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Abstract6

Though blind image quality assessment (BIQA) is highly desired in perceptual-oriented image

processing systems, it is extremely difficult to design a reliable BIQA method. With the help of

the prior knowledge, the human visual system (HVS) hierarchically perceives the quality degrada-

tion during the visual recognition. Inspired by this, we suggest different levels of distortion gen-

erate individual degradations on hierarchical features, and propose to consider the degradations

on both low and high level features for quality prediction. By mimicking the orientation selec-

tivity (OS) mechanism in the primary visual cortex, an OS based local structure is designed for

low-level visual information representation. At the meantime, the deep residual network, which

possesses multiple levels for feature integration, is employed to extract the deep semantics for

high-level visual content representation. By fusing the local structure and the deep semantics,

a hierarchical feature set is acquired. Next, the correlations between the degradations of image

qualities and their corresponding hierarchical feature sets are analyzed, and a novel hierarchical

feature degradation (HFD) based BIQA (HFD-BIQA) method is built. Experimental results on the

legacy and wild image quality assessment databases demonstrate the prediction accuracy of the

proposed HFD-BIQA method, and verify that the HFD-BIQA performs highly consistent with the

subjective perception.
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1. Introduction9

With the tremendous increase of digital photographs in our daily life, it is highly desired to10

faithfully evaluate the visual qualities in many signal processing systems, e.g., digital signal ac-11

quisition, compression, transmission, and so on [1]. Though the subjective image quality assess-12

ment (IQA) by human returns credible evaluation result, it is cumbersome, laborious, and cannot13

be embed into the real-time signal processing system [2]. Thus, how to design a reliable objective14

IQA method, which performs consistently with the subjective perception, has became one of the15

most challenging issues in image processing and computation vision societies.16

A large amount of IQA methods have been introduced in the last decade. The largest number17

of these IQA methods are full-reference (FR, e.g., the peak signal-to-noise ratio and structure18

similarity [3]) and reduced-reference (RR, e.g., reduced-reference entropic differencing [4] and19

reduced-reference IQA with visual information fidelity [5]), for which the whole reference image20

or part of the reference information are required. However, the reference information is unavailable21

for most situations, and thus the application scopes for FR and RR IQAs are severely limited. No-22

reference (NR) IQA, which requires no more reference information during quality evaluation [6],23

has attracted increasing interest in recent years. And this work focuses on developing a novel NR24

IQA method.25

Without the help and guidance from the reference information, it becomes extremely diffi-26

cult for NR IQA to accurately evaluate the quality of images [7]. Early NR IQA methods com-27

monly use the prior knowledge of the distortion type for quality prediction, which are called28

distortion-specific NR IQA [2, 8]. For such type of methods, the distortion-specific features are29

extracted for quality prediction. e.g., sharpness for blur [9], blockiness for JPEG [10], ringing for30

JPEG2000 [11], and so on. These distortion-specific NR IQAs have a limited application scope,31

which only work for a certain type of distortion.32

Recently, the non-distortion-specific NR IQA methods have been emphatically studied [12–33

14], for which the prior knowledge of distortion is unavailable and is called blind IQA (BIQA). In34

general, some kind of statistical characteristic on low-level features are analyzed on a vast number35

of images, and a common prior knowledge is learned to guide the BIQA. In [15], Moorthy et al.36
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learned the natural scene statistical (NSS) with the generalized Gaussian distribution (GGD) in37

the wavelet domain, and measured the quality with the changes on the GGD coefficients (called38

DIIVINE). Following DIIVINE, Saad et al. [16] extended the NSS characteristic to the DCT do-39

main, and proposed a BLIINDS method for BIQA. Moreover, Mittal et al. [17] directly calculated40

the NSS feature in the spatial domain with both GGD and asymmetric GGD, and introduced the41

BRISQUE for quality estimation. In the recent, Zhang et al. [18] integrated a large set of NSS42

features in several domains, and proposed the IL-NIQE for BIQA. Besides these NSS based meth-43

ods, Ye and Doermann [19] trained a codebook directly from image block to guide BIQA. Liu et44

al. [20] analyzed the spatial and spectral entropies for quality assessment. And Zhang et al. [21]45

learned a local quantized pattern based visual codebook for distortion estimation. Though these46

low-level feature based methods have greatly improved the BIQA performance, there still exist a47

large gap between the objective method and the human subjective perception.48

In order to design a more reliable objective BIQA method, we turn to investigate the charac-49

teristic of the human visual system (HVS) during visual signal processing. It is well known that50

the visual perception in the HVS is classically modeled as a hierarchy with increasingly sophis-51

ticated representations, i.e., from simple low-level structure (e.g., edge and line) to complicated52

high-level semantics (e.g., object and categories) [22, 23]. Thus, besides the degradation on the53

low-level structure, we also need consider the degradation on the high-level semantics for quality54

prediction.55

By hierarchically learning high-level representation with multiple hidden layers, the deep neu-56

ral network (especially the convolutional neural network (CNN)) has been adopted for BIQA.57

