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Abstract
It is gradually accepted that the loss of orthogonality of the gradients in a conjugate
gradient algorithm may decelerate the convergence rate to some extent. The Dai–Kou
conjugate gradient algorithm (SIAM J Optim 23(1):296–320, 2013), called CGOPT,
has attractedmany researchers’ attentions due to its numerical efficiency. In this paper,
we present an improvedDai–Kou conjugate gradient algorithm for unconstrained opti-
mization, which only consists of two kinds of iterations. In the improved Dai–Kou
conjugate gradient algorithm, we develop a new quasi-Newton method to improve the
orthogonality by solving the subproblem in the subspace and design a modified strat-
egy for the choice of the initial stepsize for improving the numerical performance.
The global convergence of the improved Dai–Kou conjugate gradient algorithm is
established without the strict assumptions in the convergence analysis of other lim-
ited memory conjugate gradient methods. Some numerical results suggest that the
improved Dai–Kou conjugate gradient algorithm (CGOPT (2.0)) yields a tremen-
dous improvement over the original Dai–Kou CG algorithm (CGOPT (1.0)) and is
slightly superior to the latest limited memory conjugate gradient software package
CG_DESCENT (6.8) developed by Hager and Zhang (SIAM J Optim 23(4):2150–
2168, 2013) for the CUTEr library.
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1 Introduction

Consider the following unconstrained optimization problem

min
x∈Rn

f (x), (1)

where f : Rn → R is continuously differentiable and its gradient is denoted by g.
Throughout this paper, gk = g(xk), fk = f (xk), sk−1 = xk − xk−1, yk−1 =

gk − gk−1 and λmax (·) represents the maximum eigenvalue function. If x ∈ R
n and

S ⊂ R
n , then dist {x,S} = inf {‖y − x‖ , y ∈ S}.

Conjugate gradient (CG) algorithms are a class of powerful algorithms for large
scale unconstrained optimization. CG algorithms take the following form

xk+1 = xk + αkdk, k = 0, 1, 2, . . . , (2)

where αk is the stepsize and dk is the search direction given by

d0 = −g0, dk+1 = −gk+1 + βkdk, k ≥ 0, (3)

where βk is usually called conjugate parameter.
Different choices ofβk lead to different CG algorithms. Somewell-known formulae

for βk are called the Fletcher–Reeves (FR) [1], Hestenes–Stiefel (HS) [2], Polak–
Ribière–Polyak (PRP) [3,4] and Dai–Yuan (DY) [7] formulae, and are given by

βFR
k = ‖gk+1‖2

‖gk‖2
, βHS

k = gTk+1yk

dTk yk
, βPRP

k = gTk+1yk

‖gk‖2
, βDY

k = ‖gk+1‖2
dTk yk

.

In 2005, Hager and Zhang [9] proposed an efficient CG algorithm (CG_DESCENT)
with

βHZ
k = gTk+1yk

dTk yk
− θ

‖yk‖2
dTk yk

gTk+1dk

dTk yk
, (4)

where θ is a parameter, and established the convergence of CG_DESCENT with
the standard Wolfe line search. And the numerical results in [9,20] indicated that
CG_DESCENT with the approximate Wolfe line search (AWolfe line search):

σ gTk dk ≤ g(xk + αkdk)
T dk ≤ (2δ − 1) gTk dk,

where 0 < δ < 0.5 and δ ≤ σ < 1, is very efficient.
By taking amultiple of the memoryless BFGS direction of Perry [6] and Shanno [5]

and projecting it into the manifold {−gk+1 + sdk : s ∈ R} , Dai and Kou [8] recently
developed a family ofCGalgorithms (CGOPT).Wealso call itDai–KouCGalgorithms
for short) with the improved Wolfe line search:

f (xk + αkdk) ≤ f (xk) + min
{
ε | f (xk)| , δαkg

T
k dk + η̄k

}
, (5)

g(xk + αkdk)
T dk ≥ σ gTk dk, (6)
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where 0 < ε, 0 < δ < σ < 1, 0 < η̄k and
∑
k≥0

ηk < +∞, and the numerical results

in [8] suggested that CGOPT with the following parameter:

βDK
k = gTk+1yk

dTk yk
− ‖yk‖2

dTk yk

gTk+1dk

dTk yk
(7)

is the most efficient. CG_DESCENT and CGOPT are both popular and quite efficient
CG software packages. Some recent advances about CG method can be found in
[10–16].

Recently, Hager and Zhang [16] observed that for some ill-conditioned strictly
convex quadratic problems, CG method with the exact line search might converge
very slowly, while the unscaled limited memory BFGS algorithm (L-BFGS) [18,19]
with the same line search converges quickly, although these two methods should yield
exactly the same iterates in theory. They also monitored that the orthogonality of the
successive gradients loses quickly during the iterations of CG method, while this is
not true for the L-BFGS method. Based on the above observations, Hager and Zhang
[16] thought that the slow convergence rate of CGmethod might be caused by the loss
of orthogonality, first combined the limited memory technique with CG algorithm
and presented a limited memory CG method (CG_DESCENT (6.0)), which can be
regarded as a preconditioned CG method with the following three preconditioners:

Pk = I , Pk = Zk B̂
−1
k+1Z

T
k , Pk = Zk B̂

−1
k+1Z

T
k + σk Zk Z

T
k , (8)

where σk is given by (4.2) of [16], B̂k+1 is an approximation to the Hessian matrix
of f at the subspace spanned by the previous search directions, and Zk and Zk are
the matrices whose columns are the orthogonal basis for the above subspace and its
complement, respectively. And the convergence of the limited memory CG method
[16] with the standard Wolfe line search is established by imposing the following
assumptions on the preconditioners (8):

‖Pk‖ ≤ γ0, gTk+1Pkgk+1 ≥ γ1‖gk+1‖2, dTk P−1
k dk ≥ γ2‖dk‖2, (9)

where γ0 > 0, γ1 > 0 and γ2 > 0. The numerical results in [16] suggested that
CG_DESCENT (6.0) has a significant improvement over the memoryless version
CG_DESCENT (5.3).

