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DDLPS: Detail-Based Deep Laplacian
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Abstract— In this paper, we propose a new pansharpen-
ing method called detail-based deep Laplacian pansharpen-
ing (DDLPS) to improve the spatial resolution of hyperspectral
imagery. This method includes three main components: upsam-
pling, detail injection, and optimization. In particular, a deep
Laplacian pyramid super-resolution network (LapSRN) improves
the resolution of each band. Then, a guided image filter and a gain
matrix are used to combine the spatial and spectral details with
an optimization problem, which is formed to adaptively select
an injection coefficient. The DDLPS method is compared with
11 state-of-the-art or traditional pansharpening approaches. The
experimental results demonstrate the superiority of the DDLPS
method in terms of both quantitative indices and visual appear-
ance. In addition, the training of LapSRN is based on the data
sets of traditional RGB images, which overcomes the practical
difficulty of insufficient training samples for pansharpening.

Index Terms— Guided image filter, hyperspectral (HS) imag-
ing, Laplacian pyramid super-resolution network (LapSRN),
pansharpening, super-resolution, Sylvester equation.

I. INTRODUCTION

HYPERSPECTRAL (HS) imaging can simultaneously
acquire images of the same scene across hundreds

of wavelengths [1]. As a result, the HS imagery has a
very high spectral resolution and has been widely used
in many domains, such as military surveillance [2], envi-
ronmental monitoring [3], mineral exploration [4], [5], and
agriculture [6], [7]. Commercial products, such as Google
Earth, use pansharpened images, making pansharpening an
important preliminary step for several image analysis tasks,
e.g., change detection [8]. In the design of optical remote
sensing systems, because of the limited amount of incident
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energy, there are critical tradeoffs among the spatial reso-
lution, spectral resolution, and signal-to-noise ratio (SNR).
Thus, optical systems can provide data with a high spatial
resolution (HR) but a small number of spectral bands or
with a high spectral resolution but a low spatial resolution
(LR) [9]. Therefore, to acquire an HR-HS image, an HR
panchromatic (PAN) image is often fused with an LR-HS
image of the same scene. Compared with the recent approach
of fusing an LR-HS image with a high spatial multispectral
(LR-MS) image, the reconstruction of an HR-HS image via
a PAN image is more difficult because of the low spectral
resolution in a single-band PAN image.

Various data fusion techniques have been developed in
the last decade to enhance the spatial resolution of HS
imagery [10]. The representative traditional techniques
can be roughly categorized as follows: 1) component
substitution (CS) [11]–[13]; 2) multiresolution analysis
(MRA) [14], [15]; 3) matrix factorization [16]–[18]; and
4) Bayesian methods [19]–[21]. CS methods include
the following algorithms: intensity–hue–saturation (IHS)
[11], [22], [23], Brovey transform (BT) [24], principal
component analysis (PCA) [25], Gram–Schmidt (GS) [12],
adaptive GS (GSA) [13], and partial replacement adaptive CS
(PRACS) [26]. These CS-based methods employ the PAN
image to replace the spatial component by employing the
inverse transformation, which works well from a spatial aspect
and is notably robust to coregistration errors but may result
in spectral distortion. The MRA approach is based on the
injection of spatial details that are obtained via a multiscale
decomposition of the PAN image into the LR-HS image.
The typical MRA algorithms include the decimated wavelet
transform (DWT) [27], Laplacian pyramid [28], modulation
transfer function (MTF) generalized Laplacian pyramid
(MTF-GLP) [15], and MTF-GLP with high-pass modulation
(MTF-GLP-HPM) [29]. The MRA approach mainly suffers
from spatial distortions (e.g., ringing artifacts) but well
preserves the spectral information but well preserves the
spectral information by injecting details into the HS images
that are obtained from the PAN image. The Bayesian approach
relies on the use of a posterior distribution of the desired
HR-HS image for the given LR-HS and PAN images [9].
The Bayesian sparsity promoted Gaussian prior (Bayesian
sparse) [19], Bayesian naive Gaussian prior (Bayesian naive)
proposed by Wei et al. [20], and Bayesian HySure proposed
by Simões et al. [21] belong to this approach. Pansharpening
based on matrix factorization is effective. For example,
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the coupled nonnegative matrix factorization (CNMF) method
proposed by Yokoya et al. [18], which alternately unmixes
both sources of data to obtain the endmember spectra and
HR abundance maps, can produce high quality in both spatial
and spectral aspects. These methods separate the connection
between the spatial and the spectral information and may cause
spatial or spectral distortion. Recently, convolutional neural
network (CNN) has been successfully applied to computer
vision tasks [30]–[32], and CNN-based approaches have
become the new trend in pansharpening with excellent fusion
ability [33]–[35]. The recent CNN-based pansharpening
methods learn the mapping between HR/LR PAN images
(because these methods assume that the relationship of
HR/LR HS images is identical to that between HR/LR PAN
images [35]).