In [24], the CNN was adopted to automatically extract image features (without hand-crafted58

features) for BIQA. Moreover, the predicted qualities from CNN for patches of an image were59

weighted pooled according to their magnitudes in [25]. However, these CNN based BIQA meth-60

ods mainly predict the quality with the degradation on the high-level semantics (i.e., the last layer61

of the CNN), and have not fully considered the degradation on the low-level structure (the first62

few layers which represent the low-level features are difficult to be used, because the number of63

them is huge and these optimized filters can not directly represent local structures). Meanwhile,64

with limited size of the IQA database (the largest IQA database, TID2013 [26], contains only 2565
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reference images and 3000 corresponding distorted images), it is hard to optimize the huge num-66

ber of coefficients in the CNN. As a result, the performance of these CNN based BIQA methods67

are always unstable on the public available IQA databases.68

In this work, we introduce a novel BIQA method based on hierarchical feature degrada-69

tion (HFD). The primary visual cortex presents obvious orientation selectivity (OS) mechanism70

for low-level feature extraction [27, 28]. Inspired by this mechanism, an OS based local structure71

has been designed for low-level feature extraction. Meanwhile, with multiple processing layers to72

learn hierarchical representations of data, the later layers of the deep neural network can efficiently73

represent the high-level feature of visual contents [29]. As one of the most powerful deep learning74

architectures, the residual network (ResNet) [30] is adopted for deep semantics extraction. Next,75

the local structure and deep semantics are fused for HFD analysis. By analyzing the correlation76

between the perceptive quality and the degradation on the hierarchical features with support vec-77

tor regression (SVR), a novel HFD based BIQA (HFD-BIQA) method is proposed. Experimental78

results demonstrate that the proposed HFD-BIQA has a remarkable improvement against these79

existing methods.80

The main contributions of our model are as follows81

• Firstly, we thoroughly analyze the hierarchical degradation from different distortion levels,82

and suggest to consider the degradations on both low and high level features for quality83

prediction.84

• Secondly, an orientation selectivity based local structure is designed to extract the low-85

level feature; combing with the high-level feature obtained from deep learning network, a86

hierarchical feature set is built.87

• Finally, by analyzing the degradation on the hierarchical feature set, a novel HFD-BIQA88

method is proposed. The HFD-BIQA presents promising performance.89

The rest of this paper is organized as following. In Section 2, the hierarchical visual quality90

degradation is firstly analyzed. And then, the hierarchical feature set is built for HFD-BIQA91

method modeling in Section 3. In Section 4, comparative studies of the HFD-BIQA with the92
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(a) PSNR=36.71dB (b) PSNR=26.37dB (c) PSNR=20.93dB

Figure 1: Hierarchical visual quality degradation under different noise levels.

existing IQA methods on both legacy and wild IQA databases are demonstrated. Finally, some93

conclusions are drawn in Section 5.94

2. Hierarchical Feature Degradation95

Researches on cognitive neuroscience indicate that the HVS is a hierarchy of cortical areas,96

in which the input visual signal is hierarchically processed with increasingly sophisticated rep-97

resentation (from local features to global abstract/semantics) [22, 23, 31]. For an input visual98

signal, the primary visual areas (V1 and V2) are highly adapted to extract simple features (e.g.,99

local edge and orientation). By integrating these simple features from the primary visual areas,100

the successive areas (V3, V4, and medial-temporal area) generalize more complicated and regional101

representations (e.g., contour and shape). Then, the contour/shape information is further integrated102

at the high-level visual areas (inferotemporal and prefrontal areas), and finally generate the global103

semantics (e.g., abstract and categories) for visual recognition and scene understanding.104

Inspired by the hierarchical feature extraction and visual recognition in the HVS, we suggest105

distortions will generate individual degradations on the hierarchical features. Moreover, different106

levels of distortions cause different destructive effects on these hierarchical features. As shown in107

Fig. 1, the original Hats scene is distorted by three different levels of Gaussian blur noise (WBN),108

which cause different quality degradations (Fig. 1 (a) has a much better quality than Fig. 1 (b),109

while Fig. 1 (c) has the worst quality). With further analysis on noise level, we can see that a110

weak noise level (PSNR=36.71dB) in Fig. 1 (a) has slightly blurred the local edge, while has little111
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effect on the shape of the hats. In other words, the weakly WBN only degrades the low-level112

feature, while has no influence on the high-level semantics on Fig. 1 (a). With the increasing113

of noise level, the local edge in Fig. 1 (b) (with PSNR=26.37dB) is severely distorted. Though114

the shape of the hat and the characters are obviously destroyed, the main concept can still be115

extracted (i.e., understanding the general hats in this image). With further increasing of the noise116

level (PSNR=20.93dB), the local edge and the regional shape in Fig. 1 (c) are seriously distorted,117

which made it impossible to extract the accurate concept (hats or air balloon or something else)118