Though the limited memory CGmethod [16] is surprisingly effective, there are still
some drawbacks: (i) CG_DESCENT (6.0) with the AWolfe line search has illustrated
very nice numerical performance, but there is no guarantee for the convergence of
CG_DESCENT with the AWolfe line search [20]. While CG_DESCENT (6.0) with
the standard Wolfe line search is globally convergent, but it performs significantly
worse thanCG_DESCENT (6.0)with theAWolfe line search; (ii) The assumptions (9),
which are imposed on the preconditioners in the convergence analysis are relatively
strict and not easy to verify in practice; (iii) The limited memory CG method [16]
consists three kinds of iterations corresponding to the three preconditioners (8), which
makes the limited memory CG method complicated.
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To deal with the above three drawbacks in the limited memory CG method [16],
we present an improved Dai–Kou CG algorithm for unconstrained optimization in
this paper, which only consists of two kinds of iterations. In the improved Dai–Kou
CG algorithm, in order to improve the orthogonality, we develop a new quasi-Newton
method for solving the subproblem in the subspace spanned by the previous search
directions. Motivated by the choice of the initial stepsize in [8], we also design a
modified strategy for choosing the initial stepsize. The convergence of the improved
Dai–Kou CG algorithm is established without the assumptions (9). Some numerical
results are presented, which indicate that the improved Dai–Kou CG algorithm not
only has a tremendous improvement over the original Dai–Kou CG algorithm but also
outperforms the latest limited memory CG software package CG_DESCENT (6.8)
[16].

The rest of the paper is organized as follows. In the next section, we develop a new
quasi-Newton method in the subspace spanned by some previous search directions for
improving the orthogonality, design amodified strategy for choosing the initial stepsize
and present an improved Dai–Kou CG algorithm for unconstrained optimization. In
Sect. 3, we establish the global convergence of the improved Dai–Kou CG algorithm
without the assumptions (9). In Sect. 4, some numerical experiments are conducted to
examine the effectiveness of the improved Dai–Kou CG algorithm. Conclusions are
made in the last section.

2 The improved Dai–Kou CG algorithm

In the section, we develop a new quasi-Newton method for the subproblem in the
subspace to improve the orthogonality, in which the search direction will be always
transformed to the full space R

n . A modified strategy for the choice of the initial
stepsize is also designed later.We finally describe an improvedDai–KouCG algorithm
in detail, which only consists of two kinds of iterations.

We first consider the preconditioned version of CG algorithm (3) with (7). Suppose
that Pk is a symmetric and positive definite preconditioner, the search direction of the
preconditioned CG algorithm (3) with (7) is

dk+1 = −Pkgk+1 + βPDK
k dk, (10)

where

βPDK
k = gTk+1Pk yk

dTk yk
− yTk Pk yk

dTk yk

gTk+1dk

dTk yk
. (11)

Clearly, if Pk = I , then the search direction (10) reduces to the original CG direc-
tion (3) with (7). In order to establish the convergence and improve the numerical
performance, we take the following truncated form:

dk+1 = −Pkgk+1 + βPDK+
k dk, (12)
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where

βPDK+
k = max

{
βPDK
k , ηk

}
, ηk = −η

∣∣gTk+1dk
∣∣

dTk P−1
k dk

, (13)

where η ∈ [0, 1) and P−1
k denotes the pseudoinverse of Pk . It is noted that ηk in (13)

is originated from

ηk = −η

∣∣gTk+1dk
∣∣

dTk dk
, (14)

which is based on the scheme ηk = η
gTk+1dk
dTk dk

suggested by Dai and Kou [8]. The idea

behind is to give more opportunities for the case of βPDK+
k = βPDK

k .
The improved Dai–Kou CG algorithm mainly consists of the following two kinds

of iterations:
(1) Standard CG iteration
The search direction in the standard CG iteration corresponds to (12) with Pk = I ,

namely,

dk+1 = −gk+1 + max

{
βDK
k ,−η

∣∣gTk+1dk
∣∣

dTk dk

}
dk . (15)

The standard CG iteration will be interrupted if the current gradient gk is not approx-
imately orthogonal to the following subspace:

Sk = span {dk−1, dk−2, . . . , dk−m} ,

where m is a positive integer, and then the iteration turns to the following subspace
iteration.

(2) Subspace iteration
When the orthogonality of the sequence of gradients in the CG algorithm is lost,

the iteration switches from the standard CG iteration to the subspace iteration. In the
subspace iteration described in Sect. 2.1, a new quasi-Newton method in the subspace
Sk is developed to improve the orthogonality, in which the search direction will be
always transformed to the full spaceRn . Themain part of the resulting search direction
can be regarded as a preconditioned CG direction.