The first method using the CNN was proposed by
Huang et al. [33]. Then, Masi et al. [34] transferred the archi-
tecture proposed for super-resolution [30] to pansharpening
problem, which obtains the state-of-the-art performance and
shows the feasibility of using the super-resolution method
to solve pansharpening problems. Although these methods
achieve a good performance, they treat pansharpening as a
black-box deep learning problem and miss two aspects of a
pansharpening method, spectral and spatial preservations, and
they miss the final goal of combining these two aspects. Then,
Yang et al. [35] presented a deep network for pansharpening
called PanNet, which automatically learns the mapping purely
from data, incorporates problem-specific knowledge into the
deep learning framework, and focuses on both spatial and
spectral preservations. To the best of our knowledge, PanNet
achieves the best performance among all CNN-based methods.
Recent CNN-based pansharpening methods apply the bicubic
interpolation to the LR-HS image to make its scale equal to
the PAN image. However, the lost spectral information during
the procedure may limit the performance of the state-of-the-art
methods. Our approach to this problem is motivated by recent
success in CNN-based super-resolution methods [30]–[32],
which show great spectral preservation ability and are used in
the proposed method. To make them computationally feasible,
recent CNN-based pansharpening methods usually estimate
their performance on data sets with a few spectral bands.
For example, Huang et al. [33] evaluated their method on
the QuickBird (4 bands) and IKONOS data sets (4 bands),
Masi et al. [34] used IKONOS, GeoEye1 (4 bands), and
WorldView2 (8 bands) data sets, and Yang et al. [35] tested
PanNet on the WorldView2, WorldView3 (16 bands), and
IKONOS data sets.

In this paper, we propose a detail-based deep Laplacian
pansharpening (DDLPS) method for the fusion of a simu-
lated PAN image and an LR-HS image with the following
features.

1) Considering insufficient training samples of HS image,
the current CNN-based methods usually employ mul-
tispectral satellite images, which may cause that the
methods degrade when applied to hundreds of bands.
The proposed method uses the RGB image to train
the network and achieves a satisfactory performance

when applied to both multispectral images and
HS images.

2) The traditional CNN-based methods treat pansharpening
problem as a black-box problem, while the proposed
method focuses on the two aspects of pansharpening:
spatial and spectral preservations.

3) The proposed DDLPS uses a guided filter [36] to trans-
fer the spatial details of the PAN image to the LR-HS
image because of its efficiency and strong ability to
achieve an appropriate balance between spectral and
spatial preservations.

4) We propose a novel adaptive parameter selection method
instead of manually tuning the parameter and turning
the optimization into solving a Sylvester equation. Thus,
the detail extraction can better adapt to the fusion of
complex HS images.

5) To demonstrate the better performance on images with
more bands, we estimate the DDLPS on data sets with
hundreds of bands, e.g., Moffett Field (176 bands),
Chikusei (128 bands), and Salinas (204 bands) data sets.
The experimental results reflect its universality in HS
image pansharpening

6) Unlike the traditional CNN-based methods, which use
bicubic interpolation to upsample the LR-HS image,
we use the deep Laplacian pyramid super-resolution
network (LapSRN) proposed by Lai et al. [37] to con-
duct super-resolution on the LR-HS image. As shown
in Fig. 1, the LapSRN can better preserve the spatial
and spectral information than the bicubic interpolation.

