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Abstract
The concept of just noticeable difference (JND), which

accounts for the visibility threshold (visual redundancy) of
the human visual system (HVS), is useful in perception
oriented signal processing systems. In this work, we give a
comprehensive review on JND estimation technology. The
visual mechanism and its corresponding computational
modules are firstly illustrated. These include luminance
adaptation, contrast masking, pattern masking, and contrast
sensitive function. Next, existing pixel domain and subband
domain JND models are presented and analyzed. Finally, the
challenges in JND estimation are discussed.

Keywords Just Noticeable Difference, Human Visual
System, Luminance Adaptation, Contrast Masking, Pattern
Masking, Contrast Sensitive Function

1 Introduction

The human visual system (HVS) plays an extremely
important role for outside world understanding. In our daily
life, more then 70% information that we received comes
from the HVS. As a sophisticated visual signal processing
system, the HVS can process the input scene rapidly and
effectively. Due to the characters of the optic cells in the
retina, the HVS has limited resolution and can only perceive
the changes larger than a certain threshold [1]. The just
noticeable difference (JND) accounts for such a threshold,
which estimates the distinguishability of the HVS [2]. Since
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the JND threshold represents the visibility of the HVS, it is
useful for perceptual orientated signal processing systems,
e.g., perceptual image/video compression [1, 3], visual
image/video enhancement [4, 5], perceptual quality
assessment [6, 7], watermarking [8–10], information
hiding [11–13], and so on.

The distinguishability of the human eye has been firstly
investigated by cognitive scientists during the past
decades [14–19]. Inspired by the research finds from
cognitive science, a large amount of JND estimation models
have been proposed. According to the domain that the JND
threshold is computed, these existing JND estimation
models are classified into two categories: 1) the pixel
domain JND estimation models, which directly calculate the
JND threshold for each pixel [20–23]; 2) the subband
domain JND estimation models, which firstly transfer the
image in to the subband domain (e.g., the DCT domain), and
then calculate the JND threshold on each subband [24–30].

Pixel domain JND models usually take luminance
adaptation and contrast masking into account for JND
threshold estimation [20–22]. The human eye presents
different sensitivities for different background
luminance [31]. Thus, the visibility thresholds for different
background luminances are investigated for luminance
adaption modeling [32]. Moreover, the visibility of stimulus
is decreased with the non-uniform surrounds, as the spatial
non-uniformity causes masking effect among stimuli [33].
The contrast masking effect is analyzed for visibility
threshold estimation on non-uniform background [34].

By considering the effect from luminance adaptation and
contrast masking, Chou and Li proposed a pioneer JND
estimation model [20]. Yang et al. adopted the Canny
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(a) Original Image (b) With White Noise (c) With JND Guided Noise

Fig. 1: JND demonstration, where the same scene (with size of 200×200) contaminated by the white noise and the JND guided
noise. Though the noise level in the two contaminated images are the same (with PSNR=26.84dB), their visual qualities are
obviously different.

operator to protect the edge region during JND
estimation [21]. Moreover, Liu et al. firstly decomposed an
image into two parts (edge and texture regions) for
separately computation [22]. Recently, Wu et al. suggested
to take structural regularity into account for JND
estimation [2, 35]. Moreover, Wang et al. extended the JND
estimation to screen content images [36]. Since the pixel
domain model directly calculates the JND threshold of each
pixel, it returns a direct view of the JND mask, which is
useful for motion estimation, image enhancement, quality
assessment, and so on [6, 37]. However, such kind of JND
models can not take the contrast sensitive function (which
describes the sensitivity of the HVS for difference spatial
frequencies within the transform domain) into account to
further improve the performance, and are not convenience
for signal compression system (which is subband
based) [25].

Subband domain JND estimation models mainly consider
the masking effects from contrast sensitive function (CSF),
contrast masking, and luminance adaptation [24–26]. It is
well known that the HVS has different sensitivities
(visibilities) for different frequencies. The visibility
thresholds for different subbands (frequencies) are measured
through subjective viewing test, and the CSF is built to
account for the fundamental/base JND threshold for each
subband [24].