If the orthogonality is improved, the iteration will depart the subspace, and the stan-
dardCG iteration (15) is evoked immediately.While the limitedmemoryCGalgorithm
[16], which consists of three kinds of iterations: standard CG iteration, subspace iter-
ation and a special preconditioned CG iteration with the complicated preconditioner
corresponding to the third term in (8), first performs the special preconditioned CG
iteration.
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2.1 A new quasi-Newtonmethod in the subspace for improving the orthogonality

Let Sk ∈ R
n×m be such a matrix whose columns are dk−1, dk−2, . . . , dk−m . We sup-

pose that the columns of Sk are linearly independent. It is also observed that the case of
linear dependence rarely occurs. Let the QR factorization of Sk be Sk = Zk R̄k , where
the columns of Zk ∈ R

n×m form the normal orthogonal basis of Sk and R̄k ∈ R
m×m

is the upper triangular matrix with positive diagonal entries.
If gk is nearly in the subspace Sk , then CG algorithm has lost the orthogonality

which can be detected by the distance of the current gradient gk and the subspace Sk :

dist {gk,Sk} ≤ η̃0 ‖gk‖ , (16)

where 0 < η̃0 < 1 is small. Since the columns of Zk form the normal orthogonal basis
of Sk , it is not difficult to obtain from the definition of dist {gk,Sk} that (16) can be
written as

(
1 − η̃20

)
‖gk‖2 ≤

∥∥∥ZT
k gk

∥∥∥
2
. (17)

The inequality (17) implies that the trial search direction (15) almost belongs to the
subspace Sk . In the case, it seems that it is better to optimize in the subspace Sk than
to continue the iteration in the full space R

n , since the subspace Sk has not been
fully utilized and the dimension of the subspace Sk is usually small. As a result, we
temporarily terminate the standard CG iteration and turn to optimize the objective
function over Sk :

min
z∈Sk

f (xk + z) . (18)

If the gradient gk+1 becomes sufficiently orthogonal to the subspace, which can be
measured by dist {gk+1,Sk} ≥ η̃1 ‖gk+1‖, where 0 < η̃0 < η̃1 < 1, then the iteration
will leave the subspace Sk . Similar to (17), the above inequality can be written as

(
1 − η̃21

)
‖gk+1‖2 ≥

∥∥∥ZT
k gk+1

∥∥∥
2
. (19)

It is a challenging task to solve the special subproblem (18). In [16], Hager and
Zhang used the L-BFGS method [18,19] to solve the subproblem (18), which causes
that the assumptions (9) are imposed on the preconditioners in the convergence analysis
of the limited memory CG algorithm. It seems, however, that it is not easy to verify
the assumptions (9) in practice. Since the dimension of the subspace Sk is often small,
quasi-Newton method might be a good choice.

For general unconstrained optimization (1), the search direction in quasi-Newton
method is the form of dk = −B−1

k gk, where Bk is a symmetric and positive definite
approximation to the Hessian matrix.
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Biglari et al. [21] developed a modified BFGS method, in which Bk satisfies the
modified secant equation

Bk+1sk = y∗
k , (20)

where

y∗
k =

(
1 + tk

2 ( fk − fk+1) + (gk + gk+1)
T sk

sTk yk

)
yk

Δ= γk yk (21)

and tk = 2. It is noted that if tk = 0, then (20) corresponds to the standard secant
equation, and if tk = 1, then (20) corresponds to themodified secant equation proposed
by Wei et al. [22].

These above secant equations are usually superior to the standard secant equation
in the sense that the resulting Hessian approximation contains more accurate curvature
information.

Li and Fukushima [23] presented a cautious BFGS method for nonconvex uncon-
strained optimization, in which Bk+1 is given by

Bk+1 =
{
Bk − BksksTk Bk

sTk Bksk
+ yk yTk

sTk yk
, if

sTk yk
‖sk‖2 > υ‖gk‖α,

Bk, otherwise,

where v > 0 and α > 0.
Motivated by the above quasi-Newton methods, we develop a new quasi-Newton

method for solving the subproblem (18).
In what follows, the symbol with hat means that it belongs to the subspace Sk ,

distinguishing from the symbols in the full space Rn .
Let x̂ = (

x̂1, x̂2, . . . , x̂m
)T ∈ R

m . The subproblem (18) can be written as

min
x̂∈Rm

f̂
(
x̂
) = f

(
xk + x̂1dk−1 + x̂2dk−2 + · · · + x̂mdk−m

)
. (22)

It follows from the QR decomposition of Sk that ĝk = ZT
k gk and ŷk = ZT

k yk . Since
the quasi-Newton direction in the subspace is always transformed to the full space,
we can easily obtain dk = Zkd̂k , ŝTk ŷk = sTk yk , ĝTk ŝk = gTk sk , ĝ

T
k+1ŝk = gTk+1sk ,∥∥ŝk

∥∥2 = ‖sk‖2 and f̂k = fk .
According to [24,25],

μ̂k =
∣∣∣∣∣∣
2

(
f̂k−1 − f̂k + ĝTk ŝk−1

)

ŝTk−1 ŷk−1
− 1

∣∣∣∣∣∣
(23)

is a quantity showing how f̂ is close to a quadratic on the line segment between x̂k−1
and x̂k . If the following condition [26,27] holds, namely,
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μ̂k ≤ τ1 or max
{
μ̂k, μ̂k−1

} ≤ τ2, (24)

where τ1 and τ2 are small positives and τ1 < τ2, f̂ might be very close to a quadratic
function on the line segment between x̂k−1 and x̂k .

Now we consider the choice of tk in the subspace version of the modified secant
equation (20). When the condition (24) holds, it is natural to use the standard secant
equation based on the above observation, which indicates that tk = 0. According to
[28], if ‖ŝk‖ > 1, the Wei’s secant equation is expected to be more accurate than the
Biglari’s secant equation, while if ‖ŝk‖ ≤ 1, the Biglari’s secant equation performs
better than the Wei’s secant equation. Therefore, if ‖ŝk‖2 > 1.5, we choose the Wei’s
secant equation. Otherwise, we choose the Biglari’s secant equation. As a result, we
determined tk as

tk =

⎧⎪⎨
⎪⎩

0, if (24) holds,

1, if (24) does not hold and
∥∥ŝk

∥∥2 > 1.5,

2, if (24) does not hold and
∥∥ŝk

∥∥2 ≤ 1.5

(25)

in the subspace version of the modified secant equation (20).
Motivated by the cautious BFGS method proposed by Li and Fukushima [23], we

will set B̂k to the unit matrix Î ∈ R
m×m when

ŝTk ŷk
ŝTk ŝk

≥ υ, where υ ≥ 10−8. In addition,

B̂k will be set to Î after it is updated l times, where

l = max
(
m2, 45

)
. (26)