for recognition.119

Therefore, different noise levels usually cause different degradations on these hierarchical fea-120

tures. Weak noise mainly effects the low-level features, and has limited effect on the high-level121

features. And thus, the perceptual quality of an image is usually good under weak noise. Strong122

noise not only severely distorts the low-level structure, but also directly destroys the high-level123

semantics, which results in obvious quality degradation. In order to perform more consistent with124

the subjective perception, we need consider the degradations on multi-levels of features (e.g., low125

and high level features) for BIQA modeling.126

3. Blind Quality Measurement127

In this section, the low-level feature extraction with the OS based local structure is firstly128

introduced. Then, the high-level feature from the latest layer is extracted for deep semantics129

representation. Finally, the degradation on both low and high features are analyzed for BIQA130

modeling. The architecture of the proposed BIQA model is shown in Fig. 2.131

3.1. Local Visual Structure Extraction132

The HVS is highly sensitive to changes on image structure, and thus the structural degradation133

is widely used for quality assessment [5, 32]. Neuroscience researches have demonstrated that134

neurons on the primary visual cortex present substantial OS mechanism for low-level structure135

extraction [27, 28]. Moreover, the OS arises from the intracortical responses (i.e., excitatory and136

inhibitory interactions) among cortical cells in a local receptive field [33]. Inspired by the OS137
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Figure 2: The architecture of the proposed BIQA model.

mechanism, we try to describe the local structure (Sl) with response intensity (Ir) and response138

pattern (Pr) in a local neighborhood.139

It is well known that the HVS is extremely sensitive to luminance changes, and the response140

intensity is directly related to the luminance change. Thus, for a given image I, the local structure141

intensity of each pixel can be demanded as its luminance change, and is calculated as,142

Ir(x) =
√

(Gh(x))2 + (Gv(x))2, (1)

where Gh(x) and Gv(x) are the changes alone horizontal and vertical directions.143

Visual pattern, which represents the repeated local content in an image, has been widely used144

in visual recognition works [34]. The response pattern Pr that a local receptive field represents is145

determined by the arrangement of intracortical responses (i.e., excitatory and inhibitory interac-146

tions). Moreover, neighbor neurons with similar preferred orientations always present excitatory147

interactions, and these dissimilar ones present inhibitory interactions [35]. Inspired by this, we try148

to describe the pattern Pr(x) of a pixel as the arrangement of interactions between the central pixel149

x and its local neighbors (R(x)={x1, x2, · · · , xn}),150

Pr(x) = A(I(x|x1),I(x|x2), · · · ,I(x|xn)), (2)

7



whereA represents the spatial arrangement, and I(x|xi) is the interaction type between two pixels,

I(x|xi) =


1 if |θ(x) − θ(xi)| < T

0 else
, (3)

θ(x) = arctan
Gv(x)
Gh(x)

, (4)

where ‘1’ (‘0’) represents excitation (inhibition) interaction. The parameter T judges the interac-151

tion type, and in this work we set T=6◦ according to the visual masking threshold [36].152

With the arrangement of binary interaction type (‘0’ or ‘1’), the number of pattern generated153

with Eq. (2) is growing exponentially with the pixel number in R(x) (i.e., 2n different types). As a154

result, a 5×5 local region (i.e., n=24) will present more than 10 million (i.e., 224) different pattern155

forms, which is too huge for structure representation. With further analysis, we have found that156

not all of these patterns appeared equally (some types of patterns are more frequently appeared,157

e.g., patterns which represent smooth and edge regions). Moreover, some patterns have similar158

format and represent homogeneous visual contents. Therefore, we can select these representative159

patterns for visual structure representation.160

In order to select these representative patterns, the often used saliency objective detection161

database (has no overlap/correlation with all of these IQA databases) [37], which contains 1000162

different scenes, is chosen. Firstly, 200 images are randomly chosen from the database. Then, the163

pattern form for each pixel is calculated with Eq. (2). With all of these patterns from these 200164

images, the K-Means clustering algorithm is employed for representative pattern selection,165

{P̂k
r , k = 1, 2, · · ·,K} = arg min

K∑
k=1

M∑
m=1

||wm · (Pm
r − P̂k

r)||2, (5)

where K is the number of representative patterns, P̂k
r represents the k-th clustering centroid, and166

we set K=1000 in this work (to make sure that the numbers of the low and high level features are167

the same). wm is the weight factor and is computed as the appearance probability of Pm
r (i.e., the168

proportion of pattern Pm
r among all patterns that appears in the 200 chosen images).169

Furthermore, in order to verify the robustness of the representative selection result, we have170

repeated this procedure (randomly choosing 200 images for clustering) for many times, and we171
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(a) I1: Lady-Face (b) I2: Green-House (c) Local structure based histogram