By adjusting the base JND with the affection from other
factors, e.g., luminance contrast and background luminance,
a DCT domain JND estimation model was proposed [24].
Zhang et al. further consideration of luminance contrast in

both inter and intra bands for JND estimation [26]. In [25], a
thorough analyses on CSF is made for a more accurate JND
estimation. A temporal color JND estimation model was
proposed in [27]. Moreover, a generalized DCT-based JND
for any size of transform is proposed in [38]. Since the
subband domain model calculates the JND threshold on each
subband, such model is popular for perceptual image/video
compression (which is subband coded) [39]. However, these
subband domain JND models isolate each block from its
surrounds, as a result, the masking effects (especially for the
complicated texture regions with strongly content changes)
can not be accurately estimated [2].

The rest of this paper is organized as following. The
modules that affect the JND threshold are firstly reviewed in
Section 2. Next, the two categories of the existing JND
models are analyzed in Section 3. The subjective viewing
test for JND model verification is demonstrated in Section 4.
Section 5 provides a discussion on JND technology. Finally,
the conclusion is drawn in Section 6.

2 Modules that affect the JND threshold

The JND reveals the visibility of the HVS. An example is
given in Fig. 1, in which the original image (a) is
contaminated by the white noise (as (b) shows) and the JND
guided noise (as (c) shows). Though the noise levels in the
two contaminated images are the same (with
PSNR=26.84dB), their visual qualities are obviously
different. As shown in Fig. 1 (b), it is easy to sense the
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(a) (b) (c) (d)

Fig. 2: Visibility threshold for the uniform background (the viewing condition for the subjective viewing test is set according
to the ITU-R BT.500-11 standard [40]). From (a) to (d), the gray levels for the central region is 0, 5, 15, and 30, respectively.

disturbances caused by the white noise. With the help of the
JND model, much noise is guided into these insensitive
regions, while less into the sensitive regions. As a result, the
noise in Fig. 1 (c) is almost invisible.

There are many factors which affect the visibility of the
HVS. During the past decade, several modules have been
investigated for JND modeling, which are luminance
adaptation, contrast masking, pattern masking, CSF, and so
on. In this section, we will give detailed introductions on
these modules.

2.1 Luminance Adaptation

The resolution of the HVS is limited. We can hardly sense
the small changes even for uniform background. As shown
in Fig. 2, (a) is the original patch with uniform black
background (i.e., the luminance level B = 0). The luminance
value of the central region for such patch is increased with
different levels (∆B), as shown in Fig. 2 (b)-(d). When
projecting these images onto a monitor for visibility
threshold measurement (the viewing condition follows the
ITU-R BT.500-11 standard [40], e.g., subjects are asked to
sit in the front of the monitor, and the viewing distance is
four times of the image height), it can be seen that: (1) with
small increased luminance value at the central region of
Fig. 2 (b) (i.e., the change value is ∆B = 5), we cannot sense
any change; (2) with an increase ∆B = 15, we can still
hardly sense the change even with carefully staring at the
central region of Fig. 2 (c); (3) when the increase is as large
as 30 (∆B = 30), most of the subjects can easily sense the
change in the central region, as shown in Fig. 2 (d).

Besides, the HVS has different visibility thresholds to
different background luminance values [42]. As an example,
the visibilities of our eyes are greatly decreased in the night

Fig. 3: Luminance adaptation: visibility threshold for each
luminance level [20, 23].

with limited light, while much more sensitive for a suitable
environment with soft light. The visibility thresholds have
been thoroughly investigated during the past decade.
Inspired by the Weber’s law, the ratio of its visibility
changes to the luminance of the stimulus is approximately
constant [43] (i.e., the Weber fraction) for a given stimulus.
Moreover, results from the subjective viewing test show that
the HVS is less sensitive in the dark environment than that
with strong light. Thus, for dark environment with low
background luminance, the value of Weber fraction
decreases with the increases of the background luminance;
while for light environment, the value of Weber fraction
remains constant for different luminance [20]. Therefore, the
luminance adaptation threshold is with quasi-parabola
curves. For a given scene with luminance level in [0, 255],
its visibility threshold of luminance adaptation can be
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(a) Stimulus Map (b) Masking Map (c) Combined Map

Fig. 4: Contrast masking effect [41]. (a) Stimulus map: a single light bar in a uniform black background region; (b) Masking
map: non-uniform region with gratings; (c) Combined map: (a)+(b).

calculated as following,

LA(x) =

17 × (1 −
√

B(x)
127 ) If B(x) < 127

3
128 × (B(x) − 127) + 3 else

, (1)

where LA(x) is the visibility threshold of luminance
adaptation of pixel x; B(x) is the background luminance,
which is calculated as the mean luminance of a local region.
The quasi-parabola curve of the luminance adaptation is
shown in Fig. 3.