Therefore, the search direction of the new quasi-Newton method for solving the sub-
problem (22) can be described as

d̂k+1 = −B̂−1
k+1ĝk+1, (27)

where B̂k+1 is given by

B̂k+1 =
⎧⎨
⎩

B̂k − B̂k ŝk ŝTk B̂k
ŝTk B̂k ŝk

+ ŷ∗
k ŷ

∗T
k

ŝTk ŷ∗
k

, if mod (k, l) 
= 0 and
ŝTk ŷk
ŝTk ŝk

≥ υ,

Î , otherwise,
(28)

where mod (k, l) denotes the residue for k modulo l, ŷ∗
k is given by

ŷ∗
k =

⎛
⎝1 + tk

2
(
f̂k − f̂k+1

)
+ (

ĝTk+1ŝk + ĝTk ŝk
)

ŝTk ŷk

⎞
⎠ ŷk

=
(
1 + tk

2 ( fk − fk+1) + (
gTk+1sk + gTk sk

)

sTk yk

)
ŷk

Δ= γk ŷk (29)
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and tk is determined by (25). In order to improve the numerical performance and
analyze the convergence, we restrict γk in (29) as

γk = min {max {r1, γk} , r2} , (30)

where 10−6 ≤ r1 ≤ r2 ≤ 108. Clearly, ŝTk ŷ∗
k > 0, and thus it is not difficult to

verify that B̂k+1 is symmetric and positive definite when B̂k is symmetric and positive
definite and ŝTk ŷ∗

k > 0.
In our algorithm, the search direction (27) in the subspace will be transformed to

the full space Rn at each subspace iteration, namely,

dk+1 = −Pkgk+1, (31)

where

Pk = Zk B̂
−1
k+1Z

T
k , (32)

and B̂k+1 is given by (28).
Obviously, if B̂k+1 
= Î , then it follows from (28) and (29) that γk B̂

−1
k+1 ŷk = ŝk ,

and thus Pk in (32) satisfies

Pk yk = 1

γk
sk . (33)

For βPDK
k in (11) and βPDK+

k in (13), we have the following result.

Lemma 2.1 Suppose that Pk be a symmetric and positive definite quasi-Newton
approximation to the inverse of Hessian matrix which satisfies the modified secant
equation (33). Then,

βPDK
k = βPDK+

k = 0.

Proof It follows from the secant condition (33) that

βPDK
k = gTk+1Pk yk

dTk yk
− yTk Pk yk

dTk yk

gTk+1dk

dTk yk
= gTk+1sk

γkdTk yk
− yTk sk

γkdTk yk

gTk+1dk

dTk yk

= gTk+1sk

γkdTk yk
− gTk+1sk

γkdTk yk
= 0.

According to (13), we know that if βPDK
k = 0, then βPDK+

k = βPDK
k , which implies

that βPDK+
k = βPDK

k = 0. The proof is completed. ��
It follows from Lemma 2.1 that the search direction (31) with B̂k+1 
= Î can be

regarded as the preconditioned CG direction (12) with the preconditioner Pk in (32)
with B̂k+1 
= Î .
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Once the orthogonality is improved, the iteration will depart the subspace to enter
the full space, and the standard CG iteration is invoked immediately.

2.2 Amodified strategy for the choice of the initial stepsize

It is universally acknowledged that the choice of the initial stepsize is crucial to an opti-
mizationmethod.Unlike general quasi-Newtonmethods, it is challenging to determine
a suitable initial stepsize for CG algorithms. In the subsection, we design a modified
strategy for choosing the initial stepsize based on the strategy in [8].

Denote

φk (α) = f (xk + αdk) , α ≥ 0.

Hager and Zhang [9] chose the initial stepsize in CG_DESCENT as follows:

α0
k =

{
arg min q

(
φk (0) , φ′

k (0) , φk (τ̄1αk−1)
)
, if φk (τ̄1αk−1) ≤ φk (0) ,

τ̄2αk−1, otherwise,
(34)

where τ̄1 > 0, τ̄2 > 0 and q
(
φk (0) , φ′

k (0) , φk (τ̄1αk−1)
)
is a interpolation function

matched the three values φk (0) , φ′
k (0) and φk (τ̄1αk−1). Dai and Kou [8] determined

the initial stepsize in CGOPT as follows:

α0
k =

{
α, if |φk (α) − φk (0)| / (τ3 + |φk (0)|) > τ4,

argmin q
(
φk (0) , φ′

k (0) , φk (α)
)
, otherwise,

(35)

where

α = max
{
τ5αk−1,−2 | fk − fk−1| /gTk dk

}
, (36)

τ3 > 0, τ4 > 0 and τ5 > 0. Recently, motivated by the BB method [29] and using the
interpolation technique, Liu and Liu [11] also developed an efficient strategy for the
choice of the initial stepsize for the subspace minimization conjugate gradient method
(SMCG_BB).1

If the search direction dk is determined by (31) with B̂k+1 
= Î , then the trial initial
stepsize ᾱ should be taken as 1 like quasi-Newton methods. Otherwise, the trial initial
stepsize is determined by (36). As a result, the trial initial stepsize is described as

ᾱ =
{
1, if dk is computed by (31) with B̂k+1 
= Î ,
α, otherwise,

(37)

where α is given by (36).
It is well-known that the linear CG algorithm with the exact line search enjoys

quadratic termination for strictly convex quadratic functions. In addition, Andrei [30]