The remainder of this paper is organized as follows.
Section II formulates the problem of HS image pansharpening.
The proposed DDLPS approach is discussed in Section III.
Section IV presents the experimental results of three databases
and the corresponding discussions. Finally, the conclusions are
drawn in Section V.

II. PROPOSED DDLPS APPROACH

The proposed DDLPS method considers both spatial content
of the PAN image and spectral content of the LR-HS image.
The DDLPS method mainly includes the following steps:
conduct super-resolution via LapSRN, inject details, and turn
the optimization problem into solving a Sylvester equation.
The detail injection includes two steps: guided filtering and
detail extraction. The diagram of the proposed method is
shown in Fig. 2.

A. Problem Formulation

Let the desired HR-HS image be denoted as X ∈ R
S×N ,

where S is the number of spectral bands, N is the number
of pixels, and Xl is the lth band of the image. Let the
LR-HS image be denoted as Y ∈ R

S×n , where n = N/d2

is the number of pixels with d being the scale factor. Let the
PAN image be denoted as P ∈ R

1×N . X and Y have the
same numbers of bands, but X is spatially downsampled; X
and P have the same numbers of pixels, but P is spectrally
downsampled.
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Fig. 1. Spectral angle mapping of the Chikusei data set using (a) bicubic interpolation and (b) LapSRN.

Fig. 2. Diagram of the proposed DDLPS method. Y, Ŷ, P̃, D, G, GI, Yg, and Xfin represent the LR-HS image, image after upsampling, PAN images before
and after the adaptive histogram equalization, extracted details [see (8)], gain matrix [see (3) and (4)], guidance image, image after the guided image filtering,
and output HR-HS image, respectively.

B. Upsampling via LapSRN

The LR-HS image is first upsampled to the scale of the PAN
image. Recent pansharpening methods use bicubic interpola-
tion to perform upsampling. However, the bicubic interpolation
may not have the ideal spectral information preservation
ability according to Fig. 1, whereas LapSRN [37] satisfies our
demands. This method demonstrates excellent performance in
preserving spatial and spectral information.

Super-resolution is successively conducted on each band of
the origin LR-HS image successively

Ŷl = LapSRN(Yl) (1)

where Ŷ is the image after upsampling and Ŷ
l

is its lth band.
The architecture and theory of LapSRN are demonstrated
in Fig. 3.

C. Guided Filtering

The guided image filter is proposed by He et al. [36]
and demonstrates its efficiency and strong ability to transfer
the structures in a guidance image to the filtering output.
The guided filter principal component analysis (GFPCA) [38]
method first uses the guided image filter to solve pansharp-
ening problems because it can transfer the spatial structures
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Fig. 3. Network architecture of LapSRN. The red, blue, and green arrows
indicate the convolution layers, transposed convolution (upsampling), and
elementwise operator, respectively.

Fig. 4. Example of guided image filtering.

in the PAN image to enhance the HS image. Fig. 4 shows an
example of guided image filtering.

To acquire the guidance image, enhancing the spatial infor-
mation of the PAN image and constructing a gain matrix to
preserve the spectral information are essential.

With respect to P ∈ R
1×N , we simply obtain matrix P̃

that contains the spatial details of the PAN image using the
following formula:

P̃ = AHE(P) (2)

where AHE(·) is the adaptive histogram equalization
function [39] and P̃ ∈ R

1×N . We use P̃ to denote the PAN
image in the remaining of this paper.

Constructing a gain matrix can control the spatial and
spectral distortions. To reduce the spectral distortion, the rela-
tionship between the spectral bands should be unchanged when
mapping to an HR-HS image. As mentioned in [40], the gain
matrix has the following relationship with Ŷ :

Gs ∝ Ŷs

1
S ·∑S

s=1 Ŷs
(3)

where G ∈ R
S×N is the gain matrix, Gs is the sth band of the

gain matrix, Ŷ is the LR-HS image after the super-resolution,
and Ŷs is its sth band. To tune the method to a balance
between spectral and spatial preservations, we introduce a

tradeoff parameter δ to control the injected details

Gs = δ · Ŷs

1
S ·∑S

s=1 Ŷs
. (4)

Then, the spatial and spectral details are injected into the
guidance image and transferred to the LR-HS image

GIs = P̂ · Gs (5)

where GI is the guidance image, GIs is the lth band of the
guidance image, and · is the elementwise multiplication.