2.2 Contrast Masking

The visibility threshold for a non-uniform region is
obviously higher than that of a uniform region. As shown in
Fig. 4 (a), though the single light bar is weak, we can sense
it in the uniform black background. When the background
becomes non-uniform (as the grating map shown in Fig. 4
(b)), we can hardly sense the single light bar in such
background (as shown in Fig. 4 (c), which is a combination
of Fig. 4 (a) and (b)). That is because there exist spatial
masking effects among stimuli in such a non-uniform region
(i.e., between the single light bar and the gratings) [16, 41].
The spatial masking is a comprehensive response caused by
many factors. During the past decades, several factors have
been investigated to estimate the spatial masking effect.
However, the spatial masking effect is too complicated to be
modeled with a single theoretical formulation [20]. It is still
an open problem to accurately model the spatial masking
effect.

As a straightforward and simple factor, luminance
contrast is usually chosen to estimate the spatial masking
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Fig. 5: Four directional filters.

effect [14, 20]. Generally, an image region with a high
luminance contrast has a higher visibility threshold than the
one with low luminance contrast. Moreover, the visibility
threshold is increased with the increase of luminance
contrast. For contrast masking computation, the luminance
contrast (LC) is firstly calculated,

LC(x) = max
k=1,...,4

Gk(x), (2)

Gk = |φI ∗ ∇k |, (3)

where Gk is the gradient value alone the k-th direction, φ is
a parameter which relates to the directional filters, I is the
input image, and ∇k is the directional filter. Four frequently-
used ∇k is shown in Fig. 5. According to the numbers in the
four directional filters, φ is set as 1/16.

With the increase of luminance contrast, the visual
masking effect is also increased. In order to model the JND
threshold caused by the luminance contrast, a subjective
viewing test is set to measure the visibility threshold under
different luminance contrasts. The output is shown as the
hollow square points in Fig. 6. By fitting these
points [20, 23], the visibility threshold of the luminance
contrast masking (CM) is acquired,

CM(x) = 0.115 · LC(x). (4)
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Fig. 6: Contrast masking effect [2]: the visibility threshold is
increased with the increase of luminance contrast.

The fitting result from Eq. (4) is shown as the dash line in
Fig. 6, which demonstrates that the visibility threshold of the
contrast masking is increased with a fixed ratio. As a result,
the JND threshold for the contrast region with a high edge
height is always overestimated [21]. Research on human
perception reported that the response of the HVS to contrast
gain is nonlinear (i.e., logarithmic [44]), whose increasing
ratio will be decreased with the increase of luminance
contrast [14]. To this end, the contrast masking is calculated
with a nonlinear transducer in [2],

CM(x) = 0.115 × α LC(x)2.4

LC(x)2 + β2 . (5)

where α and β are two parameters which determine the
shape of the logarithmic curve. By fitting Eq. (5) with these
points (from the subjective contrast masking test), the values
for the two parameters are acquired, i.e., α = 16 and
β = 26 [2]. The output of Eq. (5) is shown as the solid curve
in Fig. 6.

2.3 Pattern Masking

As we have mentioned in the above subsection, the spatial
masking effect is a complicated visual phenomena, which is
determined by many factors [17, 45–47]. For simplicity, the
spatial masking effect is usually calculated as contrast
masking effect. However, if we only consider the contrast
masking for spatial masking estimation, we may not always
acquire the right result. As an example, two representative
composite maps are shown in Fig. 7. According to Eq. (5)
(or Eq. (4)), image regions with high luminance contrast
values have strong spatial masking effect, while image

regions with low luminance contrast values have weak
spatial masking effect. Since Fig. 7 (a) has higher edge
height than that of Fig. 7 (b), the left one has stronger spatial
masking effect than the right one according to the contrast
masking function. This result is obviously in conflict with
our subjective perception. The interaction among contents in
Fig. 7 (b) are much more complex than that in Fig. 7 (a). and
it is obvious that the spatial masking effect of Fig. 7 (b) is
much stronger than that of Fig. 7 (a). Therefore, we can not
simply estimate the spatial masking only with luminance
contrast.

