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Blind Image Quality Assessment with Joint Entropy
Degradation

Weiping Ji, Jinjian Wu, Man Zhang, Zuozhi Liu, Guangming Shi, Xuemei Xie

Abstract—Blind image quality assessment (BIQA) aims to
evaluate the quality of an image without pristine image ob-
jectively, which is highly desired in many perception-oriented
image processing systems. Distortions degrade the visual contents
and cause the image quality degradation. Moreover, the visual
contents of an image suffer from individual degradations by
different types and different levels of distortions, which makes us
difficult to analyze the quality degradation. From the perspective
of information theory, there is a decrease in the amount of the
visual contents when images are distorted. Therefore, in this
work, the image quality is assessed through its visual entropy
degradation. Researches on the neuroscience indicate that the
simple cells in the local receptive field (LRF) can be characterized
as being spatially localized and oriented, then the local intensity,
gradient and orientation features are extracted to represent the
visual contents of an image. By deducing the joint entropy
equation, the joint entropy is related to the statistical distri-
butions. Next, in order to measure the visual entropy, the joint
statistical distributions of those features are calculated. Finally,
by measuring the degradations on these distributions of distorted
images, a novel BIQA method is proposed. The experimental
results on the databases of LIVE, CSIQ and TID2013 show that
the proposed method has a superior performance than other
state-of-the-art BIQA methods.

Index Terms—Blind Image Quality Assessment(BIQA), Local
Receptive Field, Joint Visual Entropy, Joint Probability Distri-
bution

I. INTRODUCTION

Digital images are ubiquitous in our daily life. How-
ever, images inevitably suffer from distortions during image
processing[1], [2]. The image quality will decline which
affects people’s subjective perception. Therefore, it is essential
to assess its perceived quality in image communication and
processing. The quality of image assessed by human is usually
time-consuming and expensive[3]. Hence, objective image
quality assessment (IQA) which can automatically predict
image quality consistently with human subjective perception
has attracted a lot of attentions.

In the past two decades, a large amount of IQA methods
have been introduced. Objective IQA methods are usually
divided into three categories: full reference (FR) models, re-
duced reference (RR) models, and no reference (NR)[4] mod-
els. Most of these methods are FR (e.g., structure similarity
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[5]) and RR (e.g., orientation selectivity based visual pattern
for RR IQA[6] and reduced-reference IQA with reference
with visual information fidelity[7]) models. However, those
methods require full reference images or certain descriptors of
the reference images. In most practical situations, the reference
images are not often available. Thus, no reference (NR) IQA
that requires no information about the primary has became an
active research topic in recent years[8], [9], [10].

Without the help and guidance of the reference, NR IQA is
a more difficult problem. Early NR methods mainly used the
prior knowledge of the distortion type for image quality pre-
diction. Those methods are usually called distortion-specific
NR IQA[3], [11]. The distortion-specific features are extracted
for quality prediction in those NR IQA methods, such as
the algorithm in[12], [13] for blur, that in[14] for JPEG2000
compressed images, and that in[15] for JPEG compressed
images. These methods based on distortion type only work for
a certain type of distortion, and have a limitation in practice.

Recently, in order to assess the quality of images without
the prior knowledge of distortion, the non-distortion-specific
NR IQA methods have been studied gradually[16], [17], [18].
Most existing algorithms belong to knowledge-driven meth-
ods, such as that relying on human visual system (HVS) [19]or
Natural Scene Statistical (NSS) [20]. HVS-based methods
are also called bottom-up methods, which achieve the image
quality by modeling some characteristics of HVS, or some
physiology and psychophysics experiments. Although those
methods have been found nearly universal acceptance, they
have a lot of limitations. Actually, the HVS is a highly non-
linear and complex system, but most existing HVS-based
models of BIQA rely on linear or quasi-linear operators[5].

NSS-based models evaluate image quality based on the
statistical distributions of certain filter responses in several
different domains, such as spatial, wavelet, and DCT domains.
Moorthy et al. studied the natural scene statistical of images,
and obtained the image quality by measuring the changes on
the generalized Gaussian distribution (GGD) coefficients in the
wavelet domain, which is called DIIVINE[21]. Assuming that
the statistics of the contrast and structure features extracted
in the DCT domain can vary in a predictable way as the
image quality changes, a BIQA model was proposed, which
is called BLIINDS[22]. Moreover, Mittal et al. quantified
possible losses of naturalness in the images by using scene
statistic of locally normalized luminance coefficients, and
introduced the BRISQUE for quality assessment[8]. Recently,
Zhang et al. proposed the IL-NIQE for BIQA which combined
a series of NSS features in several domains[23]. Though those
methods have made great progress, there still exists a large
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gap between the objective method and the human subjective
perception.