Given the guidance image GI and input image Ŷ, the output
image can be obtained as

Yg
s = GF(GIs, Ŷs) (6)

where GF(·) is the guided filter function, Yg is the guided
filter output, and Yg

s is the lth band of output image Yg. The
kernel of the guided image filter is [25]

Wi, j (I ) = 1

|ω|2
∑

k(i, j )∈ωk

(
1 + (Ii − μk)(I j − μk)

σ 2
k + ε

)
(7)

where I is the guidance image and μk and σ 2
k are the mean

and variance of I in area ωk , respectively.

D. Detail Extraction

Although the guided image filter successfully enhances the
details in the edge of the image, some spatial and spectral
information in the flat area (their pixel values are similar to
those around them) is not enhanced through guided filtering.
Thus, injecting details to them can greatly improve their
appearance.

First, a Gaussian filter is performed on the PAN image to
remove the details (high-frequency component), and we obtain
the low-frequency component. Then, details will be obtained
when the low-frequency component from the original PAN
image is subtracted as

D = P̂ − P̂ ∗ g (8)

where D denotes the details of the image (high-frequency
component), g is the Gaussian filter, and * is the convolution
operation.

We can use the gain matrix to inject the details into the
spectral information. Then, the output HR-HS image Xfin can
be obtained as {

Xfin = Yg + G · D̃

D̃s = D
(9)

where Xfin, D̃ ∈ R
S×N , D̃s is the sth band of D̃, and · is the

elementwise multiplication.

E. Optimization

To generate the final HR-HS Xfin, we must find the corre-
sponding optimal δ. Instead of tuning the value of δ, we find
the corresponding G by solving an optimization problem.
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Fig. 5. Creation of the PAN image.

Algorithm 1 Closed-Form Solution of Sylvester Equation
With Respect to G

Input: R, B, S, Y, Yg, P̃.
1: Eigendecomposition of B : B = FDFH

2: ˇD = D(1d
⊗

Im)
3: Eigendecomposition of C1 : C1 = Q�Q−1

4: ˇC = Q−1C F
5: for s =1→ S do
6: ǧl = λ−1

s čs − λ−1
s čsĎ(λsdIm +∑d

i=1 D2
i )

−1ĎH �
Compute auxiliary matrix G band by band:

7: end for
8: Set G = QǦFH

Output: G

Since the objective is to estimate the HR-HS image Xfin
from Y and P, the fusion problem can be written as

L = min
G

[ f1(G, P̃) + f2(G, Y)] (10)

where functions f1(·) and f2(·) focus on the spatial consis-
tency and spectral consistency, respectively. We motivate this
formulation by considering our approach in terms of the two
goals of pansharpening. The spatial information of the HR-HS
image mainly comes from the PAN image, and an image
generated by optimal pansharpening after spectral sampling
should be identical to the PAN image. Thus, in this paper,
the spatial consistency is evaluated as

f1(G, P̃) =
∥∥∥∥∥ 1

S

S∑
s=1

(
Ys

g + Gs · D̃s)− P̃

∥∥∥∥∥
2

F

(11)

where ‖ · ‖F is the Frobenius norm. The spectral information
of the HR-HS image is provided by the LR-HS image, and
an optimal HR-HS image after spatial sampling should be
identical to the PAN image. Thus, the spectral consistency is

f2(G, Y) = ‖ ↓ (Yg + G · D̃) − Y‖2
F (12)

where ↓ denotes the bicubic interpolation.
To simplify the computational work, we denote the opera-

tion (1/S)
∑S

s=1(·) as R ∈ R
1×S . In this paper, we consider

blurring and downsampling [26], which are denoted as B ∈
R

N×N and S ∈ R
N×n , respectively. The bicubic interpolation

can be decomposed into blurring and downsampling. Some
state-of-the-art methods [1], [19], [21] assume that matrix B
is a block circulant matrix with circulant blocks and can
be decomposed as B = FDFH , where F is the DFT matrix

TABLE I

QUANTITATIVE RESULTS OF TEN METHODS ESTIMATED
ON THE MOFFETT DATA SET

TABLE II

SUM OF ABSOLUTE DIFFERENCE VALUES OF EACH PIXEL
ESTIMATED ON THE MOFFETT DATA SET

(FFH = In) and D is a diagonal matrix that contains the
eigenvalues of B.