1 Available at https://web.xidian.edu.cn/xdliuhongwei/en/paper.html.
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thought that the higher accuracy of the stepsize, the faster convergence of a CG algo-

rithm. If the quantity μk =
∣∣∣∣
2
(
fk−1− fk+gTk sk−1

)
sTk−1yk−1

− 1

∣∣∣∣ [24,25] satisfies

μk ≤ τ or max {μk, μk−1} ≤ τ̄ , (38)

where

τ =
{

τ6, if dk is computed by (31) with B̂k+1 
= Î ,
τ7, otherwise,

τ̄ =
{

τ8, if dk is computed by (31) with B̂k+1 
= Î ,
τ9, otherwise,

then f might be close to a quadratic function on the section between xk−1 and xk
[26,27]. Here 0 < τ6 < τ8 and 0 < τ7 < τ9. It is easy to verify that μ̂k in (23) is the
subspace version of the above quantity μk . Based on the above observations, when f
is close to a quadratic function on the section between xk−1 and xk , it is also reasonable
to take the minimizer of the interpolation function q

(
φk (0) , φ′

k (0) , φk (ᾱ)
)
as the

initial stepsize, where ᾱ is given by (37).
Therefore, the initial stepsize is determined by

α0
k =

{
argmin q

(
φk (0) , φ′

k (0) , φk (ᾱ)
)
, if (38) or |φk (ᾱ)−φk (0)|

(τ3+|φk (0)|) > τ̂ holds,
ᾱ, otherwise,

(39)

where the trial stepsize ᾱ is determined by (37), τ3 is the same as that in (35) and

τ̂ =
{

τ10, if dk is computed by (31) with B̂k+1 
= Î ,
τ11, otherwise.

where τ10 > 0 and τ11 are positive parameters.

2.3 Description of the improved Dai–Kou CG algorithm

Based on [8], we describe the improved Dai–Kou CG algorithm for unconstrained
optimization in detail. As mentioned above, the improved CG algorithm consists of
two kinds of iterations. The term “status” inAlgorithm1 stands for the type of iteration,
namely, status= “standard CG” indicates the standard CG iteration will be performed,
and status= “subspace” indicates the subspace iteration will be performed.

Remark 1 It is worth noting that when the orthogonality is improved, the iteration will
depart the subspace and the standard CG iteration is invoked immediately. Whereas
the limited memory CG algorithm [16] first performs the special preconditioned CG
iteration corresponding to the third preconditioner in (8) when departing the subspace.
It indicates that Algorithm 1 is simpler than the limited memory CG algorithm [16].
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Algorithm 1 (The improved Dai–Kou CG algorithm)
Step 0 Initialization. Given x0 ∈ R

n, ε > 0, ε4 > 0, η, η̃0, η̃1, τ1, τ2, τ6, τ7,

τ8, τ9, τ10, τ11, υ, r1, r2, MaxRestart, MinQuad, IterQuad=0 and
IterRestart=0. Set status= “standard CG" and k = 0.

Step 1 If ||gk ||∞ ≤ ε, then stop.
Step 2 Compute the search direction.

If (status =“standard CG"), then
If k = 0, then d0 = −g0.
elseif (IterRestart=MaxRestart or (IterQuad=MinQuad and IterQuad


=IterRestart)), then
dk = −gk and set IterRestart = 0, IterQuad = 0.

else
set Pk = I , compute dk by (15).

end
elseif (status =“subspace"), then

Compute Pk by (32), and determine the search direction dk by (31).
end

Step 3 Determine a stepsize αk satisfying (5) and (6) with the initial stepsize (39).
Step 4 Set xk+1 = xk + αkdk .

Step5Update IterRestart and IterQuad. IterRestart = IterRestart +1. If
∣∣∣ 2( fk+1− fk )
(gk+1+gk )T sk

− 1
∣∣∣

≤ ε4 or
∣∣ fk+1 − fk − 0.5

(
gTk+1sk + gTk sk

)∣∣ ≤ ε4 [11], then IterQuad = IterQuad
+1; otherwise, IterQuad = 0.

Step 6 Update the type of iteration.
If (status =“standard CG"), then

If the condition (17) holds, then status =“subspace".
elseif (status =“subspace" ), then

If the condition (19) holds, then status =“standard CG".
end

Step 7 Set k = k + 1 and go to Step 1.

We describe some implementation details about Algorithm 1 here. The Gram–
Schmidt orthogonality method [17] is used to calculate the QR factorization: Sk =
Zk R̄k , and thus Zk is computed by Zk = Sk R̄

−1
k . For the search direction (31),

we first calculate the modified Cholesky factorization of B̂k : B̂k = L̂k D̂k L̂T
k , where

L̂k ∈ R
m×m is a unit lower triangular matrix and D̂k ∈ R

m×m is a diagonal matrix, and
determine the search search in the subspace by L̂k D̂k L̂T

k d̂k = −ĝk and then compute

the search direction (31) by dk = Zkd̂k = Sk R̄
−1
k d̂k .

3 Convergence analysis

In the section, we study some important properties of Pk = I and Pk in (32) and
establish the global convergence of Algorithm 1 under the following assumptions.
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Assumption 3.1 (i)The objective function f is continuously differentiable on Rn ; (ii)

The level set L =
{
x | f (x) ≤ f (x0) + ∑

k≥0
ηk

}
is bounded; (iii) The gradient g is

Lipschitz continuous, namely, there exists a constant L > 0 such that

‖ g(x) − g(y) ‖≤ L ‖ x − y ‖, ∀x, y ∈ R
n .

Lemma 3.1 Suppose Assumption 3.1 hold. Then, for B̂k+1 in (28), there exist three
constants ξ̂1 > 0, ξ̂2 > 0 and ξ̂3 > 0 such that

λmax

(
B̂k

)
≤ ξ̂1, λmax

(
B̂−1
k

)
≤ ξ̂2,

∥∥∥B̂−1
k

∥∥∥ ≤ ξ̂3.

