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Abstract

No-reference (NR) image quality assessment (IQA) aims to evaluate the quality

of an image without reference image, which is greatly desired in the automatic

visual signal processing system. Distortions degrade the visual contents and af-

fect the semantics acquisition during the process of human perception. Although

the existing methods evaluate the quality of images based on the structure, tex-

ture, or statistical characteristics, and deliver high quality prediction accuracy,

they do not take the spatial semantics into account. From the perspective of

human perception, distortions decrease the structural semantics that represent

the structural information, and disturb the spatial semantics that describe the

contents of images. Therefore, we attempt to measure the image quality by its

degradation of semantics in an image. To extract the semantics of an image,

a semantic network is proposed. The network contains convolutional neural

networks (CNN) and Long Short-Term Memory (LSTM) that correspond to

structural semantics and spatial semantics, respectively. CNN can be regarded

as a coarse imitation of human visual mechanism to obtain the structural infor-

mation, and LSTM can express the contents of an image. Then, by measuring

the degradations of different semantics on images, a novel NR IQA is intro-

IThis work was partially supported by the Joint fund of the Ministry of Education
(6141A020336), the NSF of China (Nos. 61772388,61632019, 61621005, 61472301), the Young
Star Science and Technology Project (No. 2018KJXX-030) in Shanxi province.

∗Corresponding author
Email addresses: weipingjileo@163.com (Weiping Ji), jinjian.wu@mail.xidian.edu.cn

(Jinjian Wu), gmshi@xidian.edu.cn (Guangming Shi), wenfei.wan@stu.xidian.edu.cn
(Wenfei Wan), xmxie@mail.xidian.edu.cn (Xuemei Xie)

Preprint submitted to Journal of LATEX Templates November 22, 2018



duced. The proposed approach is evaluated on the databases of LIVE, CSIQ,

TID2013, and LIVE multiply distorted database as well as LIVE in the wild

image quality challenge database, and the results show superior performance

to other state-of-the-art NR IQA methods. Furthermore, we explore the gen-

eralization capability of the proposed approach, and the experimental results

indicate the proposed approach has a high robustness.

Keywords: No-reference image quality assessment, human perception,

semantic network, structural semantics, spatial semantics.

1. Introduction

In the past two decades, images have been widely used as a mode of infor-

mation description and information exchange. However, in the process of image

acquisition, transmission, processing and storage, image inevitably suffers from

different types and degrees of distortions. All those will cause a decline in the5

quality of the image which affects people’s subjective feelings and information

acquisition. Therefore, it is essential to assess its perceived quality in image

communication and processing. The most reliable method of image quality as-

sessment (IQA) is human subjective judgment, but it is usually time-consuming,

expensive and not real-time. Hence, objective image quality evaluation is intro-10

duced at the right moment that can automatically predict image quality that

is consistent with human subjective perception. Objective IQA methods are

divided into three categories: full reference (FR), reduced reference (RR), and

no reference (NR) [1, 2]. The FR IQA needs a full reference that is considered

to be distortion-free or perfect quality in evaluating a distorted image [3, 4].15

For RR IQA, certain features are extracted from the reference image instead of

the full reference [5, 6]. In many practical applications, reference images are not

often obtained. Therefore, it is urgent to develop a method that can evaluate

image quality blindly. As no information about the primary is obtained, NR

IQA [7, 8, 9, 10] is a more difficult problem, and has more practical significance.20

Early NR methods mainly depend on the hand-crafted features [8, 11, 12],

2



which rest heavily on the designer’s subjective understanding of the images.

Most algorithms rely mainly on human visual system (HVS) [13] or Natural

Scene Statistical (NSS) [14]. HVS-based models imitate the process of the eye

gaining information based on visual attention [1], contrast sensitivity [15], and25

masking [1]. NSS-based models seek to capture those statistical properties that

represent the distributions of certain filter responses in several different do-

mains (i.e., spatial, wavelet, and DCT domains) [16, 11, 10]. These methods

based on the texture, structure, or statistical characteristics of the whole im-

age have made great progress, however, they are far from the human subjective30

perception [17].

In recent years, convolutional neural networks (CNN) are used in many vi-

sion tasks, and show a great improvement in performance as well [18, 19, 20].

A number of attempts have been made to find out whether CNN is suitable

for IQA. The existing methods are mainly tried in three ways, the first one35

adopts the architectures and weights from the network applied to classification

task followed by fine-tuning [21, 18]. CNN transforms the original image into a

higher level and more abstract expression, but this is dependent on the task of

classification that describes the category of images. The second kind of methods

deal with image patches by assigning the subjective differential mean opinion40

score (DMOS) of an image to all image patches [22]. The last one uses FR-IQA

models for image patches annotations [23] that is different from the second one.

There are two obvious disadvantages in the latter two methods. On the one

hand, they ignore global information of images; on the other hand, the quality

of the image patches is not well defined. The former ignores local image quality45

within context that varies across spatial locations even when the distortion is

homogeneous [3], and similar statistical properties may have substantially dif-

ferent quality. The quality of image patches directly marked by the existing

FR-IQA is inaccurate in itself [24] in the latter. More importantly, those meth-

ods are easy overfitting which may be inadequate across distortion levels [23]50

and distortion types [25].