Distortions destroy the visual contents of images, and then
degrade the subjective perception of human. Moreover, the
visual contents of an image suffer from individual degradations
by different types and different levels of distortions[24], which
makes us difficult to analyze the quality degradation. However,
distortions always degrade certain visual contents of images.
From the perspective of information theory, there is a decrease
in the amount of the visual contents when images are distorted.
Therefore, the image quality can be measured by its visual
information degradation. According to Shannon information
theory, the amount of information that the source conveys to
the outside can be defined by the information entropy. In other
words, the quality degradation varies as the visual entropy
changes.

In order to analyze and measure visual information, the
representations of the visual contents are required. Inspired
by the researches on the neuroscience, the local receptive
field (LRF) in the primary visual cortex is highly adaptive
to extract the local feature[25]. Moreover, the simple cells
in the LRF can be characterized as being spatially localized
and oriented[25]. In other words, the visual contents of an
image can be characterized as the features delivering the
spatial location and orientation of the image. Since these
representations do not appear alone, the joint representations
are used to describe the visual contents of the image. Thus, the
quality degradation is analyzed as the joint entropy of degraded
features representing visual information in images.

In this work, the image quality is assessed by measuring
the joint visual entropy of images. Distortions decrease the
visual information, and the amount of visual information in
an image can be measured by information entropy. Moreover,
the researches on the neuroscience indicate that the visual
information of an image can be represented by a series of
features. Thus, the degraded quality is analyzed as the changes
of visual feature entropy.

The main contributions of our model are as follows: firstly,
the image quality is assessed from a completely new per-
spective, the image quality degradation can be measured by
the degraded visual information. Secondly, by analyzing the
degradation of visual information, a novel BIQA method based
on joint entropy degradation is proposed. Finally, the proposed
method has a strong robustness, that is it achieves good
performances in across-dataset evaluation.

The paper is organized as follows: In Section II , we give the
details of joint visual entropy analysis. Section III describes
the application of joint visual entropy in BIQA modeling.
Experimental evaluations of the proposed methods on three
databases compared with other state-of-the-art methods are
presented in Section IV . We conclude the paper in Section V
.

II. JOINT VISUAL ENTROPY ANALYSIS

Distortions degrade the visual information of an image,
and cause the image quality degradation. Moreover, the visual
contents of an image suffer from individual degradations by

Fig. 1: An example of a natural scene distorted by different
distortions.

different types and different levels of distortions, which makes
us difficult to analyze the image quality degradation. As
can be seen in Fig 1, the less distortions, the more visual
contents contain. In other words, the distortion of an image
can be evaluated by the visual content. From the perspective
of information theory, the amount of visual information can
be measured by the visual entropy. Recently, researches on
the neuroscience indicate that the visual information can be
represented by the features that describe the spatial location
and orientation of the image[25]. Since the representations
are expressed together, their joint visual entropy can be used
to represent the visual information of an image. Thus, the
joint entropy of those visual features can efficiently represent
the visual information degradations, and the image quality is
predicted with its joint entropy degradation.

Based on the above analysis, the joint entropy degradation
of visual information can be used to measure the image quality,
and the visual information of an image is represented by
a series of features. A hypothesis is that a set of features
can be expressed by X1, X2, ..., Xn. According to the
Shannon information theory, the joint entropy of these features
is calculated as:

H(X1, X2, ...,Hn) =

n∑
i=1

H(Xi|Hi−1, ...,H1)

=
1

n

n∑
i=1

H(Xi)

+
1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

H(Xj |Xi) + ...