In [2, 23], Wu et al. suggested that we should take not
only luminance contrast but also structural uncertainty into
account for spatial masking estimation. As shown in Fig. 7,
though the left map (composed with oblique bars) has higher
luminance contrast value, its structure is very regular and is
with limited uncertainty. According to the Free-energy
principle [48], the HVS can easily predict its structure and
can fully understand its visual content. With limited
structural uncertainty, the spatial masking effect in Fig. 7 (a)
is weak. While for the right image in Fig. 7, it is composed
with random noise, which presents low luminance contrast
and high structural uncertainty. When we perceiving such
map, it is hard to extract its structural rule and can hardly
understand its visual content. With high structural
uncertainty, Fig. 7 (b) has strong spatial masking effect and
high visibility threshold.

In order to calculate the structural uncertainty, an input
image is firstly decomposed into two parts, namely, orderly
and disorderly portions. Inspired by the Bayesian brain
theory [49], the content of the image is actively predicted
with an autoregressive model [50, 51],

I′(x) =
∑
xi∈X
Ci I(xi) + ε, (6)

(a) Regular Structure (b) Irregular Structure

Fig. 7: Two representative composite maps for spatial mask-
ing illustration.
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where I′ is the orderly portion of image I, Ci is the
normalized weighting coefficient, and ε is the random noise.
The disorderly portion of image I is regarded as the
prediction residual ∆I = I − I′.

Then the structural uncertainty is computed with the
disorderly portion ∆I. The local binary pattern (LBP) [52]
procedure is adopted to analyze the structural characteristic
of the disorderly portion. For pixel x, its LBP value is
calculated as the relationship with its symmetric
surroundings,

LBP(x) =
N∑

k=1

S (∆I(x)−∆I(xk))2k−1, (7)

S (yk) =


1, y ⩾ C
S (yk−1), y < C
0, y ⩽ −C.

(8)

where ∆I(x) is the intensity value of pixel x, N is the number
of pixels in the symmetric surroundings (N is set as 8 in this
work), and C is a threshold constant (C is set as 5 in this
work).

With Eq. (7), the LBP characteristic for each pixel is
acquired. Then, the structural uncertainty of each pixel x is
analyzed as the distribution characteristic of pixels in its
surrounding X. In [2], the structural uncertainty (SU) is
calculated as the entropy of the LBP features of X,

SU(x) =
2p∑
i=1

−pi(x) log pi(x), (9)

where pi(x) is the probability at the i-th bin of X. In this
work, the size of X is set as 21 [2]. Therefore, the
probability value of pi(x) is calculated as the ratio of the i-th
bin of the histogram which is mapping from the 21 × 21
neighborhood centered at x. The structural uncertainty

(a) (b)

Fig. 8: LBP based structural uncertainty masks for the two
composite maps as shown in Fig. 7.

masks for the two representative composite maps (shown in
Fig. 7) are calculated with Eq. (9). As shown in Fig. 8, the
orderly content (Fig. 7 (a)) has low structural uncertainty
value (i.e., the dark mask shown in Fig. 8 (a)), while the
disorderly content (Fig. 7 (b)) has high structural uncertainty
value (i.e., the bright mask shown Fig. 8 (b)).

