11) and ﬂPDK+ in (13), we have the following result.

Lemma 2.1 Suppose that P, be a symmetric and positive definite quasi-Newton
approximation to the inverse of Hessian matrix which satisfies the modified secant
equation (33). Then,

’BPDK ﬁPDK-i- 0.

Proof 1t follows from the secant condition (33) that

prPK g[+1TPkyk i fkyk g;%ldk _ ng+;Sk B y{;k g;??dk
di vk diye  diye  wvkdi yeo vkdy Yie di Yk

ng-Hsk _ ng+1sk _

wedl yi  wed! yi

According to (13), we know that if 87X = 0, then g/ PX+ = PP which implies

that ,BPDK+ ,B{DK = 0. The proof is completed. O

It follows from Lemma 2.1 that the search direction (31) with l§k+1 #* [ can be
regarded as the preconditioned CG direction (12) with the preconditioner Py in (32)
with Bk+1 #* I.
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Once the orthogonality is improved, the iteration will depart the subspace to enter
the full space, and the standard CG iteration is invoked immediately.

2.2 A modified strategy for the choice of the initial stepsize

Itis universally acknowledged that the choice of the initial stepsize is crucial to an opti-
mization method. Unlike general quasi-Newton methods, it is challenging to determine
a suitable initial stepsize for CG algorithms. In the subsection, we design a modified
strategy for choosing the initial stepsize based on the strategy in [8].

Denote

¢r (@) = f (xk +ady) ,a > 0.
Hager and Zhang [9] chose the initial stepsize in CG_DESCENT as follows:

o0 — [are min ¢ (¢ (0.9, (0. x (Brew-1)) . if fi Grow—n) < (0). 3
KT o, otherwise,

where 71 > 0, 72 > 0 and ¢ (¢x (0) , ¢, (0), ¢x (Tik—1)) is a interpolation function
matched the three values ¢ (0) , ¢; (0) and ¢ (71ax—1). Dai and Kou [8] determined
the initial stepsize in CGOPT as follows:

YO 2 if |k (@) — ¢ (0)]/ (73 + |dx (0)]) > 74,
k™| argmin ¢ (¢x (0), ¢} (0), ¢ (), otherwise,
(35)
where
o :max{TSOlk—h—2|fk_fk—l|/ngdk}a (36)

73 > 0, 74 > 0 and 75 > 0. Recently, motivated by the BB method [29] and using the
interpolation technique, Liu and Liu [11] also developed an efficient strategy for the
choice of the initial stepsize for the subspace minimization conjugate gradient method
(SMCG_BB).!

If the search direction dy, is determined by (31) with 1§k+1 + i , then the trial initial
stepsize a should be taken as 1 like quasi-Newton methods. Otherwise, the trial initial
stepsize is determined by (36). As a result, the trial initial stepsize is described as
_ { 1, if dy is computed by (31) with By # I,
o= . 37

o, otherwise,

where « is given by (36).
It is well-known that the linear CG algorithm with the exact line search enjoys
quadratic termination for strictly convex quadratic functions. In addition, Andrei [30]

I Available at https://web.xidian.edu.cn/xdliuhongwei/en/paper.html.
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thought that the higher accuracy of the stepsize, the faster convergence of a CG algo-

21— fitei ) | 12425 saisfies

rithm. If the quantity py = TS
k—1Yk—1

mp <t or max{ug, r-1} < T, (38)

where

| 16, if dy is computed by (31) with By # I,
" | ©7, otherwise,

- _ [ s, if di is computed by (31) with Biy1 # 1,
" | 19, otherwise,

then f might be close to a quadratic function on the section between x;_; and xj
[26,27]. Here 0 < 16 < 13 and 0 < 77 < 719. It is easy to verify that /i in (23) is the
subspace version of the above quantity . Based on the above observations, when f
is close to a quadratic function on the section between x;_ and xy, it is also reasonable
to take the minimizer of the interpolation function ¢ (¢« (0), ¢, (0), ¢k (@)) as the
initial stepsize, where « is given by (37).

Therefore, the initial stepsize is determined by

L0 _ Jargmin g (¢ (0). ¢ (0). ¢ @). if (38) or % > 7 holds,
k o, otherwise,
(39)

where the trial stepsize « is determined by (37), t3 is the same as that in (35) and

~_ [ o, if dy is computed by (31) with Byt # 1,
" | 711, otherwise.

where 119 > 0 and 71 are positive parameters.