Most images are identified and understood by human beings, but the dis-
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tortions in images may affect human subjective perception. There are two nec-

essary processes in most definitions of human perception, i.e., recognizing and

interpreting [26]. In the recognition process, human beings perceive the struc-55

tural information of images to identification, and this process is hierarchical and

abstract [27]. Color and luminance are the first to be perceived in the recog-

nition process, followed by local detail information such as edges, corners, and

lines. After that, more complex information that correspond to parts of familiar

objects is obtained, and subsequently the concept of objects is obtained from60

the combinations of these parts. This is verified by the Visual Neuroscience’s

research on visual mechanism [28]. CNN can be seen as a simple imitation of

above mechanism. It can learn the distinguishing local structural information

by cascading the convolutional layers and the pooling layers, combination of

these local structural information through the fully connected layers, and then65

the advanced attributes of an image are obtained [29]. Therefore, CNN can be

used to extract structural semantics which describe the structural information

of images.

In the interpreting processing, the contents of the images are supposed to

understand [26]. It shows that the semantics of images not only contain the70

structural informantion, but also express the contents of images as well as their

attributes. Human beings naturally combine visual information with language

systems which is confirmed by brain inspired visual computing theory [30]. Ac-

cordingly, the contents of an image which called the spatial semantics may be

expressed through sentences. The task of machine translation is to transform75

a source language into the target language, which provides a feasible method

to generate sentences to describing an image [31]. Recent work has shown that

translation can be done in a simpler way by using Long Short-Term Memory

(LSTM) which reaches state-of-the-art performance [32, 33, 34]. In order to

generate a sentence to describe the contents of an image, the source language80

is replaced by images. Over the last few years it has been shown that CNNs

can produce a rich presentation of the input image by embedding it to a fixed-

length vector, and such this representation can be used for a variety vision tasks.
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Hence, it is natural to use a CNN to extract a representation as an input to the

LSTM to generate sentences.85

In this work, we assess the quality of the images based on those semantics.

The structural semantics display the effects of different types and different levels

of distortions on the edges, texture and geometry of the image, while the spatial

semantics describe the impact on image interpretation, and combination of those

semantics can accurately predict the quality of distorted images with respect to90

human subjective perception.

Our contributions are as follows: first, we propose a new method that as-

sesses the quality of images from a completely new perspective. Most of the

existing models are traditionally based on bottom-up or top-down approaches

that ignore human subjective perception. Second, to the best of our knowledge,95

this is the first attempt for integrating CNN and LSTM architecture together

that employed in image quality assessment. Finally, our algorithm has a good

robustness, that is confirmed by cross-database evaluation in the later.

The paper is structured as follows: In Section 2 , we give the detailed de-

scription of semantic information of images. Section 3 describes the application100

of semantic information in NR-IQA. Experimental evaluations and comparisons

to other state-of-the-art methods as well as experimental analysis are presented

in Section 4 . We conclude the paper with a discussion in Section 5 .

2. Semantic network

The semantics of an image not only capture the structural information con-105

tained in an image, but also express the contens as well as their attributes. These

semantics represent the discriminative information in the process of human sub-

jective perception. The former called structural semantics can be obtained by

CNN through cascading the convolutional layers and the pooling layers. The

latter called spatial semantics can be expressed by a sentence that can be done110

in a simpler way by using LSTM. Owing to the continuity of recognition and

interpretation in the process of human subjective perception, the structural se-
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mantics and spatial semantics are not present independently, and the spatial

semantics are influenced by the structural semantics. Thus, the semantic net-

work should include CNN and LSTM, and all the parameters optimized by115

end-to-end.

2.1. Semantic network architecture

2.1.1. The sub-network of structural semantic

The architecture of CNN has great impact on the extraction of structural

semantic in an image, and different architectures can bring dissimilar structural120

semantics. Not only motivated by its superior performance in the 2014 Ima-

geNet Large-Scale Visual Recognition Challenge (ILSVRC) classification and

localization tasks [35], but also achieve excellent performance even when used

as a part of relatively simple pipelines, VGGnet [19] may be a reasonable choice

for the sub-network of structural semantic. VGGnet is the first network to em-125

ploy cascaded convolutional kernels small as 3 × 3 and 1 × 1, and had deeper

architectures. For instance, a stack of three 3×3 convolutional layers instead of

a single 7× 7 layer. In other words, VGGnet incorporates three non-linear rec-

tification layers instead of a single one, which makes the sub-network have less

parameters. The 1× 1 convolutional layer is a way to increase the nonlinearity130

without affecting the receptive fields, which results in the structural semantics

are more discriminative. According to these advantages, VGGnet is the most

appropriate architecture for the sub-network of structural semantics.

2.1.2. The sub-network of spatial semantic

LSTM is a memory block that contains a cell c that is always used to sequence135

modeling. In this work, a LSTM [36] is used to generate one word at every

time which is based on the hidden state and generated words. Thus, we can

obtain a sentence called spatial semantics through several LSTM series. Our

implementation of LSTM is similar to [37] (see Fig. 1) that has the ability to

deal with vanishing and exploding gradients, as well as can reduce overfitting.140

In Fig. 1, the behavior of LSTM is controlled by ”gates”. The forget gate f is
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Figure 1: Internal structure of an LSTM cell used in network.

used to forget the information in the cell selectively, the input gate i controls

how much new information is recorded in the cell state, and the output gate o

decides the output of the new cell value. The definitions of those gates and cell

update and output are as follows:145

ft = σ(Wf [xt, ht−1]) (1)

it = σ(Wi[xt, ht−1]) (2)

ot = σ(Wo[xt, ht−1]) (3)

ct = ft � ct−1 + it � tanh(Wc[xt, ht−1]) (4)

ht = ot � ct (5)

For example, the output h at time t − 1 is fed back to the memory at time t150

via the three gates; the cell value is fed back via the forget gate; the predicted

word at time t − 1 is fed back in addition to the memory output h at time t

for word prediction. The various W matrixes are trained parameters that make

the sub-network of spatial semantics robust.