+
1

n!

n∑
i=1

..

n∑
k=1,k 6=i..q

H(Xk|Xq..Xi)(1)

As mentioned above, the joint visual entropy is related to
single feature entropies and other conditional entropies (i.e.
H(Xi), H(Xj |Xi), ... , H(Xk|Xq, ..., Xj , Xi)). Moreover,
according to the Shannon entropy equation, the entropy only
relies on statistical distribution, which is shown in Eq. 2 ,

H(X) = −
∑
i

p(xi)logp(xi). (2)

Thus, H(Xi) ∝ p(Xi) (which also stands for the other parts,
i.e., H(Xj |Xi) ∝ p(Xj |Xi),..., H(Xk|Xq, ..., Xj , Xi) ∝
p(Xk|Xq, ..., Xj , Xi )). In other words, the statistical distri-
butions of the image will change when an image is distorted,
which results in entropy degradation. Thus, the image quality
varies with the changes on each statistical distributions (p(Xi),
p(Xj |Xi), ... ,p(Xk|Xq, ..., Xj , Xi)). Therefore, in order to as-
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sess the image quality with the visual information degradation,
the statistical distributions of those features which represent
the visual information of an image are required.

III. BIQA MODELING

In this section, the extraction of those features that represent
the visual information of an image is presented firstly. Then,
the statistical distributions of features are obtained. Finally,
the degradations on statistical distributions of features are
analyzed for BIQA modeling.

A. Feature extraction

Distortions degrade the visual information of an image.
Moreover, different types and different levels of distortions
generate individual degradations on visual contents. From
the perspective of information theory, the amount of visual
information that an image contains can be measured by the
visual information entropy. In order to measure and ana-
lyze the visual information, the representations of the visual
information of an image are required. Although there are
many pixels in a discrete natural image, each pixel is highly
correlated to its surrounding[24]. In other words, there a
large amount of redundancies when the distribution of each
pixel is calculated for visual entropy measurement directly.
Inspired by the researches on the neuroscience, the LRF in
the primary visual cortex is highly adaptive to extract the
local feature for visual perception, and the simple cells in
the LRF can be characterized as being spatially localized and
oriented. In other words, the LRF is extremely sensitive to
the changes of intensity and orientation[25], [26]. Thus, the
visual information of an image can be represented by the local
features such as local intensity, local orientation and local
gradient of the image.

1) Local intensity extraction: As mentioned above, the
simple cells in the LRF are extremely sensitive to the changes
on intensity[25], [26]. The pixel values in an image change
directly when an image is distorted. Thus, the intensity of im-
ages can partially represent the visual information of images.
There are a large amount of redundancies when we calculate
the distribution of each pixel, and each pixel in an image
is highly correlated to its surrounding. Moreover, researches
on natural scene statistical indicate that a local non-linear
normalization to the luminance has efficient decorrelation
function[8], [27]. Thus, a local non-linear normalization is
adopted to represent the intensity of an image. For a given
image I , the local luminance is normalized via local mean
subtraction and divisive normalization. Such an operation is
applied to a intensity image I(i, j) to produce:

Î(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + C
, (3)

where, i ∈ 1, 2, ...,M , j ∈ 1, 2, ..., N are spatial indices, and
M , N are the height and width of an image, respectively.
C = 1 is a constant that prevents instabilities from occurring

when the σ(i, j) tends to zero. And the µ(i, j) and σ(i, j) are
defined as:

µ(i, j) =

K∑
k=−K

L∑
l=−L

wk,lIk,l(i, j), (4)

σ(i, j) =

√√√√ K∑
k=−K

L∑
l=−L

wk,l(Ik,l(i, j)− µ(i, j))2, (5)

where w = {wk,l|k = −K, ...,K, l = −L, ..., L} is a
2D circularly-symmetric Gaussian weighting function ( i.e.
G(x, y|σ) = 1

2πσ2 exp(−x
2+y2

2σ2 ) ) sampled out to 3 standard
deviations and rescaled to unit volume. Since the smaller
window size the better performance[8], we set the K = L = 3
in this implementation.

2) Local gradient extraction: According to the researches
on neuroscience, the simple cells in the LRF are highly
adapted to extract orientation features. Gradient is a better way
to show the changes on the orientation. Thus, the gradient
of an image is adopted to represent the visual information
of an image partially. For a digital image, the gradient is
usually computed by convolving an image with a linear filter
such as the classic Roberts, Sobel, and Prewitt filters or some
task-specific ones[28], [29]. Moreover, the gradient magnitude
is defined as the root mean square of image directional
gradients along two orthogonal directions. In this work, we
adopt a Gaussian difference filter pair along the horizontal
and vertical directions to calculate the gradient of an image in
two orthogonal directions[30]. The horizontal direction filter
operator hx(x, y|σ) is defined as:

hx(x, y|σ) =
∂

∂x
g(x, y|σ)