Thus, f1(·) and f2(·) can be simplified as{
f1(G, P̃) = ‖R(Yg + G · D̃) − P̃‖2

F

f2(G, Y) = ‖(Yg + G · D̃)BS − Y‖2
F .

(13)

Based on the above-mentioned model, we estimate the
HR-HS image by solving the following optimization problem:

L = min
G

(‖R(Yg + G · D̃) − P̃‖2
F︸ ︷︷ ︸

Spatial Presentation

+‖(Yg + G · D̃)BS−Y‖2
F︸ ︷︷ ︸

Spectral Preservation

)
. (14)

To minimize (14), we force the derivative of (14) for G to be
zero, and it becomes a Sylvester equation

C1G + GC2 = C3 (15)
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Fig. 6. Ground truth and the pansharpening images generated by different methods based on the Moffett Field data set. (a) Ground truth. (b) GS. (c) GSA.
(d) SFIM. (e) MTF-GLP. (f) MTF-GLP-HPM. (g) Bayesian Naive. (h) Bayesian Sparse. (i) HySure. (j) GFPCA. (k) CNMF. (l) DDLPS.

Fig. 7. Comparison of the spectral reflectance difference values on four pixels in Fig. 6(a). (a)–(d) Four pixels marked in yellow in Fig. 6.

where⎧⎪⎨⎪⎩
C1 = RT R
C2 = (BS)(BS)T

C3 = RT (P̃ − RYg) + (Y − YgBS)(BS)
T
.

(16)

Equation (15) is known to have a unique solution if and
only if the arbitrary sum of the eigenvalues of C1 and C2 is
not equal to zero [41]. R is the mean operation, so C1 is a
positive matrix; thus, the eigenvalues of C1 are positive. C2
is a semipositive number, and its eigenvalues are semipositive
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TABLE III

QUANTITATIVE RESULTS OF TEN METHODS ESTIMATED
ON THE CHIKUSEI DATA SET

TABLE IV

SUM OF ABSOLUTE DIFFERENCE VALUES OF EACH PIXEL

ESTIMATED ON THE CHIKUSEI DATA SET

values. Therefore, the solution of Sylvester equation is unique.
The approach to solve (15) is summarized in Algorithm 1, and
more details can be found in [20].

Based on (4) and Algorithm 1, the selection of δ can be
written as ⎧⎪⎨⎪⎩δ = μ

(
Gs ·

∑S
s=1 Ŷs

SŶs

)
G = QǦFH

(17)

where μ(·) is the mean function and the multiplication and
division in the first equation of (17) are elementwise.

III. EXPERIMENT

A. Experimental Setup

In this section, we validate the performance of the proposed
method on three public data sets: Moffett Field, Chikusei, and
Salinas. Discarding the water absorption bands and low-SNR
bands, the Moffett Field data set includes 176 bands of
400–2500 nm. The Chikusei data set comprises 128 bands
in the spectral range of 363–1018 nm. The Salinas data set,

TABLE V

QUANTITATIVE RESULTS OF TEN METHODS ESTIMATED
ON THE SALINAS DATA SET

TABLE VI

SUM OF ABSOLUTE DIFFERENCE VALUES OF EACH PIXEL

ESTIMATED ON THE SALINAS DATA SET

which was taken over Salinas valley in Southern California,
comprises 204 bands (244 bands with 20 bands removed) in
the spectral of 400–2500 nm [42]. Because the human visible
wavelength is approximately 400–760 nm, the PAN image
can be simulated by averaging the visible bands, as shown
in Fig. 5.