Figure 3: An example of Local structure based low-level visual content extraction, where different images present

individual histograms

have found that the returned representative pattern sets are extremely similar, which confirms that172

the proposed procedure can efficiently select these fundamental representative patterns from nature173

scenes for low-level visual content extraction.174

With Eqs. (1) and (5), the response intensity (Ir) and response pattern (P̂r) for each pixel are

calculated for its local structure representation. And the low-level visual content (Fl) of an image

can be mapped into a structure based histogram,

Fl(k) =
N∑

x=1

Ir(x) · δ(P̂x
r , P̂k

r) (6)

δ(P̂x
r , P̂k

r) =


1 if P̂x

r = P̂k
r

0 else
, (7)

where N is the number of pixels in an image, and P̂x
r represents the pattern form that pixel x175

belongs to. An intuitive example of low-level visual content representation with Eq. (6) is shown176

in Fig. 3. We can see that different images with individual visual contents represent different177

histogram forms.178

3.2. Deep Visual Semantics Extraction179

The high-level visual feature plays a key role in visual perception. As the highest visual area of180

the HVS, the inferotemporal cortex (IT) integrates the former outputs and generates the high-level181
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Figure 4: Architecture of the 50-layer ResNet for deep semantics extraction (the latest layer with 1×1000 features).

visual feature (e.g., abstract) for objective recognition [38]. Thus, distortions on the high-level182

feature directly disturb the understanding of the visual content, which result in severe quality183

degradation.184

Deep learning network can efficiently extract high-level feature for visual recognition. With the185

inspiration of the hierarchy in the HVS for visual perception, deep learning network uses multiple186

processing layers to learn and integrate representations, and assemble high-level feature (i.e., deep187

semantics) in the later layers [29, 39]. Moreover, with the increase of stacked layer number (i.e.,188

the depth of the network), more complex and enrich semantics information can be acquired in189

the later layers. Therefore, the deep learning network has been directly used for BIQA [24, 25].190

However, with the size limitation of the existing IQA database (the largest one contains only 3000191

distorted images, and all of them are generated by 25 original scenes/reference images), it is hard192

to optimize the huge (tens of thousands) coefficients in the network.193

Different from these existing deep learning based BIQA, we only need to extract the high-level194

features from images for HFD based PKB creation. Thus, these existing trained deep learning195

networks, which are succeed in objective detection or recognition, can be directly adopted for196

high-level feature extraction. As a powerful and deeper neural network, the trained ResNet [30] is197

adopted for deep semantics extraction in this work. Considering the efficiency and computational198

complexity, the standard 50-layer ResNet (with batch normalization and average pool for regular-199

ization) is chosen, whose architecture is shown in Fig. 4. And the output of the latest layer (with200

1×1000 features) is used as the deep semantics information (i.e., Fh ∈ R1×1000). Since no retraining201

procedure is required (the ResNet was trained by stochastic gradient descent with backpropaga-202
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Figure 5: An example of deep semantics based high-level visual content extraction, and its corresponding original

scenes are shown in Fig. 3

.

tion on the ImageNet dataset), this step can overcome the size limitation of the IQA database.203

An intuitive example of high-level visual content representation with deep semantics is shown in204

Fig. 5 (the corresponding original scenes are shown in Fig. 3). It is obvious that the two different205

original scenes (i.e., the Lady-Face and Green-House) possess different high level features, which206

confirms the efficiency of the deep semantics extraction procedure.207

3.3. Blind Quality Assessment208

As analyzed in Section 2, different distortion type/level generate different changes on hierar-209

chical features. Thus, we try to measure the hierarchical degradation for quality prediction. Firstly,210

the low/high level features are normalized for fusion,211

F̂i( j) =
Fi( j)√∑
n(Fi(n))2

, (8)

where Fi represents the local structure (Fl) or the deep semantics (Fh), and F̂i(n) is the n-th nor-212

malized feature.213

Next, the two types of features are combined and the hierarchical feature set (i.e., F={F̂l, F̂h})214

is acquire for quality degradation analysis. The correlations between the hierarchical feature215

sets (F ) and the subjective quality scores (Q, i.e., MOS or DMOS) of distorted images are an-216

alyzed. As an efficient regression procedure from a high dimension to a lower one, the classical217
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support vector regression (SVR) is adopted to learn the mapping relationship between F and Q.218

In this work, the LIBSVM [40] with the radial basis function kernel is used,219

Md = SVRlearn(F ,Q). (9)

Finally, with the guidance of the prior degradation knowledge (Md), the quality of an image I220

can be predicted as,221

Q̂(I) = SVRpredict(F (I),Md), (10)

where F (I) is the hierarchical feature set of the input image I, and Q̂ is the predicted quality score222

4. Experimental Result Analysis223

In this section, the databases and protocols that used in the experiments are firstly given.224

Then, the efficiency of the HFD is illustrated. Next, the prediction accuracy of the HFD-BIQA225

method is demonstrated by comparing with the existing state-of-the-art BIQA methods on the226

public available databases. Finally, the robustness of the HFD-BIQA method is testify through227

cross-validation experiments on different databases.228

4.1. Database and Protocol229

Four large-scale IQA databases are chosen for experimental result analysis, including three230

legacy databases and one wide database. The three legacy databases, i.e., CSIQ [41], LIVE [42],231

and TID2013 [26], are composed by several types of distortions under different noise levels. The232