= − 1

2πσ2

x

σ2
exp(−x

2 + y2

2σ2
),

(6)

and the vertical direction filter operator hy(x, y|σ) is defined
as:

hy(x, y|σ) =
∂

∂y
g(x, y|σ)

= − 1

2πσ2

y

σ2
exp(−x

2 + y2

2σ2
),

(7)

where, the g(x, y|σ) = 1
2πσ2 exp(−x

2+y2

2σ2 ) is isotropic Gaus-
sian function, σ is the scale parameter. In this work, we define
the scale parameter σ = 5

6 , and the size of windows is 5 ∗ 5.
Thus, the gradient of an image is calculated as:

G =
√

(I ∗ hx)2 + (I ∗ hy)2, (8)

3) Local orientation selectivity extraction: Researches on
the neuroscience indicate the simple cells in the LRF are
highly sensitive to orientation and location. And orientation
selectivity arises from the spatial arrangement of intracortical
responses in a LRF of the primary visual cortex[31], [32].
When an image is perceived, the individual arrangements of
excitatory/inhibitory interactions for different local receptive
fields are excited. In other words, different kinds of orientation
selectivity based visual patterns (OSVP) are generated for
image understanding[33], [34], [35]. Therefore, the OSVP
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features are extracted for visual information presentation by
imitating this orientation selectivity mechanism. In [34], the
research indicates that the orientation selectivity is directly
related to the arrangement of the interaction among cortical
neurons in a LRF. Inspired by this mechanism and the arrange-
ment of the correlations among neighbor pixels, the OSVP can
be computed.

The OSVP of the pixel x ∈ I in an image is defined as:

Pv(x|χ) = A(I(x|χ)) = A(I(x|x1, x2, ..., xn)), (9)

where χ = {x1, x2, ..., xn} is the arrangement of the spatial
correlations with its circularly symmetric neighborhood, A(·)
is the arrangement of spatial correlations, and I(x|χ) is
the spatial correlations between x and xi in X . The OSVP
feature of an pixel depends on the arrangement of intracortical
responses (i.e.,excitatory and inhibitory interactions). Accord-
ing to these researches that neighbor neurons with similar
preferred orientations always present excitatory interactions
and these dissimilar ones present inhibitory interactions, the
description of the pattern Pv can be simplified as the ar-
rangement of interactions between the central pixel x and its
local neighbors χ = {x1, x2, ..., xn}. Thus, the Eq. 9 can be
recognized as:

Pv(x|χ) ≈ A(I(x|x1), I(x|x2), ..., I(x|xn)), (10)

where I(x|xi), i ∈ 1, 2, ..., n, denotes the interaction between
x and xi.

There are two types of interactions in imitating the orien-
tation selectivity mechanism, excitation and inhibition, which
play distinct roles, one for excitatory neurons connecting to
neurons that are well correlated in activity, and the other in-
hibitory neurons connecting to neurons that are anti-correlated.
Moreover, the interaction type in the orientation selectivity
mechanism is depended on the orientation similarity, which is
defined as:

I(x|xi) = f(Θ(x),Θ(xi)), (11)

Since the interaction type depends on their preferred orienta-
tions, the orientation similarity between x and xi is computed
to represent I(x|xi). In order to obtain the orientation simi-
larity, the gradient direction θ of a pixel x ∈ I is defined as
its orientation:

θ(x) = arctan
Gv(x)

Gh(x)
, (12)

where Gh and Gv are the horizontal and vertical gradient
magnitudes, respectively, which can be calculated as:

Gh = I ∗ fh, Gv = I ∗ fv, (13)

where fh is the horizontal Prewitt filter, fv is the vertical
Prewitt filter, and the convolutional operation is denoted as
∗. The Prewitt filters are defined as:

fh =
1

3

1 0 −1
1 0 −1
1 0 −1

 , fv =
1

3

 1 1 1
0 0 0
−1 −1 −1

 , (14)

According to the orientation similarity between two pixels,

the Eq. 11 is rewritten as:

I(x|xi) =

{
1, if |θ(x)− θ(xi)| < T
0, otherwise,

(15)

where excitatory interaction is represented as ′1′, ′0′ represents
inhibitory interaction, and the similarity threshold is defined as
T . In order to obtain the similarity threshold, the subjective
viewing test on visual masking effect[36] has been investi-
gated. The researches indicate that the masking effects among
nearby gratings are strong if they possess the same orientation.
The masking effect becomes marginal when the orientation
difference is larger than the threshold. Thus, in this paper, we
set T = 6◦.