For the quantitative evaluation, the HS image is used as the
ground truth, and the LR-HS image is obtained by being fil-
tered by a 9×9 Gaussian smoothing kernel and downsampled
by a factor of 4. Thus, the spatial sizes of LR-HS images in
the Moffett Field, Chikusei, and Salinas data sets are 65 ×40,
150×150, and 50×50, respectively, and the spatial resolutions
of the PAN images are 260 × 160, 600 × 600, and 200 × 200,
respectively.

We use 91 images from [43] and 200 images from the
training set of the Berkeley Segmentation data set [44] to train
the LapSRN. We randomly sample 64 patches with the size
of 128 × 128 in each training batch.

The experiment on the three data sets is conducted using
MATLAB R2014b and performed on a server with an RHEL
6.5 operating system, an Intel Xeon E5-2650 V4 CPU at
2.20 GHz, an NVIDIA K80 GPU and 128-GB memory.
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Fig. 8. Ground truth and the pansharpening images generated by different methods based on the Chikusei data set. (a) Ground truth. (b) GS. (c) GSA.
(d) SFIM. (e) MTF-GLP. (f) MTF-GLP-HPM. (g) Bayesian naïve. (h) Bayesian Sparse. (i) HySure. (j) GFPCA. (k) CNMF. (l) DDLPS.

B. Comparative Methods

The proposed DDLPS method is compared with 11 recent
state-of-the-art or representative methods: the CS approach
(GS and GSA), MRA approach [smoothing filter-based
intensity modulation (SFIM) [45], MTF-GLP [15], and
MTF-GLP-HPM [29]], Bayesian approach (Bayesian
Naive [20], Bayesian Sparse [19], and HySure [21]), hybrid
approach (GFPCA [38]), and matrix factorization approach
(CNMF [18]). With respect to CNN-based approaches,
we compare the proposed method with PanNet [35], which
is the best CNN-based method. Because all 176 bands of
the Moffett data set cannot be performed on an NVIDIA
K80 GPU via PanNet (the required memory is far more than
the GPU memory), we spectrally downsample the Moffett
data set and create a new data set with 8 bands, which is
called Moffett-8. Thus, the proposed method and PanNet are
compared on the Moffett-8 data set.

C. Quantitative Indices

For quantitative evaluation, we use four widely used
indices: the correlation coefficient (CC), spectral angle mapper
(SAM) [46], root-mean-squared error (RMSE), and erreur
relative globale adimensionnelle de synthèse (ERGAS) [47].
The CC focuses on the spatial quality with the best value
of 1. The SAM reflects the degree of spectral similarity. The
RMSE and ERGAS measure the overall quality of the HR-HS
image. The optimal values of the SAM, RMSE, and ERGAS
are 0.

D. Experimental Results

1) Moffett Field Data Set: In this section, we compare
our DDLPS method with the aforementioned methods on the
Moffett Field data set. As shown in Table I, the proposed
method demonstrates the best performance with respect to
the four quality indices: CC, SAM, RMSE, and ERGAS.
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Fig. 9. Comparison of the spectral reflectance difference values on four pixels in Fig. 8(a). (a)–(d) Four pixels marked in yellow in Fig. 8.

TABLE VII

QUANTITATIVE RESULTS OF TEN METHODS ESTIMATED

ON THE MOFFETT-8 DATA SET

TABLE VIII

SUM OF ABSOLUTE DIFFERENCE VALUES OF EACH PIXEL

ESTIMATED ON THE MOFFETT-8 DATA SET

The visual appearance of the DDLPS and comparing meth-
ods is shown in Fig. 6. Although MTF-GLP-HPM, HySure,
and DDLPS have approximately identical ability to preserve
spatial details’ information according to visual appearance,
their overall image spatial quality is not as good as that
of the DDLPS. To show the spectral distortion, the spectral
reflectance difference values between the ground truth and
each fused image are compared [40]. Four pixels of Fig. 7 are
marked in yellow in Fig. 6(a). With respect to Fig. 7, being
closer to the dotted line indicates better preserved spectral

information. Obviously, the proposed DDLPS has excellent
spectral preservation ability.

Since small spectral difference values cannot be perceived
from the figures, we compute the sums of the absolute differ-
ence values of each pixel, which are shown in Table II.