CSIQ database contains 866 images (30 original scenes degraded by 6 types of distortions under233

5 noise levels). The LIVE database contains 779 images (29 original scenes degraded by 5 types234

of distortions under 7 noise levels). And the TID2013 contains 3000 images (25 original scenes235

degraded by 24 types of distortions under 5 noise levels). While the wild database, i.e., the LIVE236

In the Wild Image Quality Challenge Database (Wild-LIVE for short) [43], contains 1163 different237

original scenes and each is distorted by a wide variety of randomly occurring and unknow mixture238

distortion types.239

In order to verify the performance of IQA methods on these databases, three classical criteria240

are adopted in this experiment, which are the Spearman rank order correlation coefficient (SRCC),241
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the Pearson linear correlation coefficient (PLCC), and the root mean squared error (RMSE). The242

correlation between the predicted qualities (i.e., the quality scores from the BIQA model) and the243

ground truth scores (i.e., MOS/DMOS) are analyzed with these criteria. The SRCC represents the244

prediction monotonicity, and a better IQA method returns a larger SRCC value. The PLCC mea-245

sures the prediction accuracy (the higher PLCC the better performance), and the RMSE represents246

the prediction deviation (the smaller RMSE the better performance). More details about the three247

criteria can be found in [44].248

When using SVR for quality prediction, a training procedure is required in the regression249

module. Similar to the training procedure in these existing BIQA methods (e.g., in [21, 45]),250

we randomly divide the images that a database contained into two subsets (training and testing251

subsets). To make sure that there is no overlap between the two subsets, 80% original scenes are252

randomly selected, and their corresponding distorted images are used for training; the left 20%253

distorted images are used for testing. Moreover, in order to eliminate the performance bias (not254

governed by a specific training result), the 80% training - 20% testing procedure is repeated for255

1000 times, and the median performance across the 1000 times is calculated as the final result.256

4.2. Analysis on Hierarchical Degradation257

The HVS hierarchically processes the input visual content, and different levels of distortion258

generate different degradation on the hierarchical visual features. An example is shown in Fig. 6,259

in which two different scenes (i.e., Lady-Face and Green-House from TID2013 [26]) are distorted260

by JPEG noise under different levels, and the corresponding index values are listed in Tab. 1.261

Weak noise mainly degrade the local structure, and has limited influence on the deep seman-262

tics. As shown in Fig. 6 (a) and (c), the two images are distorted by weak JPEG noise (with PSNR263

28.23 dB and 28.68 dB, resepctively). As can be seen, though there are obvious degradations on264

the local structures (e.g., the facial contour in Fig. 6 (a) and the edge of barriers in Fig. 6 (c)), we265

can still easily extract the primary visual contents of the two images for understanding (i.e., can266

still understand that Fig. 6 (a) contains a lady face, and Fig. 6 (b) is a green house). Meanwhile,267

the measurement with local structure can accurately represent the perceptual qualities of the two268

images. As listed in Tab. 1, Fig.6 (a) (with MOS=3.26) has worse subjective perceptual qual-269
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(a) Lady-Face with weak noise (PSNR=28.23dB) (b) Lady-Face with strong noise (PSNR=22.88dB)

(c) Green-House with weak noise (PSNR=28.68dB) (d) Green-House with strong noise (PSNR=21.61dB)

Figure 6: An example of hierarchical degradation on two different scenes distorted by JPEG noise under two different

levels.
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Table 1: An example of hierarchical degradation on two different scenes

Feat.

Image
Fig.6 (a) Fig.6 (c) Fig.6 (b) Fig.6 (d)

MOS 3.26 4.86 2.19 1.66

PSNR 28.23 28.68 22.88 21.61

Local Structure 3.27 4.64 2.41 2.53

Deep Semantics 3.61 3.20 2.11 1.92

HFD-BIQA 3.61 3.63 2.35 1.87

ity (smaller MOS value) than that of Fig.6 (c) (with MOS=4.64). And the measurement results270

from the local structure is 3.27 and 4.64 for them, which are consistent with the subjective percep-271

tion (MOS). However, the deep semantics returns an opposite result for the two images (3.61 and272

3.20 for them, which means Fig.6 (a) has better quality than Fig.6 (b)).273

Strong noise severely degrades the local structure, and directly destroys the deep semantics.274

As a result, the quality mainly relates to the degradation on the deep semantics, and has little275

relationship with the degradation on the local structure. As shown in Fig. 6 (b) and (d), the two276

images are distorted by strong JPEG noise (with PSNR 22.88 dB and 21.61 dB, respectively). As277

a result, we can hardly extract complete information from the two images, e.g., the nose in Fig. 6278

(b) or the roof in Fig. 6 (c). Since the local structure is severely distorted, its distortion degree279

cannot represent the perceptual quality anymore. As shown in Tab. 1, the measurement from the280

local structure returns an opposite result (Fig. 6 (b) has worse quality (2.41) than Fig. 6 (d) (2.53))281

against the subjective perception (the MOS for Fig. 6 (b) and (d) are 2.19 and 1.66, respectively).282

The quality predictions on the two images with the deep semantics show that Fig. 6 (b) (with283

2.11) has better quality than that of Fig. 6 (d) (with 1.92), which is consistent with the subjective284

perception.285
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Table 2: Comprehensive analysis of hierarchical degradation on the CSIQ Database

Feat.