2.1.3. Model155

In order to maintain the continuity of semantics and obtain a sentence that

describes an image, the input of LSTM at time t = 0 is the representation of an

image, shown in the following:

x0 = CNN(I) (6)
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I is an image as the input of CNN. Using an representation of images from the

top layers of a convnet may have an obvious drawback, that loses the structural160

information of image which could be useful for obtaining richer, more descrip-

tive spatial semantics, and low-level representations may keep more structural

information. In order to obtain the abundant spatial semantics that are corre-

spond to the position of 2-D image, we adopt the representation of an image

from lower layer instead of a fully connected layer. This allows the representa-165

tion focus on certain parts of an image by selecting a part of feature vectors.

According to [38], the representation from layer 5 in the VGGnet not only has

enough structural information of image, but also retains the location informa-

tion of an image. Thus, the representation of an image from the layer 5 is more

suitable as an input of LSTM. To avoid losing too much structural information170

of objects in images, we adopt the feature maps from the fifth convolutional

layer before max pooling layer in the VGGnet as x0. The x0 is only used as

an input of LSTM, at t = 0, as a priori knowledge of LSTM about the image

contents.

In order to optimize all parameters by end-to-end, we directly maximize the175

probability of the generated sentences which describe the contents of an image

by using the following formulation:

θ∗ = arg max
θ

∑
(I,S)

log p(S|I; θ) (7)

The θ are the parameters of the proposed semantic network, and S is its correct

transcription of an image. Since the sentences are produced by words which are

influenced by the former words, it is common to apply the chain rule to model180

the joint probability over S1, S2, · · ·, Sn, where n is the length of the sentence

example as:

log p(S|I) =
n∑
t=1

log p(St|I, S1, · · · , St−1) (8)

In more details, a true sentence S = (S1, · · · , Sn) that describes the contents of

an image, the probability is produced like that:

xt = WeSt, t ∈ {1 · · ·n} (9)
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185

pt = LSTM(xt−1), t ∈ {1 · · ·n} (10)

xt (x > 0) is a one-hot vector that represents the word S at time t, and the

distribution of pt represents a probability over all the words in the vocabulary.

In these manners, the image by using a CNN and the sentences by using a

sequence of word embedding We [39] are mapped to the same space.

The loss of the proposed semantic network is the sum of the negative log190

likelihood of the words in sentence at each step as follow:

L(I, S) = −
n∑
t=1

log pt(St) (11)

We empoly end-to-end optimization to seek the optimal parameters by mini-

mizing the loss in equation 11.

2.2. Training

In the proposed semantic network, we take a raw image I of 224 × 224 × 3195

and its correct transcription S as a training pair, and I is the input of CNN

and S is the output of LSTM. In order to obtain a sentence that best matches

the image, the proposed network is trained iteratively by backproagation over a

number of epochs to optimize all parameters in the semantic network. In each

epoch where samples from training set have been used once, and the training set200

is divided into mini-batches for batchwise optimization. In this work, we adopt

the Adam optimization algorithm [40] with a mini-batch of 64 to optimization.

For the training, we start with the learning rate α = 10−2 and subsequently

lower it by a factor 10. Other parameters in Adam are default [40].

Although CNN and LSTM have shown great promises in many computer205

vision tasks, they are data-driven approaches in essence. Purely supervised

learning requires a great deal of data, and optimizing parameters in those net-

works require more sufficient ground truth samples. Indeed, current publicly

available quality-annotated image databases not only lack enough data to train

this semantic network, but also lack the annotations of the spatail semantics210

that describe the contents of the images. Microsoft COCO (MSCOCO) [41] is a
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larger dataset in scene understanding, and each image has five annotations about

the contents of the image. Compared to the publicly available quality-annotated

image databases, MSCOCO has the same source image content, including face,

human, animal, close-up len, wide-angle lens, natural scene and so on. There-215

fore, the semantic network can be trained by the database of MSCOCO, and

the model can be transferred to image quality databases.

The existing databases have no ability to avoid overfiting completely so

far. Thus, we adopt some tricks to deal with overfiting in the training. The

most effective way is to initialize the weights of the CNN component of the220

semantic network by a pretrained model (VGGnet), and it helps a lot in terms

of generalization. Optimizing the parameters of LSTM by fixing the parameters

of CNN in the training is another valuable method. After that, all parameters

in our semantic network are fine-tuned to make Equation 11 minimum. More

importantly, the model level overfiting-avoiding technique is adpoted, that is225

dropout [42]which is proved to improve the performance effectively.

2.3. Semantics of an image

2.3.1. The structural semantic

Human subjective perception deals with the human senses that generate

signals from the environment through sight, hearing, touch, smell and taste.230

Vision is the main source of signals, and human subjective perception based on

sight mainly includes recognizing and interpreting. The process of recognization

generates a shallow to deep structural information of an image. Inspired by some

early discovery of the visual system and similar to artificial neural network [43],

CNN can be regarded as a coarse imitation of human visual mechanism[29]. The235

projections of different layers in the network show the hierarchical nature of the

human visual perception, such as, the structural semantics in layer 2 may accord

with corners and other edges, color connection, the structural semantics in layer

3 capture similar textures, the structural semantics layer in 4 have significant

variation but more class-specific, and the structural semantics in layer 5 show240

entire objects with significant pose variation [38]. Overall, they are represent
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structural information of an image, just express the structural semantics in

different levels. The structural semantics from the bottom to the top layers are

a progressive relationship, from the local attributes to the whole attributes of

an image.245

In the visual system of human beings, a local or multiple photoreceptor signal

converges to a bipolar cell; the output signal of one or more bipolar cells con-

verges to a ganglion cell in the retina, those operations are for visual maximum

sensitivty. From the perspective of CNN, the structural semantics expressed by

several values in a local region replaced by a value in the pooling layers can be250

seen as imitation of the operations in the retina. Thus, the structural seman-

tics extracted from the pooling layers, not only obtain the maximum invariance

of an image in scalerotation and translation, but also more representative [29].