2.4 Contrast Sensitive Function

The HVS presents band-pass character for visual signal
perception in the spatial frequency domain, which is highly
sensitive to signals with modulate changing frequency and is
insensitive to those with other frequencies (especially for the
high frequency). Thus, the visibility threshold (T ) of the
HVS is directly related to the spatial frequency (w),

T (w) = f (w), (10)

In the past decades, the sensitivity of the HVS for
different spatial frequencies had been thoroughly
investigated, and various models (i.e., contrast sensitive
function, CSF) have been proposed [53, 54]. In [25], the
CSF based visibility threshold is defined as,

T (w) =
exp(cw)
a + bw

, (11)

where a, b, and c are three constant coefficients (a=1.33,
b=0.11, and c=0.18 in [25]), w is the spatial frequency. In
the DCT domain, the spatial frequency for the (x,y) subband
of each N×N DCT block is computed as,

wx,y =
1

2N

√
(x/θh)2 + (y/θv)2, (12)

Fig. 9: CSF curve: visibility thresholds for different spatial
frequencies.
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where θh and θv are the angles alone horizontal and vertical,
which can be calculated as,

θx = 2 · arctan
S x

2d
, θy = 2 · arctan

S y

2d
(13)

where S x is the width of the display, S y is the length of the
display, and d is the viewing distance. An example of the CSF
based visibility thresholds for different frequencies is shown
in Fig. 9.

3 Existing JND computation models

According to the domain for the visibility threshold to be
computed, the existing JND models are usually classified
into two categories, namely, the spatial domain and subband
domain JND estimation models. Detailed computational
processes for the two categories of models are given in the
following.

3.1 Pixel domain JND computation

Pixel domain JND models are popular in motion estimation,
image enhancement, quality assessment, and so on. For
pixel domain JND computation, the luminance adaptation,
contrast masking, and structural uncertainty modules are
usually considered. During the past decades, many pixel
domain JND models have been proposed [2, 20–22]. We will
give a brief review about these models.

In [20], a pioneer pixel domain JND model was proposed.
By considering the effects from both luminance adaptation
and contrast masking, the JND threshold for each pixel is
calculated as [20]:

JND(x) = max{LA(x),CM(x)}, (14)

where LA is the luminance adaptation from Eq. (1), and CM
is the contrast masking from Eq. (4).

With the above computational model, the JND threshold
for the edge region is always overestimated, and that for the
texture region is always underestimated. In order to suppress
the JND threshold of the edge region with high contrast value,
the Canny edge protector (Ep) is adopted in [21],

CMp(x) = CM(x) · Ep(x). (15)

And then, the JND threshold is calculated as an
interacting combination of the luminance adaptation and the
contrast masking [21],

JND(x) = LA(x) + CMp(x) − c ·min{LA(x),CMp(x)}, (16)

where c is a constant parameter which accounts for the over-
lapping between LA and CMp, and is set as c = 0.25 in this
work [21].

Besides, in order to enhance the JND threshold of the
texture region, Liu et al. [22] suggested to firstly separate
image regions into texture and non-texture ones for JND
estimation. However, there is still no rigorous definition for
texture, and it is difficult to accurately separate texture
regions from non-texture regions for different images.

Recently, Wu et al. suggested that the HVS is insensitive
to regions with disorderly texture (e.g., Fig. 7 (b)), rather
than all texture regions (actually, the HVS is sensitive to
orderly texture, as an example shows in Fig. 7 (a)) [23]. And
structural uncertainty is another important factor which
determines the JND threshold. Thus, a new JND model is
introduced, which takes background luminance, edge
contrast, and structural uncertainty into account [2],

JND(x) = f (B(x),LC(x),SU(x)) , (17)

where SU is the degree of structural uncertainty from Eq. (9).

3.2 Subband domain JND computation

The subband domain JND model is popular for signal
compression. For the subband domain JND computation,
images are firstly transfered into the subband (e.g., DCT)
domain. Then, the CSF, luminance adaptation, and contrast
masking are considered for each subband. We will give a
brief review about the existing subband domain JND models
in the following.

With the CSF, the base/fundamental JND threshold in the
DCT domain is calculated as [24, 25],

JNDB(n, x, y) =
1

4ϕxϕy
·

T (wxy)
0.6 + 0.4.cos2φxy

(18)

where T (wxy) is the CSF based visibility threshold from
Eq. (11), ϕx and ϕy are normalization factors, which can be
calculated as:

ϕi =


√

1
N i = 0√
2
N i > 0

(19)

and φxy is the directional angle, which is related to the
frequency of its corresponding DCT subband,

φx,y = arcsin
2 · wx0 · w0y

w2
xy

 (20)

By adjusting the base JND (Eq. (18)) with the affection
from the luminance contrast and the background luminance,
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a DCT domain JND estimation model was proposed [24],