According to Eq. 15, the OSVP form of a pixel is rep-
resented by the arrangement of ′0′ and ′1′ within its circu-
larly symmetric neighborhood. In this work, the orientation
similarity of the 8-neighborhood X centered on x organized
counterclockwise to obtain the local orientation information
of x, which is defined as B,

B(x) = (I(x|x1), I(x|x2), ..., I(x|x8)), (16)

Moreover, going through each pixel in the image and obtaining
its local orientation information, the orientational information
of the whole image is obtained, which is defined as:

O(I) =


B(1, 1) B(1, 2) ... B(1, N)
B(2, 1) B(2, 2) ... B(2, N)
... ... ... ...

B(M, 1) B(M, 2) ... B(M,N)

 (17)

where, M , N are the height and width of an image.

B. Feature Distribution Calculation

Distortions degrade the visual information of an image and
lead to the image quality degradation. The amount of visual
information in an image can be measured with information
entropy. Researches on neuroscience indicate that the visual
information can be represented by a series of features. As
mentioned above, three features are extracted to represent the
visual information of an image. Thus, according to the Eq. 1,
the visual information entropy can be rewritten as:

H(X1, X2, X3) =

3∑
i=1

H(Xi|Hi−1, ...,H1)

=
1

3

3∑
i=1

H(Xi) +
1

6

3∑
i=1

3∑
j=1,j 6=i

H(Xj |Xi)

+
1

6

3∑
i=1

3∑
j=1,j 6=i

3∑
k=1,k 6=i,j

H(Xk|Xj , Xi).

(18)

According to the shannon theory, the event entropy is related
to the statistical distribution of the event. According to the Eq.
2 , the H(X1, X2, X3) depends on the statistical distribution
of each event (i.e., p(Xi), p(Xj |Xi), p(Xk|Xj , Xi)).

For analyzing the statistical distribution of each event, the
distribution probabilities are required. With the Eq. 3 , the
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intensity of an image is obtained. Since the intensity of an
image is continuous, the values of the normalized luminance
are discretized and divided into M evenly spaced bins. In this
work, we set M = 23 by considering the accuracy and the
complexity of computation. Moreover, the values of the nor-
malized luminance are specified in 1, 2, .....,M based on the
principle of rounding. Then, the statistical probabilities of the
normalized luminance feature are acquired based on counting
the number of each bin, e.g., {p(X1) = m|m = 1, 2, ..., 23}.
Similar to the values of the normalized luminance, the values
of the gradient in an image based on Eq. 8 are continuous.
Thus, the values are discretized and divided into N evenly
spaced bins based on same mode, and the N = 23 is set. The
statistical probabilities of gradient are obtained by counting
the number of each bin, i.e.,{p(X2 = n)|n = 1, 2, ..., 23}.
Different from the above two types of values, the values of
OSVP are discrete. Even so, there are too many types of
OSVPs resulting in computational complexity. Considering the
characteristic of rotation invariant, there are only 36 funda-
mental types of patterns are reserved. Finally, by counting the
number of every value, the statistical probabilities of OSVP are
acquired, i.e. , {p(X3 = k)|k = 1, 2, ..., 36}. According to the
above operations, the representations of visual information on
images are discretized and the statistical probabilities of visual
features are obtained.

Moreover, the joint statistical distribution of the features is
also counted. For each pixel in an image, the local intensity
and the local gradient are calculated according to the Eq.3 and
Eq.8 . Then, the local intensity and the local gradient of the
whole image are obtained, which is define as IG(I),

Î(1, 1), G(1, 1) ... Î(1, N), G(1, N)

Î(2, 1), G(2, 1) ... Î(2, N), G(2, N)
... ...