There are many kernels in a pooling layer, and every kernel is sensitive to the

different structural information of an image. Therefore, the structural semantics255

extracted from a pooling layer are diverse, and the number of the structural se-

mantics from a pooling layer is equal to the number of kernels. These structural

semantics produced by different kernels from the same layer are a whole, and

represent the structural information of this layer. Because of the bottom-to-top

layers in the CNN are a progressive relationship, the structural semantics from260

different layers may have different image quality in assessment.

2.3.2. The spatial semantic

The contents of an image is supposed to understood in the process of in-

terpretation. Human beings like to express what they see through a natural

language. Thus, a sentence that depicts the contents of an image is needed in265

additional to visual understanding. Even though an image distorted with dif-

ferent levels or the local structures suffer different degradations, it is possible

to obtain the same interpretation of images. In this situation, the biggest dif-

ference of those images is the subjective visual perception of human beings. In

the sub-network of spatial semantics, at the time t, LSTM not only generates a270

word that represents the objects or expresses the relationship between objects,
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but also obtains a loss corresponding to the word. Thus, the loss of a word can

be used to indicate human subjective visual perception. In other words, the

spatial semantics of an image not only contain the sentence, but also include

the loss of the sentence.275

3. Semantic for IQA

3.1. Structural semantics for IQA

The structural semantics from a layer in CNN are equal to W × F , W is

the number of the kernels in a layer, F is a feature map that represents the

structural information produced from one kernel. A natural image generally280

has a variety of local structures in its scene. When a distortion is added to

the image, the different local structural will suffer different degradations [44].

The various kernels in a layer can solve this problem because different kernels

extract different structural degradations in an image, and result in the structural

semantics are very rich. When those structural semantics regressed onto the285

human opinion score directly, it is very easy overfitting on database. Therefore,

extracting a low-dimensional but distinctive representation of those structural

semantics is very urgent.

Taking an average is the most common pooling strategy that is adopted in

many IQA algorithms [44, 7, 3]. But this has an obvious drawback, it can not290

reflect how the local structural semantics degradation varies. Based on this idea

that the global variation of the structural semantics can reflect its degradation of

the overall structural semantics, we propose to compute the standard deviation

of the structural semantics to represent the structural semantics. To represent a

structural semantic comprehensively, we use the both statistical characteristics295

to represent the structural semantics. The two statistical characteristics are

derived:

µ =
1

M ×N

M−1∑
i=0

N−1∑
j=0

xi,j (12)

σ =

√√√√ 1

M ×N

M−1∑
i=0

N−1∑
j=0

(xi,j − µ)2 (13)
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where M , N represent the length and width of a structural semantic, respec-

tively, and xi,j represents the value of a pixel in a structural semantic. So300

a bundle of representations about the structural semantics are obtained, the

mean-pool vector µ = (µ1, µ2, · · · , µW ) and standard-deviation-pooled vector

σ = (σ1, σ2, · · · , σW ). Then, the structural semantics from a layer in CNN can

be expressed by the concatenated feature vector Vs = (µ, σ).

3.2. Spatial semantics for IQA305

The spatial semantics are consist of the sentence and the loss correspond to

the sentence. A sentence are composed of words. In order to quantization, the

words should be converted into vectors. Representation of words as continuous

vectors has a long history[45, 39]. In this work, a word maps to a vector through

word embedding We, as shown in Equation 9. Generally speaking, the dimen-310

sion of xt is usually between 300 ∼ 500. As the dimension of xt increases, the

parameters of word embedding in the semantic network will increase dramat-

ically. Indeed, current publicly available databases have no sufficient ground

truth samples to optimize parameters. Thus, the accuracy of the network may

be drop when have more parameters. In the experiment of training the semantic315

network, we try different dimension of xt. As mentioned above, the accuracy

decreases when the dimension of xt increases. Especially, the accuracy drops

five percentage points when the dimension up to 500. In order to obtain the

more accurate semantic information of an image, the dimension of xt is adopt

in 300. Lt is the loss accord with the word at time t, and the dimension is 1.320

Obviously, there is a great difference in dimension between the word and the

loss, resulting in the impact of loss in IQA is weakened. In order to reveal the

importance of loss in IQA, the dimension of loss is incresed by copying. We

define the dimension of the loss is m, and the vector lt = (L1, L2, · · · , Lm), in

this equation L1, L2, · · · , Lm are equal to Lt. Therefore, the represetation of the325

word at time t is wt = (xt, lt).

When the vectors are regressed onto the subjective score, they need the

vectors have uniform dimension. Thus, a fixed length of sentences is proposed to
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satisfy with the length of the spatial semantics of each image. When the length

of a sentence is unable to reach the fixed length, we circle the sentence until330

reaching. The definition of the fixed length is N , and the spatial semantics of

an image is N ×wt. Either for improving the weight of human subjective vision

or obtaining the same length in the spatial semantics, the spatial semantics

are achieved through a large number of replicas. In this situation, the spatial

semantics are very redundant, and the high dimension of the vector can easily335

lead to overfitting. Thus, it is inevitable to reduce the dimension of the spatial

semantics, after the dimensionality reduction of N×wt, the vector Vh represents

the spatial semantics of images.