JND(n, x, y) = JNDB(n, x, y) · FLA(n, x, y) · FCM(n, x, y) (21)

where FLA and FCM are the adjustment factors from the
luminance adaption and the contrast masking,
respectively [24]

The adjustment factor FLA is determined by the
background luminance,

FLA(n, x, y) =


30−B(n)

150 + 1 B(n) ⩽ 60
1 60 < B(n) < 170
B(n)−170

425 + 1 B(n) ⩾ 170
(22)

where B(n) is the average intensity value of the block n.
The adjustment factor FCM (in Eq. 21) is determined by

the contrast masking [25]. Generally, the contrast masking in
the texture region is stronger than that in the plane and edge
regions, and thus, a larger FCM value is given for the texture
region than the other two types of regions (more detail about
the adjustment factor FCM setting can be found in [24, 25]).

Moreover, with further consideration of luminance
contrast in both inter and intra bands, a more accurate
contrast masking procedure was proposed for DCT domain
JND estimation [26]. In order to extend the JND threshold
into color images, the chroma character was investigated and
a temporal color JND estimation model was proposed
in [27].

4 Subjective viewing test for JND model
verification

In order to verify the effectiveness of these JND models, the
subjective viewing test is set to examine the accuracy of the
computed visibility threshold. For a given image, its
corresponding visibility threshold is firstly calculated with
the JND model. Then, Gaussian White Noise is injected into
the original image with the guide of the computed JND
threshold for quality comparison. For a given image, its
corresponding JND guided contaminated image is shaped
as [20]:

Î(x) = I(x) + β · rand(x) · JND(x), (23)

where Î is the contaminated image with JND guided noise,
β regulates the energy of JND guide noise, and rand(x)
randomly takes +1 or −1.

Generally, a more accurate JND model outputs higher
visibility threshold for a region which is insensitive to the
HVS, while lower visibility threshold for a region which is

Table 1: The quantitative scores for quality comparison

Description Score
Indistinguishable 0

Slightly Better 1
Obviously Better 2

Far Better 3

sensitive to the HVS. From the perspective of Eq. (23), a
more accurate JND model will distribute much more noise
into the insensitive region and less into the sensitive region.
Therefore, if we inject the same level of noise into an
original image, a more accurate JND model will return a
better quality, and a less accurate one will return a worse
quality.

An example of JND model comparison is shown in
Fig. 10. With the guidance of Eq. (23), the white noise is
injected into the original image (Fig. 10). Five different JND
models are chosen for comparison, namely, Chou et al.’s
model (Chou95) [20], Yang et al.’s model (Yang05) [21],
Zhang et al.’s model (Zhang08) [26], Wei et al.s
model (Wei09) [25], and Wu et al.’s model (Wu13) [2].
Moreover, three of them (i.e., Chou95, Yang05, and Wu13)
are pixel domain JND models, and the other two (i.e.,
Zhang08 and Wei09) are subband domain JND models.
With the help of β in Eq. (23), the energies of noise in the
five contaminated images are adjusted into a same
level (with PSNR=27.72 dB).

By comparing the outputs of the JND models with the
original image, we can see that: 1) the disturbance in the
smooth region is visible in Fig. 10 (b) (the output of Chou et
al.s model) and (c) (the output of Yang et al.s model); 2) the
distortion in the structure region with large luminance
change (especially for the letter region) is obvious in Fig. 10
(d) (the output of Zhang et al.s model) and (e) (the output of
Wei et al.s model); 3) and the noise in Fig. 10 (f) is almost
invisible. In other words, Fig. 10 (f) has a better quality than
the other contaminated images (i.e., Fig. 10 (b)-(e)).

Finally, the accuracy of the computed visibility threshold
is verify with subjective viewing test. As shown in Fig. 11,
two images are projected onto a screen for quality
comparison. The condition setting for the subjective viewing
test (e.g., the viewing distance and environment) follows the
ITU-R BT.500-11 standard [40]. During each test, subjects
are required to evaluate which one (left or right image) is
with better quality, and how much better it is. The
quantitative quality scores are given in Tab. 1.