Proof Since the columns of Zk forms the normal orthogonal basis forSk andm < +∞,
there exists ξ0 > 0 such that ‖Zk‖ ≤ ξ0. According to (28), (30) and the equivalence
of matrix norm in the finite dimensional space, we have that

λmax

(
B̂k+1

)
= 1, (40)

or

λmax

(
B̂k+1

)
≤ λmax

(
B̂k

)
+ λmax

(
− B̂k ŝk ŝTk B̂k

ŝTk B̂k ŝk

)
+ λmax

(
ŷ∗
k ŷ

∗
k
T

ŝTk ŷ∗
k

)

≤ λmax

(
B̂k

)
+ γk

ŷTk ŷk

ŝTk ŷk

≤ λ̂max

(
B̂k

)
+ γk L

2ξ20

∥∥ŝk
∥∥2

ŝTk ŷk

≤ λ̂max

(
B̂k

)
+ r2

υ
L2ξ20 .

The above first inequality is obtained by the property of λmax (·): λmax (A1 + A2) ≤
λmax (A1) + λmax (A2), where A1 ∈ R

m×m and A2 ∈ R
m×m are symmetric matrices,

and the third comes from ŷk = ZT
k yk , ‖Zk‖ ≤ ξ0 and Assumption 3.1 (iii). Since B̂k

will be set to Î after updating at most l times, where l is given by (26). Therefore, we

obtain that λmax

(
B̂k+1

)
≤ 1 + lr2L2ξ20

υ
� ξ̂1.

Let P̂k = B̂−1
k+1. According to (28), after some simple matrix operations we obtain

that

P̂k = Î

or

P̂k =
(
Î − ŷk ŝTk

ŝTk ŷk

)T

P̂k−1

(
Î − ŷk ŝTk

ŝTk ŷk

)
+ 1

γk

ŝk ŝTk
ŝTk ŷk

. (41)
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It is not difficult to see that λmax

((
Î − ŷk ŝTk

ŝTk ŷk

)T (
Î − ŷk ŝTk

ŝTk ŷk

))
= ‖ŷk‖2‖ŝk‖2

(
ŝTk ŷk

)2 . For

any ẑ 
= 0 ∈ R
m and P̂k in (41), we have from the property of λmax (·) and Cauchy

inequality that

ẑT P̂k ẑ = ẑT
(
Î − ŷk ŝTk

ŝTk ŷk

)T

P̂k−1

(
Î − ŷk ŝTk

ŝTk ŷk

)
ẑ + 1

γk

(
ŝTk ẑ

)2
ŝTk ŷk

≤ λ̂max

(
P̂k−1

)
ẑT

(
Î − ŷk ŝTk

ŝTk ŷk

)T (
Î − ŷk ŝTk

ŝTk ŷk

)
ẑ + 1

γk

(
ŝTk ẑ

)2
ŝTk ŷk

≤ λmax

(
P̂k−1

)
λmax

⎛
⎝

(
Î − ŷk ŝTk

ŝTk ŷk

)T (
I − ŷk ŝTk

ŝTk ŷk

)⎞
⎠ ∥∥ẑ∥∥2 + 1

γk

(
ŝTk ẑ

)2
ŝTk ŷk

≤ λ̂max

(
P̂k−1

) ∥∥ŷk
∥∥2∥∥ŝk

∥∥2
(
ŝTk ŷk

)2
∥∥ẑ∥∥2 + 1

γk

∥∥ŝk
∥∥2

ŝTk ŷk

∥∥ẑ∥∥2.

Dividing the above inequality by
∥∥ẑ∥∥2 and maximizing the resulting inequality, we

can obtain from (28) that

λmax

(
P̂k

)
≤ λmax

(
P̂k−1

) ∥∥ŷk
∥∥2∥∥ŝk

∥∥2
(
ŝTk ŷk

)2 + 1

γk

∥∥ŝk
∥∥2

ŝTk ŷk

≤ λmax

(
P̂k−1

)
L2ξ20

∥∥ŝk
∥∥4

(
ŝTk ŷk

)2 + 1

γk

∥∥ŝk
∥∥2

ŝTk ŷk

≤ L2ξ20

v2
λmax

(
P̂k−1

)
+ 1

r1v
.

The above second inequality comes from ŷk = ZT
k yk , ‖Zk‖ ≤ ξ0 and Assumption

3.1 (iii). Since P̂k will be set to Î after updating at most l times, we know easily there

exists a ξ̂2 > 0 such that λmax

(
B̂−1
k+1

)
= λmax

(
P̂k

)
≤ ξ̂2.

Since B̂−1
k+1 is a symmetric and positive definite matrix, we have that

∥∥∥B̂−1
k+1

∥∥∥
2

2
=

λmax

(
B̂−1
k+1

)
≤ ξ̂2. Therefore, by the equivalence of matrix norm in finite dimensional

space, we know that there exists a constant ξ̂3 > 0 such that
∥∥∥B̂−1

k+1

∥∥∥ < ξ̂3. The proof

is completed. ��
Lemma 3.2 Suppose Assumption 3.1 hold. Then, for Pk = I or Pk in (32), there exist
three constants γ0 > 0, γ1 > 0 and γ2 > 0 such that

‖Pk‖ ≤ γ0, gTk+1Pkgk+1 ≥ γ1‖gk+1‖2, dTk P−1
k dk ≥ γ2‖dk‖2.
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Proof We consider the following two cases.
(i) Pk = I . It is obvious that the conclusions hold.
(ii) Pk = Zk B̂