2.3 Description of the improved Dai-Kou CG algorithm

Based on [8], we describe the improved Dai—Kou CG algorithm for unconstrained
optimization in detail. As mentioned above, the improved CG algorithm consists of
two kinds of iterations. The term “status” in Algorithm 1 stands for the type of iteration,
namely, status= “standard CG” indicates the standard CG iteration will be performed,
and status= “subspace” indicates the subspace iteration will be performed.

Remark 1 1t is worth noting that when the orthogonality is improved, the iteration will
depart the subspace and the standard CG iteration is invoked immediately. Whereas
the limited memory CG algorithm [16] first performs the special preconditioned CG
iteration corresponding to the third preconditioner in (8) when departing the subspace.
It indicates that Algorithm 1 is simpler than the limited memory CG algorithm [16].

@ Springer



Zexian Liu et al.

Algorithm 1 (The improved Dai-Kou CG algorithm)

Step 0 Initialization. Given xo € R”, ¢ > 0, €4 > 0, 1, 7o, 71, T1, T2, T6, T7,
3, Tg9, Ti0, Ti11, U, ri, ro, MaxRestart, MinQuad, IterQuad=0 and
IterRestart=0. Set status= “standard CG" and k = 0.

Step 1 If ||gx||oco < €, then stop.

Step 2 Compute the search direction.

If (status =“standard CG"), then
If k =0, then dy = —go.
elseif (IterRestart=MaxRestart or (IterQuad=MinQuad and IterQuad
#lterRestart)), then
dr = —gr and set IterRestart = 0, IterQuad = 0.
else
set P, = I, compute di by (15).
end
elseif (status =*“subspace"), then
Compute Py by (32), and determine the search direction dy by (31).
end
Step 3 Determine a stepsize oy satisfying (5) and (6) with the initial stepsize (39).
Step 4 Set xx+1 = xx + oxdy.

Step 5 Update IterRestart and IterQuad. IterRestart =IterRestart + 1. If k1=

(1480 st
< ¢4 o0r |fk+1 — fr—0.5 (ngHsk + ngsk)| < €4 [11], then IterQuad = IterQuad
+1; otherwise, IterQuad = 0.
Step 6 Update the type of iteration.
If (status =“standard CG"), then
If the condition (17) holds, then status =“subspace".
elseif (status =“subspace” ), then
If the condition (19) holds, then status =“standard CG".
end
Step 7 Set k = k + 1 and go to Step 1.

We describe some implementation details about Algorithm 1 here. The Gram—
Schfnidt orthogonality method [17] is used to callculate the QR factorization: S; =
Z Ry, and thus Z; is computed by Z; = SR, ! For the search direction 31),

we first calculate the modified Cholesky factorization of ék: ék = I:k ﬁk I:,{, where

I:k € R™*™ is a unit lower triangular matrix and ﬁk € R™*™ is a diagonal matrix, and
determine the search search in the subspace by Ly Dy L,{dk = —gy and then compute

the search direction (31) by dy = ch?k =S Iék_lﬁk.

3 Convergence analysis

In the section, we study some important properties of Py = [ and Py in (32) and
establish the global convergence of Algorithm 1 under the following assumptions.
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Assumption 3.1 (i)The objective function f is continuously differentiable on R”; (ii)
The level set £ = {x|f (x) < f (x0) + >_ 7 ¢ is bounded; (iii) The gradient g is

k>0
Lipschitz continuous, namely, there exists a constant L > 0 such that

) =g I<Lx—=yl, Vx,yeR"

Lemma 3.1 Suppose Assumption 3.1 hold. Then, for Bk+1 in (28), there exist three
constants &1 > 0, Eg > 0and 53 > 0 such that

Amax (ék) = élv Amax (ék_l) = é2s H ék_l H = 53-
Proof Since the columns of Z; forms the normal orthogonal basis for Sy andm < +o0,

there exists £y > 0 such that || Zx || < &p. According to (28), (30) and the equivalence
of matrix norm in the finite dimensional space, we have that

hman (Bw) = 1, (40)

or

D A ék§k§Ték )A;*j}*T
Amax (Bk+1) < Amax | Bk ) + Amax (_% + Amax —;T}i:*
k 7k

The above first inequality is obtained by the property of Amax (+): Amax (A1 + A2) <
Amax (A1) + Amax (A2), where A] € R™*™ and A, € R™*™ are symmetric matriceAs,
and the third comes from y; = Z kT Vi 1 Zk || < &y and Assumption 3.1 (iii). Since By

will be set to I after updating at most / times, where [ is given by (26). Therefore, we
obtain that Amax (ék+1> <1+ I’ZL InL’& a £