Following the rule mentioned above for subjective
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(a) Original Image (b) Chou95 [20]

(c) Yang05 [21] (d) (Zhang08 [26]

(e) Wei09 [25] (f) Wu13 [2]

Fig. 10: JND model comparison. Under a same level of noise (PSNR=27.72), different JND models (i.e., Chou95, Yang05,
Zhang08, Wei09, and Wu13) output contaminated images with different qualities.



10
J. Wu et al. Survey on JND

Fig. 11: Subjective viewing test for different JND model
comparison.

viewing test, the original image (Fig. 10 (a)) and one of the
contaminated images (Fig. 10 (b)-(f)) are projected onto a
screen for quality assessment, as shown in Fig. 11. Twenty
six subjects are invited for the test. The comparison
results (mean score) between the original image and the five
contaminated (from Fig. 10 (b) to (f)) are 1.13, 1.38, 1.01,
0.76, and 0.34 (a small value means the noise in the
contaminated image is less visible), respectively.

5 Further Discussion

The JND threshold reveal the visibility limitation of the HVS,
which is useful for perceptual based visual signal processing.
As an example, we are living in a multimedia era surrounded
by big data, which possesses a large amount of redundancy to
be removed [55, 56]. with the help of the JND threshold, the
visual redundancy can be estimated, and then removed from
the original signal for compression. As shown in Fig. 12, the
visual redundancy of the original image (Fig. 12 (a)) is firstly
estimated with its corresponding JND threshold of each pixel
with Eq. (17). A direct view of the visual redundancy map for
the original image is shown in Fig. 12 (b). By removing the
visual redundancy for image preprocessing, we can improve
the performance of the perceptual coding algorithms [57],

Ĩ(x) =


I(x) + JND(x), if I(x) − IB < −JND(x)
IB, if |I(x) − IB| ⩽ JND(x)
I(x) − JND(x), if I(x) − IB > JND(x)

(24)

where Ĩ is the preprocessed image, and IB is the mean value
for each coding block. Fig. 12 (c) shows the preprocessed
image Ĩ with redundancy removing. By comparing Fig. 12
(c) with the original image (Fig. 12 (a)), it is hard to sense
any difference. However, we can save about 16% bit rate
with Fig. 12 (c) under JPEG compression (with QP=2) [23].

Though the JND technology has achieved success in
many perception oriented visual signal processing systems,
there still has room for further improvement. As the
dominated factor which determines the JND threshold,
estimation of the visual masking effect is a complicated
procedure, which is caused by both physical and
psychological phenomenons. In the existing JND models,
the luminance contrast masking is firstly adopted to simply
estimate the visual masking effect [20–22]. In the recent
years, the pattern masking effect, which takes both
luminance contrast and structural uncertainty into account, is
introduced for visual masking estimation [2, 23].

More factors should be taken into account for the
complicated visual masking estimation, e.g., memory based
visual content prediction [58–60], visual attention [61–63],
and so on. It is well known that we usually present bias with
the help of memory for visual perception. In other words,
the priori knowledge will affect the sensitivity of the HVS to
the input visual contents, especially for these objects that are
extremely familiar to us (e.g., human face). For visual
attention, the sensitivity of the attended region is always
higher than the other regions. Thus, visual attention will
increase the sensitivity and reduce the JND threshold for the
attended region. By considering more factors which affect
the visual masking, a more accurate JND model is expected
to be deduced.

6 Conclusion

The JND accounts for the visibility limitation of the human
visual system, below which the change is invisible to the
human eye. The JND threshold reveals the visual
redundancy, and thus is useful for perception oriented visual
signal processing, e.g., perceptual signal compression,
image/video enhancement, information hiding, and so on.

In this work, we have highlighted the importance and the
challenges in designing a JND model which performs
consistently with the human perception. Though JND
estimation is a challenge task, researches have made a lot of
efforts on JND modeling, and we have surveyed these
modules (e.g., luminance adaptation, contrast masking,
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(a) Original Image (b) Visual redundancy (c) Preprocessed Image

Fig. 12: Visual redundancy removal with JND threshold for image compression.

pattern masking, CSF) which effect the visibility threshold
and these existing JND models (pixel domain and subband
domain models). Finally, the applications of JND have been
demonstrated and the remaining challenges in visual
masking are discussed.
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