−1
k+1Z

T
k . By (19), (32), Lemma 3.1 and Assumption 3.1 (iii), we

obtain that

‖Pk‖ =
∥∥∥Zk B̂

−1
k+1Z

T
k

∥∥∥ =
∥∥∥B̂−1

k+1

∥∥∥ ≤ ξ3
Δ= γ0,

gTk+1Pkgk+1 = gTk+1Zk B̂
−1
k+1Z

T
k gk+1 = ĝTk+1 B̂

−1
k+1ĝk+1 ≥ λmin

(
B̂−1
k+1

) ∥∥ĝk+1
∥∥2

≥ 1

ξ̂1

(
1 − η̃21

)
‖gk+1‖2 Δ= γ1‖gk+1‖2,

dTk P−1
k dk = dTk Zk B̂k+1Z

T
k dk = d̂Tk B̂k+1d̂k ≥ 1

ξ̂2

∥∥∥d̂k
∥∥∥
2 = 1

ξ̂2
‖dk‖2 Δ= γ2‖dk‖2.

The proof is completed. ��
Remark 2 By Lemmas 3.1 and 3.2 , we know that Pk = I or Pk in (32) in Algorithm
1 satisfies the conditions (9), while the preconditioners (8) in the limited memory CG
methods [16] are artificially assumed to satisfy the conditions (9).

Lemma 3.3 Assume that f satisfies Assumption 3.1, and let {xk} be the sequence
generated by Algorithm 1. If dTk yk 
= 0, then there exists a constant c > 0 such that

gTk+1dk+1 ≤ −c‖gk+1‖2. (42)

Proof We consider the following two cases.
Case I. Standard CG iteration
(i) If βPDK+

k = βDK
k , then it follows from Lemma 2.2 in [8] that

gTk+1dk+1 ≤ −3

4
‖gk+1‖2. (43)

(ii)If βPDK+
k = ηk , where ηk is given by (14), then

gTk+1dk+1 = −‖gk+1‖2 − η

∣∣gTk+1dk
∣∣

‖dk‖2
gTk+1dk

≤ −‖gk+1‖2 + η‖gk+1‖2 = − (1 − η) ‖gk+1‖2. (44)

Case II. Subspace iteration.
According to Lemma 3.2, we have that

gTk+1dk+1 = −gTk+1Pkgk+1 ≤ −γ1‖gk+1‖2. (45)

In sum, we know from (43), (44) and (45) that the search direction dk+1 satisfies
the sufficient descent condition (42) with c = min {3/4, 1 − η, γ1}. The proof is
completed. ��
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In the following analysis, the search direction (31) is treated as dk+1 = −Pkgk+1+
βPDK+
k dk with βPDK+

k = max

{
0,−η

∣∣gTk+1dk
∣∣

dTk P−1
k dk

}
. The next lemma is used to establish

the convergence of Algorithm 1.

Lemma 3.4 Assume that f satisfies Assumption 3.1, and let {xk} be generated by
Algorithm 1. If γ = inf {‖gk‖ : k ≥ 1} > 0, then dk 
= 0 and

∑
k≥0

‖uk − uk−1‖2 <

+∞, where uk = dk/ ‖dk‖.
Proof By γ > 0 and Lemma 3.3 we know that ‖dk‖ 
= 0. By (5), (6) and Lemma 3.3,
we get that

+∞∑
k=0

1

‖dk‖2
< +∞. (46)

Similar to Lemma 4.3 of [8], by ‖Pk‖ ≤ γ0 and dTk P−1
k dk ≥ γ2‖dk‖2 in Lemma 3.2,

we can obtain that
∑
k≥0

‖uk − uk−1‖2 < +∞. ��

The convergence of Algorithm 1 is established in the following theorem.

Theorem 3.1 Assume f satisfies Assumption 3.1, let {xk} be the sequence generated
by Algorithm 1. Then,

lim inf
k→∞ ‖gk‖ = 0.

Proof Clearly, {xk} ⊂ L. It follows fromAssumption 3.1 (i) and the boundedness ofL
that Γ = max

x∈L
‖g(x)‖ < +∞. We prove the conclusion by contradiction. We suppose

that lim inf
k→∞ ‖gk‖ > 0 and gk 
= 0 for all k. Therefore, we have that ‖gk‖ 
= 0 and

γ = inf {‖gk‖ : k ≥ 0} > 0. The proof is divided into the following three steps:
I.Abound forβPDK+

k .We consider the following two cases. (i) The search direction
dk is computed by (15). IfβDK

k ≥ 0, thenβPDK+
k = βDK

k , otherwiseβPDK+
k ≥ βDK

k ,

which implies that
∣∣∣βPDK+

k

∣∣∣ ≤ ∣∣βDK
k

∣∣. According to (6), Assumption 3.1 (iii) and

Lemma 3.3, similar to Step I of Theorem 3.2 in [9] we can obtain that
∣∣∣βPDK+

k

∣∣∣ ≤∣∣βDK
k

∣∣ ≤ C ‖sk‖, where

C = 1

c(1 − σ)γ 2

(
LΓ + L2Dmax

{
σ

1 − σ
, 1

})
, D = max {‖y − z‖ ,∀y, z ∈ L} .