Let P, = Bk +1- According to (28) after some simple matrix operations we obtain
that
Bo=1i
or
T
5 oT 5 oT o T
A A s A A S 1 ss
Bo= (71— By (720 ) ¢ 2 (41)
5 Jx S¢Sk Ve §{ Dk
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Ty o
It is not difficult to see that Amax ((1 _ {;Sf ) (1 y’}sk >> M For

Sk Yk Sk Yk (Sk }k)

any 7 # 0 € R™ and 13k in (41), we have from the property of Amax () and Cauchy
inequality that

1 2

A AT A AT AT A

AT A A R A ViS§ A A VS R 1 (85,2
ZTPkZ —‘ZT(I—ATAk> Pr—1 (I—'ATf)Z‘f‘_(Ak A)

Sk Yk Sk Yk Yk skTyk
r o aT AT 2\2
Simax (ﬁkfl) (f_y;Sk> (f_ﬁ_SZ{)z_‘_i%—zA)
Sg Yk Sk Yk Yk Sp Yk
s T\ T o T T3)\2
~ ~ ViS§ ViS§ (S Z)
< Amax (Pk 1>)\max <I - §](T)é( ) <I - %*Ti) ” ” Vi §]]:T§
T IR Y L DY T IISkH
<3 (P _ )— 2 —
max k—1 (§Zj)k)2 H H T ” ”

Dividing the above inequality by |2 ||2 and maximizing the resulting inequality, we
can obtain from (28) that

A 21~ 112 ~ 12
b () < e () BELISE 1 15

O RREE

~ 14 A2
Amax (ﬁk—l) Lzég ”Sk ” + i ”Sk H
(7507 7 S

IA

252

A~ 1
}\max (Pk—l> + —.
riv

The above second inequality comes from j; = Z[ © Yk 1Zi|l < &o and Assumption
3.1 (iii). Since Py will be set to / after updating at most / times, we know easily there

exists a & > 0 such that Ayay (13’,;:1) = Amax (f’k> <&.
2
Since Bk +1 1s a symmetric and positive definite matrix, we have that ” B, Hz
Amax (Bk +1) < 52. Therefore, by the equivalence of matrix norm in finite dimensional

space, we know that there exists a constant §3 > ( such that H é,: +11 H < §3. The proof
is completed. O

Lemma 3.2 Suppose Assumption 3.1 hold. Then, for P, = I or Py in (32), there exist
three constants yy > 0, y1 > 0 and y» > 0 such that

—1
1Pl < vo,  givi Pegisr = villgrrt®,  d@l P lde = polldicl®
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Proof We consider the following two cases.

(i) P, = I. Itis obvious that the conclusions hold.

(i) P = ZxB; ZL. By (19), (32), Lemma 3.1 and Assumption 3.1 (iii), we
obtain that

A A A
I Pell = ”ZkBkJ:]ZE H = HB]H}] H <& =,

T T A—1 T AT p—l A 51\ A 12
8ie+1Pi8k+1 = k41 Zk By 1 Zy 8k+1 = &ic1 By 18k+1 = Amin (Bk+1) |8k

1 ~ A
= & (1=7) N 1P 2 nllgen P
1

B . ara s L2 1 A
di Pt = af 2B 2 = 8 Bndi = " = Sl 2 ol
2 2

The proof is completed. O

Remark2 By Lemmas 3.1 and 3.2 , we know that Py = I or P in (32) in Algorithm
1 satisfies the conditions (9), while the preconditioners (8) in the limited memory CG
methods [16] are artificially assumed to satisfy the conditions (9).