3.3. Joint assessment for image quality

Distortions will affect the semantics of images. In this work, we try to assess340

the quality of images based on those semantics. In other words, when we imitate

the process of human subjective perception to assess the quality of images, we

should take the structural semantics and the spatial semantics into account. In

the process of recognizing, the projection from different layers reveals the dif-

ferent structural information of an image, resulting in the structural semantics345

from different layers are different. When the structural semantics are applied

to IQA, the structural semantics from different layers may have different pre-

dictions of quality about an image. So, we explore which structure semantics

are the most suitable for image quality evaluation, edge or significant variation

or others.350

The structural semantics and the spatial semantics represent different infor-

mation in the process of human subjective perception. Therefore, the semantics

can be applied to image quality assessment. The structural semantics tend to

texture, structural information, and the spatial semantics tend to identification,

position information. In order to explore the importance of the structural se-355

mantics and the spatial semantics in the process of image quality assessment,

the quality of an image is assessed by the structural semantics and the spatial

semantics, respectively, then the quality from different semantics are weighted

14



Figure 2: Illustration of the proposed method configurations for NR IQA

into a global imagewise quality estimate. A mapping is learned from the vector

space to the quality scores (i.e., subjective quality value Q) by using a regression360

model. Qs and Qh are the quality of image regressed by Vs and Vh that rep-

resent the structural semantics and the spatial semantics, respectively. In this

implementation, a support vector regression (SVR)is applied to image quality

assessment problems frequently for regression.

<s = SV Rtrain(Vs, Q) (14)

365

<h = SV Rtrain(Vh, Q) (15)

When the mapping is determined, the quality of a distorted image Id can be

predicted as,

Qs(Id) = SV Rpredict(V (Id),<s) (16)

Qh(Id) = SV Rpredict(V (Id),<h) (17)

Then the global quality of an image Q is derived:

Q = λQs + (1− λ)Qh (18)

where the λ indicates the importance of the structural semantics in the image370

quality assessment, and (1−λ) measures the impact of the spatial semantics on

image quality. The architecture of the proposed method is shown in Fig 2.
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4. Experiments

4.1. Datasets

Experiments are evaluated on the LIVE [46], CSIQ, TID2013 [47], the LIVE375

multiply distorted database [48], and the LIVE In the Wild Image Quality Chal-

lenge Database [49]. Since those databases play an important role in objective

image quality assessment, a brief introduction of these databases in the follow-

ing.

The LIVE database is the first successful publicly available quality-annotated380

image database, and still used widely. The database consists of 779 quality

annotated images based on 29 source reference images that subject to five dif-

ferent types of distortions at different distortion levels. Distortion types are

JPEG compression, JPEG2000(JP2K) compression, additive white Gaussian

noise, Gaussian blur and a simulated fast fading Rayleigh channel. The DMOS385

of each distorted image is obtained, and lie in the range of [0, 100], where a

lower DMOS indicates a better visual image quality.

The CSIQ database includes 899 distorted quality-annotated image gener-

ated by 30 reference image with one of the following distortions: JPEG com-

pression, JPEG2000(JP2K) compression, Guasian blur, Guassian white noise,390

Guassian pink noise or contrast change. In order to obtain a more comprehen-

sive definition of the quality about an image, subjects were asked to assess the

quality of position distorted images horizontally on a monitor. After alignment

and normalization, the resulting DMOS in the range of [0, 1], similar to the

above, where a lower value indicates better quality.395

The TID2013 image quality database contains 3000 quality annotated images

based on 25 source reference images distorted by 24 different distortion types,

and each distortion have 5 distortion levels. Thus, the TID2013 is a more

challenge database for evaluation of the proposed methods. Different from the

one that used for the construction of LIVE, the TID2013 database employed400

a competition-like double stimulus procedure to obtain the annotation. The

quality of this database rated by MOS, and lie in range of [0, 9], where larger
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MOS indicate better quality.

The LIVE multiply distorted (MD) database is the first database that in-

clude multiply distorted images. This database contains 450 quality annotated405

images based on 15 source reference images distorted by two types of distortion

in two combinations: simulated Guasian blur followed by JPEG compression

and Guasian blur followed by additive white Gaussian noise. Each multiple

distortion is used to generate 225 images for each part of the study of which 90

are singly distorted (45 of each type) and 135 are multiply distorted, and the410

DMOS of each distorted image is provided, lie in range of [0, 100], similar to

the above, where a lower value indicates better quality.

The LIVE In the Wild Image Quality Challenge Database (CLIVE) com-

prises 1162 unique images that taken under real life conditions, a large variety

of objects and scenes captured. The images in this database were subjected415

to numerous types of authentic distortions during the captured process. The

distortions include, e.g., low-light blur and noise, motion blur, camera shake,

overexposure, underexposure, a variety of color errors, compression errors, and

many combinations of these and other impairments. This database has no ref-

erence images, because the distorted images are originals. The value of image420

quality obtained more rigorous. More than 8100 human subjects in a tightly

monitored crowdsourced study, yielding more than 35000 human judgments.