Crit.
PLCC SRCC RMSE

Local Structure 0.847 0.790 0.136

Deep Semantics 0.832 0.762 0.147

HFD-BIQA 0.890 0.842 0.120

The proposed HFD-BIQA can accurately represent the quality degradations on the four images286

in Fig. 6. By fusing both the low and high features for quality prediction, the proposed HFD-287

BIQA contains a hierarchical degradation measurement, which can efficiently measure the quality288

degradation by weak or strong noise. As shown in Tab. 1, the predicted qualities for Fig. 6 (a)-(d)289

are 3.61, 3.63, 2.35, and 1.87, respectively. The prediction results show that Fig. 6 (c) has the best290

quality, Fig. 6 (a) is the second best, and Fig. 6 (d) is the worst one, which is consistent with the291

subjective perception.292

In order to give a comprehensive analysis on HFD, the performances of the local structure, the293

deep semantics, and the proposed HFD-BIQA on the whole CSIQ database [41] are compared, and294

the comparison results are listed in Tab. 2. By fusing the local structure and the deep semantics, the295

proposed HFD-BIQA has the highest PLCC and SRCC values, and the lowest RMSE value, which296

demonstrates that the measurement on the HFD is more consistent with the subjective perception297

than that on only one type of feature (i.e., the local structure or the deep semantics).298

4.3. IQA Performance Comparison299

4.3.1. Performance on The Legacy Databases300

In order to demonstrate the performance, the proposed HFD-BIQA is firstly compared with301

7 state-of-the-art BIQA methods (i.e., IMNSS [21], DL-IQA [46], IL-NIQE [18], NIQE [47],302

BRISQUE [17], CBIQ [19], and DIIVINE [15]) on the three legacy IQA databases.303
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Table 3: Performances comparison on individual distortion type of LIVE database, and the best performed BIQA

method is emphasized with bold

Distortion Crit. HFD-BIQA IMNSS DL-IQA IL-NIQE NIQE BRISQUE CBIQ DIIVINE

J2K

PLCC 0.957 0.950 0.947 0.918 0.927 0.923 0.913 0.922

SRCC 0.943 0.934 0.928 0.905 0.914 0.914 0.903 0.937

RMSE 7.236 7.580 – 9.846 9.394 9.945 9.938 9.013

JPG

PLCC 0.971 0.951 0.940 0.970 0.956 0.956 0.942 0.921

SRCC 0.951 0.933 0.912 0.950 0.937 0.956 0.942 0.910

RMSE 7.614 7.877 – 7.840 8.906 8.282 9.302 12.77

WGN

PLCC 0.979 0.982 0.955 0.988 0.976 0.985 0.958 0.987

SRCC 0.972 0.986 0.968 0.980 0.967 0.979 0.932 0.984

RMSE 5.761 4.419 – 4.380 5.440 3.767 6.31 5.047

GBN

PLCC 0.942 0.948 0.944 0.943 0.948 0.949 0.929 0.923

SRCC 0.919 0.949 0.946 0.923 0.931 0.951 0.935 0.921

RMSE 6.304 6.943 – 6.280 5.490 4.656 8.634 7.788

FFN

PLCC 0.931 0.922 0.890 0.879 0.888 0.903 0.904 0.888

SRCC 0.905 0.895 0.861 0.851 0.861 0.877 0.856 0.863

RMSE 10.37 10.56 – 13.11 12.76 13.22 13.68 11.84

Firstly, the performances of these IQA methods on the individual distortion type of LIVE304

database are compared. There are five different distortion types in LIVE database, namely, JPEG305

compression noise (JPG), JPEG2000 compression noise (J2K), white Gaussian noise (WGN),306