(47)

(ii) The search direction dk is computed by (31). Obviously,
∣∣∣βPDK+

k

∣∣∣ = 0 ≤ C ‖sk‖ ,

where C is given by (47).
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II.Aboundon the steps‖sk‖.According toLemma3.4, similar toStep II ofTheorem

3.2 in [9] we can obtain that
l−1∑
j=k

∥∥s j
∥∥ ≤ 2D when l > k ≥ k0 and l − k ≤ Δ, where

k0 is chosen such that
∑
i≥k0

‖ui+1 − ui‖2 ≤ 1

4Δ
and Δ is a positive integer satisfying

Δ ≥ 4CD. Here C and D are given by (47).
III. A bound on dl . According to (12), the bound for βPDK+

k mentioned above and

‖Pk‖ ≤ γ0 in Lemma3.2, we have that ‖dl‖2 ≤
(
‖−Pl−1gl‖ +

∣∣∣βPDK+
l−1

∣∣∣ ‖dl−1‖
)2 ≤

2γ 2
0 Γ 2 + 2C2‖sl−1‖2‖dl−1‖2. Similar to Step III of Theorem 3.2 in [9] we know that

‖dl‖ is bounded and the bound is independent of l > k0, which contracts with (46).
Therefore, we get lim inf

k→∞ ‖gk‖ = 0. The proof is completed. ��

Remark 3 It is worth noting that although a new quasi-Newton method is developed to
solve the subspace problem (22), the convergence of Algorithm 1 is established under
the quite mild Assumption 3.1 without the strict conditions (9).

4 Numerical experiments

Since the original Dai–Kou CG algorithm [8] corresponds to the version 1.0 of
CGOPT, namely, CGOPT (1.0), we refer to the improved Dai–Kou CG algorithm
as the version 2.0 of CGOPT, namely, CGOPT (2.0). We do some experiments to
compare CGOPT (2.0) with CGOPT (1.0) and the latest limited memory CG software
package CG_DESCENT (6.8). CGOPT (2.0) is implemented based on the C code
of CGOPT (1.0), and the codes of CGOPT (1.0) and CG_DESCENT (6.8) can be
downloaded from http://coa.amss.ac.cn/wordpress/?page_id=21 and http://users.clas.
ufl.edu/hager/papers/Software, respectively. The test collection includes 160 uncon-
strained optimization problems from the CUTEr library [31], which can be found
in http://users.clas.ufl.edu/hager/papers/CG/results6.0.txt; the initial points and the
dimensions of the test problems are default.

In the numerical experiments, we choose the following parameters for CGOPT
(2.0): ε = 10−6, η = 0.3, η̃0 = 10−6, η̃1 = 0.4, τ1 = 10−8, τ2 = 10−4, τ6 =
10−4, τ7 = 5 × 10−3, τ8 = 10−3, τ9 = 5 × 10−2, τ10 = 50, τ11 = 110, η̄k =
1/(k1.4), υ = 5 × 10−6, r1 = 10−4, r2 = 106 and m = min {11, n}, and use other
default parameter values in CGOPT (1.0). CG_DESCENT (6.8) and CGOPT (1.0)
use all default parameter values in their codes except the stopping conditions, which
means that CG_DESCENT (6.8) adaptively uses the standard Wolfe line search or the
AWolfe line search at each iteration. All test methods are terminated if ‖ gk‖∞ ≤ 10−6

is satisfied.
The performance profiles introduced byDolan andMoré [32] are used to display the

performances of these algorithms. In Figs. 1, 2, 3, 4, 5, 6, 7, 8, “Niter”, “N f ”, “Ng”
and “Tcpu” represent the number of iterations, the number of function evaluations, the
number of gradient evaluations and CPU time (s), respectively.
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In the numerical experiments, CGOPT (2.0) solves successfully 142 problems,
while CG_DESCENT (6.8) and CGOPT (1.0) solve successfully 145 and 137 prob-
lems, respectively.

Figures1, 2, 3, and 4 plot the performance profiles of CGOPT (2.0) and CGOPT
(1.0) in term of the number of iterations, the number of function evaluations, the
number of gradient evaluations and CPU time. As shown in Figs. 1, 2, 3 and 4 we
observe that CGOPT (2.0) has a quite significant improvement over CGOPT (1.0) in
term of the numbers of iterations, function evaluations and gradient evaluations and
CPU time. It indicates that CGOPT (2.0) is superior much to CGOPT (1.0) .
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Figures5, 6, 7 and 8 plot the performance profiles of CGOPT (2.0) and
CG_DESCENT (6.8) in term of the number of iterations, the number of function
evaluations, the number of gradient evaluations and CPU time. As showed in Fig. 5,
we see that CGOPT (2.0) performs better than CG_DESCENT (6.8) in term of the
numbers of iterations, since CGOPT (2.0) is better for about 66% of the test prob-
lems, while the percentage of CG_DESCENT (6.8) is only about 50%. We observe
from Fig. 6 that CGOPT (2.0) performs slightly better than CG_DESCENT (6.8)
in term of the number of function evaluations. In Fig. 7, we see that CGOPT (2.0)
outperforms much CG_DESCENT (6.8) in term of the number of gradient evalu-
ations, since CGOPT (2.0) is better for about 74% of the test problems, while the
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percentage of CG_DESCENT (6.8) is only about 36%. We observe from Fig. 8
that CGOPT (2.0) is faster than CG_DESCENT (6.8). It follows from Theorem 3.1
that CGOPT (2.0) with the improved Wolfe line search used is globally convergent,
whereas there is no guarantee for the global convergence of CG_DESCENT with
the quite efficient AWolfe line search. It indicates that CGOPT (2.0) is superior
to CG_DESCENT (6.8) for the CUTEr library in theory and numerical perfor-
mance.
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5 Conclusions

Toovercome the three drawbacks in the limitedmemoryCGalgorithm [16],we present
an improved Dai–Kou CG algorithm for unconstrained optimization, which consists
of two kinds of iterations. In the improved Dai–Kou CG algorithm, a new quasi-
Newton method for improving the orthogonality and a modified strategy for choosing
the initial stepsize are analyzed. We establish the convergence of the improved Dai–
Kou CG algorithm without the assumptions (9). Some numerical results indicate that
the improved Dai–Kou CG algorithm (CGOPT (2.0)) has a great improvement over
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the original Dai–Kou CG algorithm (CGOPT (1.0)) and outperforms the latest limited
memory CG software package CG_DESCENT (6.8) for the CUTEr library.
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