2) Chikusei Data Set: For the Chikusei data set, Table III
shows that the proposed DDLPS generally outperforms all
other methods (all quantitative indices rank first except
ERGAS). As shown in the fused images, the proposed method
holds more spatial information. With respect to lines (e.g.,
roads and rivers), the proposed method shows the outstanding
performance in preserving spatial details, as shown in Fig. 8.
The GS method suffers from an obvious spectral distortion,
and the Bayesian sparse and GFPCA methods cannot pre-
serve details well. The proposed DDLPS can prevent the
shapes of the details from suffering distortion during the
fusion procedure. Fig. 9 shows the spectral difference values
of the four pixels marked in yellow in Fig. 8(a). The four
pixels are at the edge of the image or in areas with details,
so Fig. 9 can reflect the pansharpening performance on a single
pixel, which is more representative than the global quantitative
indices. As shown in Fig. 9, the difference values of the
proposed DDLPS are closest to the dotted line, which implies
that the proposed method offers the best spectral preservation.
The sum of the absolute difference values of each pixel is
reported in Table IV.

As shown in Fig. 9 and Table IV, the proposed DDLPS has
excellent spectral preservation ability.

3) Salinas Data Set: As shown in Table V, the proposed
method generally outperforms all comparing methods (all
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TABLE IX

EFFECTIVENESS ESTIMATION ON THREE DATA SETS USING ONE STEP

Fig. 10. Ground truth and the pansharpening images generated by different methods based on Salinas data set. (a) Ground truth. (b) GS. (c) GSA. (d) SFIM.
(e) MTF-GLP. (f) MTF-GLP-HPM. (g) Bayesian Naive. (h) Bayesian Sparse. (i) HySure. (j) GFPCA. (k) CNMF. (l) DDLPS.

quantitative indices rank first except ERGAS; the MTF-GLP
ranks first in ERGAS). Fig. 10 also shows that the DDLPS
holds more spatial details than other methods and retains
better spectral information. With respect to a single pixel,
Fig. 11 shows the spectral preservation performance of each
method, and they are quantitatively reported in Table VI. The
proposed DDLPS demonstrates the best spectral preservation
performance on a single pixel (the DDLPS generally has the

closest spectral difference values to the dotted line, and its
sum of absolute difference values is closest to zero). Although
the CNMF method demonstrates great visual appearance,
the produced image does not contain more details than the
DDLPS. The MTF-GLP-HPM produces similar images, but
the quantitative indices reflect that it suffers from distortion.

4) Moffett-8 Data Set: We compare PanNet and the pro-
posed DDLPS on a Moffett data set with fewer bands because
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TABLE X

EFFECTIVENESS ESTIMATION ON THREE DATA SETS USING TWO STEPS

Fig. 11. Comparison of the spectral reflectance difference values on four pixels in Fig. 10(a). (a)–(d) Four pixels marked in yellow in Fig. 10.

Fig. 12. Ground truth and the pansharpening images generated by PanNet and the proposed DDLPS. (a) Ground truth. (b) PanNet. (c) DDLPS.

176 bands are too large for PanNet. As shown in Fig. 12,
the results of PanNet suffer from spectral distortion. With
respect to spatial preservation, PanNet has deficient improve-
ment of spatial quality in lines (e.g., roads and rivers) and
small objects (e.g., roofs). The results of the four quality

indices are reported in Table VII, which shows that the
proposed DDLPS demonstrates a better pansharpening perfor-
mance than PanNet. The comparison of spectral preservation
between the two methods is conducted via spectral difference
values as shown in Fig. 13, where four pixels are marked
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Fig. 13. Comparison of the spectral reflectance difference values on four pixels in Fig. 12(a). (a)–(d) Four pixels marked in yellow in Fig. 12.

Fig. 14. Pansharpening images generated by different methods. (a) Interpolated. (b) PAN. (c) GS. (d) GSA. (e) SFIM. (f) MTF-GLP. (g) MTF-GLP-HPM.
(h) Bayesian Naive. (i) Bayesian Sparse. (j) HySure. (k) GFPCA. (l) CNMF. (m) PanNet. (n) DDLPS.

in yellow in Fig. 12(a). The spectral difference values of
the DDLPS are the closest to the benchmark line, which
implies that the proposed method can preserve spectral details
better than the PanNet. To quantitatively assess the spectral
difference values of the two methods, the sums of the absolute
difference values are shown in Table VIII.