Lemma 3.3 Assume that f satisfies Assumption 3.1, and let {x;} be the sequence
generated by Algorithm 1. If dkT Vi # O, then there exists a constant ¢ > 0 such that

ghoidirt < —cllger ) (42)

Proof We consider the following two cases.
Case I. Standard CG iteration
() If B PX+ = BPX | then it follows from Lemma 2.2 in [8] that

3
g dir < —anmn? (43)

(DIf B PXT = 1y, where ny is given by (14), then

T
81419k
ng+1dk+1 = —llgks1llI*> — 77+—281<T+1 /e
il
< —lgr+11? + nllgertll® = = (A = ) llges1 1% (44)
Case II. Subspace iteration.
According to Lemma 3.2, we have that
ghoidisr = —gl Pegirt < —villgem 1% (45)

In sum, we know from (43), (44) and (45) that the search direction dy4 satisfies
the sufficient descent condition (42) with ¢ = min {3/4, 1 — n, y1}. The proof is
completed. O
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In the following analysis, the search direction (31) is treated as dx+1 = — Prgk+1+
T dr
ﬂlf’DK+dk with ‘B:DK+ = max {0, —U% } . The next lemma is used to establish
k Tk Gk

the convergence of Algorithm 1.

Lemma 3.4 Assume that f satisfies Assumption 3.1, and let {x;} be generated by

Algorithm 1. If y = inf {llgll :k =1} > 0, then d # 0 and Y |lux — ux—1|* <
k>0
+o0, where uy = di/ ||di|.

Proof By y > 0 and Lemma 3.3 we know that ||dx|| # 0. By (5), (6) and Lemma 3.3,
we get that

+00 1
— < 4o00. (46)
gbmw

Similar to Lemma 4.3 of [8], by || Px|| < yp and dkT Pk_ldk > 7/2||de|2 in Lemma 3.2,

we can obtain that 3" [lux — uz_1||> < +oo. O
k=0

The convergence of Algorithm 1 is established in the following theorem.

Theorem 3.1 Assume f satisfies Assumption 3.1, let {xy} be the sequence generated
by Algorithm 1. Then,

lim inf || gx|| = O.
k— 00

Proof Clearly, {x;} C L. It follows from Assumption 3.1 (i) and the boundedness of £
that I' = maé lg(x)|| < +o0. We prove the conclusion by contradiction. We suppose
xXe

that lilzn inf || grll > 0 and g # O for all k. Therefore, we have that || gx|| # 0 and
—> 00

y =inf {||gkll : k > 0} > 0. The proof is divided into the following three steps:

1. Abound for 8 ,f DK+ We consider the following two cases. (i) The search direction
dy is computed by (15). If BPK > 0, then g/ PX* = pPK  otherwise g/ PX* > pPX,
which implies that ’ LK +’ < |BPK|. According to (6), Assumption 3.1 (iii) and

<

Lemma 3.3, similar to Step I of Theorem 3.2 in [9] we can obtain that ‘,8,5) DK +‘

|BPK| < C sk, where

(LF+L2Dmax {1 g

— O

,1}>,D=max{||y—ZII,Vy,Z€ﬁ}.
(47)

C=—"
c(l —o)y?

(ii) The search direction dy. is computed by (31). Obviously,

PDK
BIPE =0 = Clisl,

where C is given by (47).
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II. A bound on the steps || sk ||. According to Lemma 3.4, similar to Step II of Theorem

-1
3.2 in [9] we can obtain that ) ||sj || <2D when! > k > kpand! — k < A, where
j=k
1
ko is chosen such that Y |lu;j+1 — u; ||2 < 1A and A is a positive integer satisfying
i>ko

A > 4CD. Here C and D are given by (47).

III. A bound on d;. According to (12), the bound for ,BkP DK+ mentioned above and

2
1Pell < yoin Lemma3.2, we have that ;12 < (I—Pr-igill + | B55* i1 l]) <

2)/021"2 +2C2|Is—111*|ld;—1||%. Similar to Step III of Theorem 3.2 in [9] we know that

ld; || is bounded and the bound is independent of / > k¢, which contracts with (46).

Therefore, we get lilzn inf || gk || = 0. The proof is completed. O
— 00

Remark 3 1t is worth noting that although a new quasi-Newton method is developed to
solve the subspace problem (22), the convergence of Algorithm 1 is established under
the quite mild Assumption 3.1 without the strict conditions (9).