Î(M, 1), G(M, 1) ... Î(M,N), G(M,N)

 , (19)

where, M , N are the height and width of an image. Discreting
each element in the matrix based on the above principle, the
Î and G are joint normalized into 1, 2, ..., 23. By counting
the number of each bin, a probability matrix is acquired, i.e.,
{p(X1 = m,X2 = n),m = 1, 2, ..., 23;n = 1, 2, ..., 23}.
Then, the conditional probability p(X1 = m|X2 = n) can be
derived as:

p(X1 = m|X2 = n) =
p(X1 = m,X2 = n)

p(X2 = n)
, (20)

Similarly, the other conditional probabilities (i.e., p(X1 =
m|X3 = k), p(X2 = n|X1 = m), p(X2 = n|X3 = k),
p(X3 = k|X1 = m), p(X3 = k|X2 = n)) are also counted.
Generally speaking, the statistical distribution of each feature
(i.e., p(X1) = m,m = 1, 2, ..., 23) is far greater than the
corresponding conditional probability (i.e., {p(X1 = m|X2 =
n),m = 1, 2, ..., 23;n = 1, 2, ..., 23}). Thus, the measurement
of the image quality degradation depends on the statistical
distribution of each feature. Moreover, there are a large number
of the conditional probabilities which increases the dimension
of the statistical features. To tackle these problems, the overall
conditional probability p(X1 = m|X2) is used to replace the
conditional probability p(X1 = m|X2 = n), and the overall

conditional probability is calculated as:

p(X1 = m|X2) =

N∑
n=1

p(X1 = m|X2 = n)

=

N∑
n=1

p(X1 = m|X2 = n)

p(X2 = n)
.

(21)

As shown in Eq. 18 , the conditional probability (i.e., p(X1 =
m|X2 = n,X3 = k), p(X2 = n|X1 = m,X3 = k), p(X3 =
k|X1 = m,X2 = n) ) should be taken into account. However,
the conditional probabilities of any one event occurs under the
other two events are far less than the conditional probability
of one event. Therefore, in this work, we take the statistical
distribution of each feature and the conditional probability of
two features into account to assess the image quality.

C. Quality Degradation Assessment

Distortions decrease the visual contents of an image result-
ing in the image quality decreases. From the perspective of in-
formation theory, distortions degrade the amount of the visual
information which can be measured by the visual information
entropy. Inspired by the researches on the neuroscience, the
visual contents are represented by a series of features. In this
work, the local intensity, local gradient and local orientation
selectivity of an image are extracted for visual information
representation. Thus, the image quality is assessed based on
joint feature entropy. By deducing the joint feature entropy,
the joint visual entropy of images is directly related to the
statistical distribution and the overall conditional probability.
And thus, the six overall conditional probabilities (i.e., p(X1 =
m|X2), p(X1 = m|X3), p(X2 = n|X1), p(X2 = n|X3),
p(X3 = k|X2), p(X3 = k|X1)) and the statistical distributions
(i.e., p(X1), p(X2), p(X3)) are combined and a feature set
(F={p(X1 = m|X2), p(X1 = m|X3), p(X2 = n|X1),
p(X2 = n|X3), p(X3 = k|X2), p(X3 = k|X1), p(X1),
p(X2), p(X3) }) is obtained for image quality assessment.

In order to assess the image quality, a mapping function is
learned between the vector space F and the subjective quality
scores Q (i.e., MOS, DMOS) by using a regression module.
In this work, a classical support vector regression (SVR) is
adopted to image quality assessment for regression[37], [38],
[39].

R = SV Rlearn(F ,Q). (22)

The quality of a distorted image Id can be predicted when the
mapping function is determined,

Q̂(Id) = SV Rpredict(F(Id),R), (23)

where F(Id) represents the feature of the distorted image Id,
and Q̂(Id) represents its predicted quality score. The Fig 2
shows the proposed method’s architecture.

IV. EXPERIMENTS

In this section, the databases and evaluation criteria that
used in the experiment are firstly given. Secondly, the ex-
perimental setup is explained. Then, the performances of the
proposed method are displayed by comparing to the other
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Fig. 2: Illustration of the proposed method configurations for BIQA.

existing state-of-the-art BIQA and FR-IQA methods. Next,
the robustness of the proposed method is proved through
cross-validation experiments on different databases. Finally,
the efficiency of the proposed method is illustrated.

A. Database and Evaluation criteria

In this work, the proposed method is evaluated on
three quality-annotated IQA databases, including LIVE[40],
CSIQ[41], and TID2013[42]. The LIVE database was the
first successful quality-annotated image database, and used
widely. The LIVE contains 779 distorted images based on
29 source reference images subject to 5 different types of
distortions at different levels. The CSIQ database contains
886 images generated by 30 reference images degraded by 6
types of distortions under 5 levels. The TID2013 image quality
database includes 3000 distorted images which is the largest
quality-annotated database. This database was generated by 25
source references with 24 different distortion types, and each
distortion has 5 distortion levels.