E. Experiments on Real Data

In Fig. 14, we show the actual full-resolution images
obtained through pansharpening. During this time, no ground
truth exists. However, we employ the upsampled HS images

with bicubic interpolation as a reference. As shown in Fig. 14,
most generated images exhibit a very good quality with great
improvement with respect to the upsampled image. In par-
ticular, the proposed method appears as one of the more
effective methods. Generally, most pansharpened images show
a satisfactory quality compared with the interpolated image.
However, there still exist some problems. HySure, CNMF,
and PanNet suffer from spectral distortion, while SFIM and
Bayesian Naive introduce spatial blurring, though less than
in the interpolated case. According to Fig. 14, the proposed
method also suffers from slight spectral distortion.
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Fig. 15. Ground truth and pansharpening images generated by different combinations of different steps. (a) Ground truth. (b) Xsr. (c) Xgf . (d) Xde. (e) Xsrgf .
(f) Xsrde. (g) Xgfde . (h) Xfin .

F. Component Analysis

1) Using One Step: As mentioned in Section III, three oper-
ations are performed on the LR-HS image: super-resolution via
LapSRN, guided image filtering, and detail extraction. In this
section, we illustrate the effectiveness of the three operations
from the perspective of objective experimental results. Let Xsr,
Xgf , and Xde denote the HR-HS images generated by three
operations in the DDLPS method: upsampling, guided image
filtering, and detail extraction, respectively. Xgf and Xde are
upsampled to the scale of the PAN image via bicubic interpo-
lation. As shown in Table IX, Xsr demonstrates the spectral
preservation ability with its SAM values ranking second (only
worse than Xfin) in all data sets. Thus, LapSRN can better pre-
serve the spectral information than bicubic interpolation, and
Xfin has the best overall performance on the three data sets.

2) Using Two Steps: To comprehensively investigate the
impact of each step on the final performance, we illustrate
the effectiveness of the combinations using two steps in terms
of experimental results. Let Xsrgf , Xsrde, and Xgfde denote
the HR-HS images generated by removing the detail extrac-
tion, guided image filtering, and upsampling, respectively.
Xgfde is upsampled to the scale of the PAN image by bicubic

interpolation. As shown in Table X, Xsrgf and Xsrde show
the best ability in both spatial and spectral preservations with
respect to the quantitative indices. Xfin has the best overall
performance on the three data sets.

3) Summary: The visual appearance of pansharpening
images generated by different combinations of different steps
is shown in Fig. 15. LapSRN can simultaneously improve the
spatial resolution and preserve the spectral information. The
guided image filtering can transfer the structure of the PAN
image to the HR-HS image [36] and make the fusion perfor-
mance better on both spectral and spatial preservations [38].
The detail extraction can improve the fusion performance
mainly in terms of visual appearance and quantitative indices.
Although LapSRN makes the most contributions to the
improvement of quantitative indices, its contributions to visual
appearance are quite limited. Detail extraction and guided
image filtering contribute less to the quantitative indices, but
they are quite important in improving the visual appearance.

IV. CONCLUSION

In this paper, we have proposed the DDLPS method,
which outperforms the state-of-the-art and traditional meth-
ods in HS image pansharpening. Instead of using bicubic
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interpolation to conduct the upsampling operation, DDLPS
uses the LapSRN to conduct super-resolution on the LR-HS
image. To preserve both spatial information and spectral infor-
mation, we use a gain matrix to transfer the spectral details
to spatial information and simultaneously consider the two
aspects. Then, we turn the optimization problem into solving
a Sylvester equation. Compared with traditional methods (CS,
MRA, Bayesian, hybrid, and matrix factorization), the pro-
posed method demonstrates the ability to preserve spatial and
spectral information in both quantitative indices and visual
appearance. The proposed DDLPS also shows universality on
HS images with many spectral bands in comparison with the
recent CNN-based methods.
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