The quality of this database rated by MOS, that in range of [0, 100], where

larger MOS indicate better quality. In order to compare the database, the

properties of the databases are shown in Table 1.425

4.2. Experimental setup

In order to gain a semantic model, the larger database MSCOCO is used

to train the semantic network with 60 epoches. Because the quality-annotated

databases have the same source images when compared to MSCOCO, trans-

ferring the semantic model to the quality-annotated databases to extract the430

semantics is reasonable. In order to normalization, images in IQA databases

are resized to the size of the input of the semantic network. Then, the trained
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Table 1: THE COMPARSION OF PROPERTIES ABOUT THE DATABASES

Database Reference image Distorted image Noise Criterion Quality

LIVE 29 779 5 DMOS 0− 100

CSIQ 30 899 6 DMOS 0− 1

TID2013 24 3000 24 MOS 0− 9

LIVE MD 15 450 2 DMOS 0− 100

CLIVE - 1162 - MOS 0− 100

semantic model is used to extract semantics. The structural semantics are come

from the feature maps in pool2, pool3, pool4, and conv5, and the spatial seman-

tics which include the sentences and the loss correspond to the sentences are435

generated from LSTM. Through the operation of Equation 12, 13, the vectors

Vs pool2, Vs pool3, Vs pool4, Vs conv5 represent the structural semantics from dif-

ferent layers in the semantic network. In this work, the redundancy of structural

information in the first pooling layer is the reason that we discard it. After the

operations of weighting and dimensionality reduction are applied to the sentence440

and loss, the vector Vh represents the spatial semantics is obtained. Then, the

vectors Vs, Vh are regressed to the quality of image Qs and Qh, respectively.

The global quality of an image is obtained by weighting Qs and Qh.

In order to verify the effectiveness of our proposed method, we evaluate

the proposed method on the all quality-annotated databases mentioned above.445

Similar to the most of the SVR based quality prediction, an 80% - 20% training-

testing procedure is used, i.e., 80% distorted images in a database are chosen

for training, and the rest 20% for testing. Moreover, in order to eliminate the

bias caused by the data separation, the training-testing procedure is repeated

for 10 times, and the median performance is used to the final results. To assess450

the generalization ability of the proposed method, a cross-dataset evaluation is

carried out, and the model of regression is trained on LIVE, and tested on other

IQA databases.

In this work, we test our algorithm on Inter i7-6700 3.4GHz CPU and Nvidia
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GeForce GTX 1050Ti GPU. When including all steps (also semantic information455

extraction), the executing time of an image is 96.21 ms.

4.3. Quantitative analysis

In order to make a quantitative analysis of the experimental results, two

common evaluation criteria are adopted.

4.3.1. Spearman’s rank-order correlation coefficient (SRCC)460

It is a nonparametric measure and is define as:

SRCC = 1−
6
∑
i d

2
i

N(N2 − 1))
(19)

where N is the number of to be estimated images, di is the rank difference

between the MOS and the model prediction of the i− th image.

4.3.2. Pearson linear correlation coefficient (PLCC)

Another evaluation criteria is pearson linear correlation coefficient (PLCC).465

It is a measure of the linear correlation.

PLCC =

∑
i(qi − qm)(q̂i − q̂m)√∑

i(qi − qm)2
√∑

i(q̂i − q̂m)2
(20)

where qi and q̂i represent the MOS or DMOS of the image and the predicted

quality of the i − th image, respectively. For both correlation metrics a value

close to 1 indicates high performance of a specific quality measure.

4.4. Performance evaluation470

Performances of the proposed method are reported in this subsection. In

this work, the semantics of images are used to assess the quality, and the se-

mantics are not only contain the structural semantic but also include the spatial

semantics. The Table 2 summarizes the performance of different semantics ap-

plied to assess the quality of images in TID2013 database that is the largest475

database with quality annotated images. From a single semantics perspective,

the structural semantics perform better than the spatial semantics. In order to

indicate the structural semantics is more important in IQA, we set the λ = 0.6.
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Table 2: PERFORMANCE EVALUTION FOR DIFFERENT SEMANTICS ON TID2013

Semantics PLCC SRCC

Vs pool2 0.753 0.693

Vs pool2+Vh 0.825 0.815

Vs pool3 0.835 0.800

Vs pool3+Vh 0.874 0.859

Vs pool4 0.885 0.873

Vs pool4+Vh 0.896 0.886

Vs conv5 0.844 0.821

Vs conv5+Vh 0.871 0.862

Vh 0.717 0.740

The results in Table 2 show that the performances of the proposed method are

improved when adding the spatial semantics, and the structural semantics from480

the fourth pooling layer combine with the spatial semantics perform best.

Because of the superior performance, the semantics that the structural se-

mantics extracted from the fourth pooling layer combine with the spatial se-

mantics are adopted to IQA. Evaluations are presented on all IQA databases

through the proposed method. To reflect its effectiveness, the performances of485

the proposed method are compared to other state-of-the-art NR IQA and FR

IQA methods. The results are shown in Table 3 . The PSNR and SSIM are

the most common FR IQA methods, and the rest are NR IQA methods. The

following conclusions are conclude in the Table 3 . The proposed approach ob-

tains superior performance on CSIQ, LIVE MD and CLIVE in terms of PLCC490

and SRCC. There is a slight improve in CSIQ, LIVE MD, and the performance

on CLIVE that is much more difficult than other databases has a great im-

provement. The proposed method performs slightly worse than BIECON and

DIQAaM in LIVE, and performance on TID2013 is also slightly worse than

DIIVINE.495
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Table 3: PERFORMANCE EVALUTION FOR DIFFERENT DATABASE