4 Numerical experiments

Since the original Dai—-Kou CG algorithm [8] corresponds to the version 1.0 of
CGOPT, namely, CGOPT (1.0), we refer to the improved Dai—Kou CG algorithm
as the version 2.0 of CGOPT, namely, CGOPT (2.0). We do some experiments to
compare CGOPT (2.0) with CGOPT (1.0) and the latest limited memory CG software
package CG_DESCENT (6.8). CGOPT (2.0) is implemented based on the C code
of CGOPT (1.0), and the codes of CGOPT (1.0) and CG_DESCENT (6.8) can be
downloaded from http://coa.amss.ac.cn/wordpress/?page_id=21 and http://users.clas.
ufl.edu/hager/papers/Software, respectively. The test collection includes 160 uncon-
strained optimization problems from the CUTEr library [31], which can be found
in http://users.clas.ufl.edu/hager/papers/CG/results6.0.txt; the initial points and the
dimensions of the test problems are default.

In the numerical experiments, we choose the following parameters for CGOPT
2.0): e=10°%7n=03, 7o=10"° %, =04, 1y = 1078, b = 107%, 16 =
1074, 17 =5%x 1073, g =103, 79 =5 x 1072, 110 = 50, 711 = 110, 7jx =
/"), v=5x%x10"°% r; =104, r» = 10° and m = min {11, n}, and use other
default parameter values in CGOPT (1.0). CG_DESCENT (6.8) and CGOPT (1.0)
use all default parameter values in their codes except the stopping conditions, which
means that CG_DESCENT (6.8) adaptively uses the standard Wolfe line search or the
AWolfe line search at each iteration. All test methods are terminated if || gx|loo < 1076
is satisfied.

The performance profiles introduced by Dolan and Moré [32] are used to display the
performances of these algorithms. In Figs. 1, 2, 3, 4, 5, 6, 7, 8, “Njer”, “N 7, “Ng”
and “T,p,” represent the number of iterations, the number of function evaluations, the
number of gradient evaluations and CPU time (s), respectively.
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In the numerical experiments, CGOPT (2.0) solves successfully 142 problems,
while CG_DESCENT (6.8) and CGOPT (1.0) solve successfully 145 and 137 prob-
lems, respectively.

Figures 1, 2, 3, and 4 plot the performance profiles of CGOPT (2.0) and CGOPT
(1.0) in term of the number of iterations, the number of function evaluations, the
number of gradient evaluations and CPU time. As shown in Figs. 1, 2, 3 and 4 we
observe that CGOPT (2.0) has a quite significant improvement over CGOPT (1.0) in
term of the numbers of iterations, function evaluations and gradient evaluations and
CPU time. It indicates that CGOPT (2.0) is superior much to CGOPT (1.0) .
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Figures5, 6, 7 and 8 plot the performance profiles of CGOPT (2.0) and
CG_DESCENT (6.8) in term of the number of iterations, the number of function
evaluations, the number of gradient evaluations and CPU time. As showed in Fig. 5,
we see that CGOPT (2.0) performs better than CG_DESCENT (6.8) in term of the
numbers of iterations, since CGOPT (2.0) is better for about 66% of the test prob-
lems, while the percentage of CG_DESCENT (6.8) is only about 50%. We observe
from Fig. 6 that CGOPT (2.0) performs slightly better than CG_DESCENT (6.8)
in term of the number of function evaluations. In Fig. 7, we see that CGOPT (2.0)
outperforms much CG_DESCENT (6.8) in term of the number of gradient evalu-
ations, since CGOPT (2.0) is better for about 74% of the test problems, while the
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percentage of CG_DESCENT (6.8) is only about 36%. We observe from Fig. 8
that CGOPT (2.0) is faster than CG_DESCENT (6.8). It follows from Theorem 3.1
that CGOPT (2.0) with the improved Wolfe line search used is globally convergent,
whereas there is no guarantee for the global convergence of CG_DESCENT with
the quite efficient AWolfe line search. It indicates that CGOPT (2.0) is superior
to CG_DESCENT (6.8) for the CUTEr library in theory and numerical perfor-
mance.
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5 Conclusions

To overcome the three drawbacks in the limited memory CG algorithm [16], we present
an improved Dai—Kou CG algorithm for unconstrained optimization, which consists
of two kinds of iterations. In the improved Dai-Kou CG algorithm, a new quasi-
Newton method for improving the orthogonality and a modified strategy for choosing
the initial stepsize are analyzed. We establish the convergence of the improved Dai—
Kou CG algorithm without the assumptions (9). Some numerical results indicate that
the improved Dai—Kou CG algorithm (CGOPT (2.0)) has a great improvement over
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the original Dai—Kou CG algorithm (CGOPT (1.0)) and outperforms the latest limited
memory CG software package CG_DESCENT (6.8) for the CUTEr library.
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