In order to measure the performances of the proposed
method, three evaluation criteria are adopted, which are
SRCC (the Spearman rank order correlation coefficient),
PLCC (the Pearson linear coefficient), and RMSE (the root
mean squared error)[43]. In those criteria, the relationship
of the predicted qualities (the quality scores evaluated from
the proposed method) and the ground truth scores (MOS or
DMOS) are analyzed. Those criteria display the prediction
monotonicity, the prediction consistency and the prediction
accuracy of the proposed method, respectively. Moreover, a
better IQA method will have a larger SRCC value and PLCC

value. Conversely, a better IQA method will have a smaller
RMSE value.

B. Experimental Setup

In order to verify the effectiveness of the proposed method,
the proposed method is evaluated on the three databases
mentioned above. When using SVR for quality prediction,
a training procedure is required in the regression module.
Similar to the most of the SVR based quality prediction[52],
[53], an 80% − 20% training-testing procedure is used. In
each database, 80% original scenes are randomly selected,
and their corresponding distorted images are used for training,
the left distorted images for testing. Moreover, in order to
eliminate the bias caused by the data separation, the training-
testing procedure is repeated for 1000 times, and the median
performance is used for the final results.

C. Performance evaluation

In this section, the performances of the proposed method are
illustrated. Though the databases consist of different distortion
types, there exist four types of common distortions. Thus, we
choose those four common types of distortions for comparison.
In order to demonstrate the performance, the proposed method
is compared with some outstanding BIQA methods and two
classical FR IQA methods. The results of three databases are
listed in Table I. As shown in Table I, the PSNR and MS-SSIM
are the most common FR IQA methods, and the rest are NR
IQA methods. Moreover, the DIQA and BIECOM are the NR
IQA methods based on convolutional neural networks. The
Table I indicates that the proposed method obtains superior
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TABLE I: Performance evaluation for different databases, and the best performance BIQA method is emphasized with bold.

IQM LIVE CSIQ TID2013
SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE

PSNR [44] 0.884 0.881 12.7383 0.922 0.907 0.119 0.924 0.914 0.567
MS-SSIM [45] 0.956 0.952 8.203 0.954 0.958 0.081 0.919 0.934 0.497
OG-IQA [46] 0.950 0.952 9.527 - - - - - -
IL-NIQE [23] 0.919 0.920 10.616 0.887 0.884 0.131 0.883 0.875 0.673

NIQE [47] 0.926 0.925 10.209 0.901 0.910 0.115 0.845 0.835 0.769
BRISQE [48] 0.953 0.949 7.363 0.902 0.927 0.104 0.893 0.909 0.581
CORINA [49] 0.938 0.937 9.645 0.676 0.750 0.172 0.434 0.552 1.035
DIIVINE [21] 0.928 0.926 8.886 0.876 0.896 0.124 0.908 0.923 0.538

DIQA [50] 0.975 0.977 - 0.884 0.915 - 0.825 0.850 -
BIECOM [51] 0.958 0.960 - 0.815 0.823 - 0.717 0.762 -

Proposed 0.971 0.974 6.158 0.948 0.918 0.089 0.960 0.949 0.396

performances on TID2013 in terms of PLCC, SRCC, RMSE.
However, the performances are slightly worse than the DIQA
on LIVE. Although the performance of MS-SSIM is slightly
better than the proposed method on CSIQ, the proposed
method is the best among the existing BIQA methods.

There exist four types of common distortions in those
databases, which are JP2K, JPEG, WN, Gblur. Thus, the
comparisons of those four common types of distortions are
implemented in this work. The performances of these IQA
methods on those databases are also verified by three metrics
directly. The performances on LIVE database are shown in
Table II, it is apparent that the proposed method performs
highly consistent with the subjective perception. Moreover,
the proposed method performs the best on three types of
distortions (i.e., JP2K, JPEG, WN) among those BIQA meth-
ods, and slightly worse on Gblur. The performances of the
proposed method on CSIQ database are shown in Table III
, and the results achieve 3 of 12 (3 criteria × 4 distortion
type) best performances among these BIQA methods. In other
performances, the experimental results of the proposed method
are very similar to other BIQA methods. The performances
on TID2013 database are listed in Table IV. It is apparent
that the proposed method performs the best on three types of
distortions (i.e., JP2K, JPEG, Gblur) when compared to other
BIQA methods, and slightly worse on the WN. In summary,
the proposed method gains 22 of 36 (3 database × 3 criteria
× 4 distortion type) best performances among those BIQA
methods. In additional, the MEON [54] has obtained the best
performance on individual distortion type among the existing
methods based on Convolutional Neural Network (CNN). We
can not achieve the performances in the replication experiment.
Thus, the existing results in the experiments of the MEON are
adopted as the comparison in this work. Unfortunately, they
did not provide the results on LIVE database which lead to the
methods compared with the proposed approach are different
on different databases.