Gaussian blur noise (GBN), and fastfading noise (FFN).307

The performances of these IQA methods on each distortion type of LIVE database are listed308

in Tab. 3. It is apparent that the HFD-BIQA performs highly consistent with the subjective per-309

ception (the PLCC and the SRCC values are larger than 0.9 in all of these distortion types). More310

concretely, the HFD-BIQA performs the best on three types of distortion (i.e., J2K, JPG, and FFN)311

among these BIQA methods, and performs a slightly worse than the best one on the other two312

types. In summary, the HFD-BIQA gains 8 of 15 (3 criteria × 5 distortion type) best performance313

among these BIQA methods.314

Besides on individual distortion type, the overall performance on the whole database is further315
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Table 4: Performance Comparison on the whole database (LIVE, CSIQ and TID2013), and the best performed BIQA

method is emphasized with bold

DB Crit. HFD-BIQA IMNSS DL-IQA IL-NIQE NIQE BRISQUE CORNIA DIIVINE

LIVE

PLCC 0.951 0.943 0.930 0.905 0.908 0.929 0.937 0.892

SRCC 0.948 0.944 0.927 0.902 0.908 0.920 0.938 0.882

RMSE 8.437 8.705 – 11.622 11.423 10.421 9.645 12.33

CSIQ

PLCC 0.890 0.835 – 0.863 0.726 0.812 0.750 0.804

SRCC 0.842 0.789 – 0.822 0.629 0.748 0.676 0.776

RMSE 0.120 0.142 – 0.130 0.179 0.154 0.172 0.154

TID2013

PLCC 0.764 0.598 – 0.641 0.421 0.626 0.552 0.643

SRCC 0.681 0.522 – 0.518 0.330 0.571 0.434 0.567

RMSE 0.797 0.997 – 0.955 1.130 0.931 1.035 0.952

Mean
PLCC 0.868 0.792 – 0.803 0.685 0.789 0.746 0.780

SRCC 0.824 0.752 – 0.747 0.622 0.746 0.683 0.742

analyzed. The performance results of these IQA methods on the three legacy databases (LIVE,316

CSIQ, and TID2013 ) are listed in Tab. 4. By comparing with these BIQA methods,we can see317

that the prediction accuracy of the HFD-BIQA is completely higher than the others (with larger318

SRCC and PLCC values, and smaller RMSE values on all of the three databases). Especially for319

the TID2013 (the largest database, on which the existing IQA methods usually perform no good320

enough), the HFD-BIQA achieves a remarkable improvement against these existing BIQA (the321

PLCC of the HFD-BIQA VS. the second best on TID2013 is 0.764:0.643, and the SRCC is322

0.681:0.571). Furthermore, the weighted mean (weighting the the size of the database) perfor-323

mance of these methods on the three databases are calculated, which is tabulated at the bottom of324

Tab. 4. The HFD-BIQA has much larger SRCC (with 0.868) and PLCC (with 0.824) values than325

the other BIQA methods, which further verify the advantage of the proposed method.326

Besides direct comparisons, the statistical significances of the HFD-BIQA against the other327

BIQA methods are calculated to further demonstrate whether the HFD-BIQA performs signifi-328

cantly better than others. In this work, the f-test metric [48], which counts the residuals between329

the quality scores for IQA methods and the subjective qualities (MOS/DMOS), is employed for330
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Table 5: Statistical significance comparison between the HFD-BIQA and the other BIQA methods on LIVE, CSIQ,

and TID2013 Database

DB

Algo.
IMNSS IL-NIQE NIQE BRISQUE CORNIA DIIVINE

LIVE 0 1 1 1 1 1

CSIQ 1 1 1 1 1 1

TID2013 1 1 1 1 1 1

Table 6: Performance Comparison on the Wild-LIVE Database, and the best performed BIQA method is emphasized

with bold

Crit. HFD-BIQA IMNSS IL-NIQE NIQE BRISQUE DIIVINE FRIQUEE

PLCC 0.776 0.53 0.5 0.48 0.61 0.59 0.72

SRCC 0.760 0.52 0.44 0.42 0.58 0.56 0.72

statistical significance measurement. And the confidence level is set as 95% in this experiment.331

The comparison results from f-test about the HFD-BIQA against the other BIQA methods332

are listed in Tab. 5, in which a value of ‘1’ (‘-1’) represents the HFD-BIQA is statistically su-333

perior (worse) than the compared method, and ‘0’ indicates that their performances are statisti-334

cally indistinguishable. As can be seen, almost all of the values in Tab. 5 are ‘1’ (only one with335

‘0’ value), which confirms that the HFD-BIQA performs statistically better than the other BIQA336

methods on the three legacy IQA databases (except for LIVE database, on which the HFD-BIQA337

performs equivalently with IMNSS).338

4.3.2. Performance on The Wild Database339

Different from the legacy IQA databases (which are well-modeled by the synthetic distor-340

tions) the wild-LIVE database is composed by a large set of widely diverse authentic distorted341

images [43]. Therefore, it is a great challenge for NR IQA methods to accurately predict the im-342

age quality on this database. Here, the HFD-BIQA is compared with these state-of-the-art BIQA343

methods and a latest BIQA method (i.e., FRIQUEE [49], which achieves the best performance on344

the wild-LIVE until now) on the wild-LIVE database. The outputs from different BIQA methods345
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Table 7: Performance Comparison on TID2013 and CSIQ when Trained on LIVE

Algo.