IQM
LIVE CSIQ TID2013 LIVE MD CLIVE

SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

PSNR [50] 0.876 0.872 0.806 0.800 0.636 0.706 0.725 0.815 N/A N/A

SSIM [3] 0.948 0.945 0.876 0.861 0.775 0.691 0.845 0.882 N/A N/A

DIIVINE [11] 0.928 0.926 0.876 0.896 0.908 0.923 0.874 0.894 0.546 0.568

NIQE [7] 0.926 0.925 0.901 0.910 0.845 0.835 0.745 0.815 0.421 0.478

BRISQUE [8] 0.939 0.942 0.756 0.797 0.572 0.651 0.897 0.921 0.607 0.585

CORNIA [51] 0.942 0.943 0.714 0.781 0.549 0.613 0.900 0.915 0.618 0.662

BIECON [52] 0.958 0.960 0.815 0.823 0.717 0.762 0.909 0.933 0.595 0.613

MEON [24] - - 0.932 - 0.912 - - - - -

DIQAaM [53] 0.960 0.972 - - 0.835 0.855 - - 0.606 0.601

Proposed 0.951 0.953 0.941 0.954 0.886 0.896 0.934 0.933 0.756 0.798

4.5. Cross-Database evaluation

The evaluation strategy in the above is inadequate to evaluate the general-

ization capability of the proposed method. In order to reflect the generalization

capability, we extend cross-database experiments presented in [24] with our re-

sults. The LIVE database contains only four distortions types (JPEG, JP2K,500

Gaussian blur, white noise) shared between the other two databases (CSIQ,

TID2013). For the three databases, one of them is chosen for training, and the

rest two for testing. The performances of this strategy are shown in Table 4.

The proposed method outperforms than other methods when cross-evaluated on

the subset of TID2013, and the results show superior performance in LIVE when505

the models trained on subset of TID2013. Unfortunately, when cross-evaluated

on the subset of CSIQ, the performances are great worse when compared to

other methods, and the performances slightly worse than other state-of-the-art

methods in LIVE when trained on CSIQ.

There is a clear disadvantage in the above-mentioned cross-database evalua-510

tion, that is no test on other possibly unknown distortions. Thus, the proposed
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Table 4: SRCC IN CROSS-DATABASE EVALUTION. THE DATABASES ARE CONTAIN-

ING ONLY FOUR DISTORTIONS TYPES.

Trained on LIVE CSIQ TID2013

Tested on CSIQ TID2013 LIVE TID2013 LIVE CSIQ

IL-NIQE [9] 0.880 0.877 0.916 0.877 0.880 0.916

NIQE [7] 0.867 0.814 0.919 0.814 0.867 0.919

BRISQUE [8] 0.827 0.726 0.633 0.571 0.808 0.795

CBIQ [54] 0.842 0.817 0.811 0.804 0.794 0.618

DIIVINE [11] 0.854 0.854 0.522 0.764 0.641 0.621

Proposed 0.837 0.887 0.909 0.892 0.912 0.817

Table 5: SRCC COMPARTION IN CROSS-DATABASE EVALUTION. ALL MODELS ARE

TRAINED ON THE FULL LIVE DADABASE AND EVALUTION ON CSIQ, TID2013,

CLIVE AND LIVE MD.

IQM CSIQ TID2013 CLIVE LIVE MD

BLIINDS-II [55] 0.654 0.405 0.102 0.456

DIIVINE [11] 0.553 0.487 0.342 0.662

BRISQUE [8] 0.549 0.466 0.089 0.550

NIQE [7] 0.630 0.317 0.421 0.745

HOSA [56] 0.631 0.465 0.419 0.616

FRIQUEE [57] 0.688 0.468 0.344 0.502

VIDGIQA [58] 0.641 0.415 0.315 -

DIQAam [53] 0.681 0.392 - -

Proposed 0.767 0.582 0.510 0.857
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method is evaluated by training on one database and testing on other database.

For that, the proposed method trained on the full LIVE database, and evalu-

ated on the other full database, CSIQ, TID2013, LIVE MD, CLIVE. For the

full CSIQ database, two unseen distortions (i.e.,pink additive noise and contrast515

change) are considerably different when compared to LIVE database, and there

are twenty unseen distortions in the TID2013. Moreover, CLIVE and LIVE MD

that specific picture’s mixture of distortions are less likely to be in the train-

ing set. The results are display in Table 5. Even though the results in Table

5 show the superior performance of the proposed method when compared to520

other state-of-the-art methods, the results are still very unsatisfactory. Unsur-

prisingly, the results suggest that learning a non-distortion-specific IQA metric

using the examples in the LIVE database is hard.

4.6. Experimental analysis

In this work, we propose a method that is applied the semantics of images to525

IQA. When an image distorted, human beings subjective perception is change,

not only the structural information, but also the interpretation of the image.

Thus, the structural semantics that represent the structural information of an

image and the spatial semantics that relative to the interpretation of an image

are extracted to assess the quality of images. The Fig 3 displays the semantics of530

images with different levels distortions. In the Fig 3, (a) have litttle distortions

that can not be perceived, and (b), (c) have obvious degradations in local regions

that are shown with a red frame when compared to (a). By examining the

pairs of (b), (e) and (c), (f), when there is a distortion in the local region of

the distorted images, the corresponding regions of the structural semantic also535

distorted that are highlighted with red rectangular boxes. This proves that it

is reasonable to use structural semantics to describe the structural information

of the distorted images. Moreover, compared to (a), the distortions in (c) that

painted by the red frame have lost its important structural information for

identification, resulting in the word ’ground’ is instead of ’motorcycle’ in the540