DB CSIQ TID2013

PLCC SRCC RMSE PLCC SRCC RMSE

HFD-BIQA 0.900 0.843 0.125 0.921 0.899 0.545

IL-NIQE 0.906 0.880 0.119 0.873 0.877 0.683

NIQE 0.890 0.866 0.128 0.822 0.814 0.795

BRISQUE 0.840 0.826 0.153 0.721 0.726 0.969

CBIQ 0.835 0.842 0.155 0.811 0.817 0.819

DIIVINE 0.875 0.854 0.137 0.859 0.849 0.714

are listed in Tab. 6. The HFD-BIQA has much larger PLCC and SRCC values than the five state-of-346

the-art BIQA methods, which means the HFD-BIQA performs obviously better than these BIQA347

methods. Meanwhile, the HFD-BIQA also has larger PLCC and SRCC values than that from the348

latest FRIQUEE method, which further confirms the superiority of the proposed method.349

4.4. Cross Validation350

The efficiency of the HFD-BIQA on each individual database has been demonstrated in the351

former subsection, here we try to prove that the HFD-BIQA is not limited by the database that it352

be trained. Therefore, the cross validation among the three legacy databases (i.e., LIVE, CSIQ,353

and TID2013) is used to demonstrate the robustness of the HFD-BIQA. Though the number and354

types of distortion for the three databases are different, they contain four common distortion types,355

i.e., WGN, GBN, JPG, and J2K. Thus, images with the four common distortion types are firstly356

extracted. Then, all of the images from one database is used for training, and the left images from357

the other two databases are used for testing.358

Tab. 7 lists the performances on CSIQ and TID2013 databases when training on LIVE database.359
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Table 8: Performance Comparison on TID2013 and LIVE when Trained on CSIQ

Algo.

DB LIVE TID2013

PLCC SRCC RMSE PLCC SRCC RMSE

HFD-BIQA 0.910 0.918 11.18 0.917 0.888 0.559

IL-NIQE 0.913 0.915 10.99 0.873 0.877 0.685

NIQE 0.917 0.918 10.72 0.822 0.814 0.795

BRISQUE 0.643 0.632 12.25 0.583 0.570 1.135

CBIQ 0.828 0.811 11.97 0.851 0.803 0.733

DIIVINE 0.522 0.520 13.65 0.812 0.764 0.814

As can be seen, the HFD-BIQA performs much better than other BIQA methods on TID2013360

database (has the largest PLCC and SRCC values against the other BIQA methods, and the small-361

est RMSE value), and performs almost the same with the best one on CSIQ database (has similar362

PLCC, SRCC, and RMSE values with IL-NIQE).363

Moreover, Tab. 8 lists the results that training on CSIQ database and testing on LIVE and364

TID2013 databases. Tab. 9 shows the results that training on TID2013 database and testing on365

LIVE and CSIQ database. It is apparent that the HFD-BIQA performs highly coincidently to the366

HVS (with large PLCC and SRCC values). More concretely, the HFD-BIQA always performs the367

best or a slightly worse than the best one as shown in these tables.368

With these cross-validation results among the three legacy databases, we can conclude that the369

HFD based PKB can efficiently represent the generalized quality degradation, and the HFD-BIQA370

has achieved a remarkable and robust quality prediction accuracy under the guidance of the HFD371

based PKB.372
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Table 9: Performance Comparison on CSIQ and LIVE when Trained on TID2013

Algo.

DB LIVE CSIQ

PLCC SRCC RMSE PLCC SRCC RMSE

HFD-BIQA 0.874 0.890 13.09 0.877 0.821 0.142

IL-NIQE 0.913 0.915 10.99 0.906 0.880 0.119

NIQE 0.917 0.918 10.72 0.890 0.866 0.128

BRISQUE 0.789 0.795 11.82 0.839 0.808 0.153

CBIQ 0.663 0.617 11.98 0.824 0.794 0.159

DIIVINE 0.627 0.621 12.46 0.658 0.641 0.212

5. Conclusion373

In this paper, we have introduced a novel HFD-BIQA method. Since the HVS presents a374

hierarchical procedure for visual signal processing, we have suggested that different levels of dis-375

tortion generate individual degradations on hierarchical features. For example, weak distortion376

mainly degrades the low-level feature (local structure), and strong distortion directly destroys the377

high-level feature (deep semantics). And thus, we have proposed to consider the degradations on378

hierarchical features for quality assessment.379

By mimicking the OS mechanism in the primary visual cortex, an OS based local structure has380

been designed for low-level visual content extraction. Meanwhile, the deeper residual network has381

been employed to extract the deep semantics for high-level visual content representation. Next,382

the local structure and the deep semantics have been fused to generate the hierarchical feature set.383

By measuring the degradations on the hierarchical feature set, the novel HFD-BIQA method has384

been introduced. Experimental results on the three legacy IQA databases (i.e., CSIQ, LIVE, and385

TID2013) have demonstrated the prediction accuracy of the HFD-BIQA, and the performance on386
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the wild IQA database (i.e., Wild-LIVE) has further verified that the HFD-BIQA performs highly387

consistent with the subjective perception.388
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