spatial semantics that shown in (g) and (i). This not only reflects the consistency
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: An example of the semantics extracted from the images with different level distor-

tions. (a), (b), (c) are the distorted image, (d), (e), (f) are the structural semantics of the

images corresponding to (a), (b), (c), and (g), (h) , (i) are the spatial semantics.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: An example of the different structural semantics of (b) in Fig 3. (a), (b), (c), (d)

show the responses of the structural semantics in (b) of Fig 3, and (a) show the response of

the structural semantics in the second pooling layer, (b) show the response of the structural

semantics in the third pooling layer, (c) show the response of the structural semantics in the

fourth pooling layer , (d) show the response of the structural semantics in the fifth convolu-

tional layer. (e), (f), (g), (h) are the structural semantics from different layers in semantics

network, and (e) from the second pooling layer, (f) from the third pooling layer, (g) from the

fourth pooling layer, (h) from the fifth convolutional layer.

of the structural semantics and the spatial semantics, but also shows that the

degradation of semantics can be applied to IQA. Even through (b) has more

distortions than (a), they have the same sentences that express the contents of

images. Fortunately, the loss of the sentences can make up for this deficiency.545

Therefore, the sentence and the loss corresponding to the sentence are essential

in spatial semantics. Even if there are no suitable words in the thesaurus to

describe the objects or relationship of the image, the sub-network of of spatial

semantic has mapped the images to the same vector space in itself. In summary,

the semantics contain the structural semantics and the spatial semantics are550

suitable for IQA.

In the Table 2 , the structural semantics from the fourth pooling layer per-

forms better. To explain this conclusion, the different structural semantics of

an image are shown in Fig 4 . The reponse of different structural semantics

in images are display in (a), (b), (c) and (d), the brighter of the regions, the555
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Table 6: The comparion of executing time of different methods.

Method Executing time (s)

PSNR [50] 0.021

SSIM [3] 0.032

NIQE [7] 0.249

IL-NIQE [9] 4.135

BRISQUE [8] 0.628

DIIVINE [11] 15.315

BLIINDS-II [55] 60.186

FRIQUEE [57] 23.982

HOSA [56] 0.265

Proposed 1.604

Figure 5: SRCC of the proposed method for NR IQA in dependence of the weight λ evaluated

on all databases.
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greater response of the regions. In the degraded regions, the structural seman-

tics from different layers all have great response. But the response in other

regions is quite different, the structural semantics scatter to the whole image

and no focus in (a) and (b), resulting in the performance of IQA worse than (c),

(d). Even though the latter two have obvious focus, the structural semantics in560

(c) are more discriminatory when compares with (d). The focus of the struc-

tural semantics in (c) are more discrete, and the degraded regions accounts for

a larger proportion. It may be the reason that the structural semantics from

the fourth pooling layer are more suitable for IQA. Obviously in (e), (f), (g),

(h), the luminance of the structural semantics from the fourth pooling layer565

is brighter than the other layers, and the contents are more clearer. In other

words, the greater luminance, the stronger contrast in the structural semantics,

the more structural information have. The mean can reflect the overall lumi-

nance of images and standard deviation can reflects the contrast. Thus, the

mean and standard deviation can be used to distinguish the different structural570

semantics from different layers. Finally, the conclusion that it is reasonable to

use mean and variance to represent a structural semantic is obtained.

In order to compare the real-time performace of different methods when

evaluate the image quality, the executing time of some methods are listed in

Table 6 . As shown in Table, the time taken for the FR IQA methods is much575

less than the time used for the NR IQA methods. Although the executing time

of NR IQA methods ( i.e., NIQE[7], BRISQUE[8], HOSA[56]) are less than

the proposed method when assess the image quality, the performances of those

methods are perform worse than the proposed method. Moreover, the NIQE

performs slight worse than the proppsed methd, and the BRISQUE, HOSA580

perform much worse than the proposed method in cross-database evaluation.

Taking the performance and executing time into account, the proposed method

is a feasible method.

In order to reveal the sensitivity of the structural semantics in IQA, a

weighted approach is adopted. Fig 5 shows the influence of different weight585

λ on the SRCC in all databases. The overall trend is that with the weight λ
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increases, the value of SRCC improves first, then decreases, and the maximum

value of the SRCC is between 0.5−0.8. This suggest that the structural seman-

tic are more important than the spatial semantics in image quality assessment.

As the weight lambda continues to increase, the phenomenon of SRCC decline590

may shows that the spatial semantics play an indispensable role in evaluating

the quality of the image. It also proves the effectiveness of our proposed method.

5. Conclusion

In this letter, inspired by the subjective perception of human beings, a new

NR IQA method based on semantics of images is proposed. The structural595

semantics imitated by CNN and spatial semantics produced by LSTM are cor-

responding to the process of recognition and interpretation of human perception,

respectively. The validity of different structural semantics in IQA are studies,

and the structure semantics and spatial semantics are used to evaluate image

quality jointly. The experimental results show that the proposed method outper-600

forms other state-of-the-art approached in NR IQA, and the proposed method

has a good generalization capabilities on cross-database evaluation.

However, having no public training set annotated by quality and description

is a principle defect of the proposed method, and larger databases hopefully to

be generated in the future. In other words, the generalization performance of605

the proposed method can be improved for considerable room in larger database.

In this work, image quality assessment is separate from the acquisition of se-

mantics. Even through a relative generic neural network is able achieve high

prediction performance, incorporating IQA with semantics to end-to-end opti-

mization may lead to further improvements. Its relative simplicity suggests that610

neural networks used for IQA have lots of potential.
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