D. Cross-database evaluation

The performances of the proposed method on each database
have been shown in the former subsection. In order to re-

flect the generalization capability of the proposed method,
the cross-validation among the three databases is adopted.
Although the numbers and types of distortions for the three
databases are different, they contain four common distortion
types. Thus, in order to demonstrate the robustness of the
proposed method, the cross-database evaluation is applied
to the four types distortion. In other words, for the three
databases, one of them is chosen for training, and the rest
two for testing.

The Table V lists the performances on CSIQ and TID2013
databases when training on LIVE database. As can be seen,
the proposed method performs best in terms of other BIQA
methods in four types of distortions. Moreover, the results that
training on CSIQ database and testing on LIVE and TID2013
databases are shown in Table VI. From the Table VI , we can
see that the performances on LIVE and TID2013 databases
are optimal in all criteria. Lastly, the Table VII shows the
results that training on TID2013 database and testing on
LIVE and CSIQ databases. The performances of the proposed
method on CSIQ outperform other methods apparently, and
the performances on LIVE database are a slightly worse than
the best one (NIQE) as shown in TableVII .

E. Experimental analysis

In this work, we propose a new BIQA method to assess the
image quality. When the image is distorted, the visual contents
of image will degrade. From the perspective of the information
theory, the amount of the visual information can be measured
by the visual information entropy. In order to measure and
analyze the visual information, the representations of the visual
information of an image are required. Inspired by researches
on the neuroscience, the visual information can be represented
by the local features (i.e., local intensity, local orientation
selectivity, local gradient). Moreover, according to the shannon
information theory, the joint visual feature entropy is related
to the statistical distribution or the conditional probability of
the visual features. In order to assess the image quality by
the degradation of the statistical distribution, the statistics of
the visual information in the natural scene without distortion
should follow some kind of statistical distribution. To reveal
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TABLE II: Performance comparison on individual distortion type of LIVE database, and the best performance BIQA method
is emphasized with bold.

Distortion Crit. Proposed IL-NIQE [23] NIQE [47] BRISQUE [48]

JP2K
PLCC 0.968 0.919 0.940 0.955
SRCC 0.956 0.899 0.924 0.947
RMSE 6.187 9.827 8.551 7.134

JPEG
PLCC 0.979 0.968 0.962 0.944
SRCC 0.966 0.943 0.945 0.926
RMSE 6.333 8.011 8.666 8.039

WN
PLCC 0.991 0.988 0.981 0.969
SRCC 0.985 0.980 0.972 0.981
RMSE 3.770 4.326 5.375 5.402

Gblur
PLCC 0.960 0.944 0.964 0.956
SRCC 0.949 0.926 0.939 0.962
RMSE 5.109 5.972 5.515 6.353

TABLE III: Performance comparison on individual distortion type of CSIQ database, and the best performance BIQA method
is emphasized with bold.

Distortion Crit. Proposed IL-NIQE [23] NIQE [47] BRISQUE [48] MEON [54]

JP2K
PLCC 0.948 0.894 0.950 0.903 0.931
SRCC 0.929 0.928 0.923 0.877 0.898
RMSE 0.098 0.138 0.098 0.135 -

JPEG
PLCC 0.964 0.790 0.953 0.959 0.979
SRCC 0.928 0.899 0.889 0.925 0.948
RMSE 0.0811 0.201 0.090 0.086 -

WN
PLCC 0.944 0.806 0.791 0.960 0.958
SRCC 0.935 0.865 0.780 0.952 0.951
RMSE 0.057 0.103 0.102 0.050 -

Gblur
PLCC 0.930 0.877 0.937 0.922 0.946
SRCC 0.900 0.865 0.901 0.901 0.918
RMSE 0.104 0.135 0.098 0.11 -

TABLE IV: Performance comparison on individual distortion type of TID2013 database, and the best performance BIQA
method is emphasized with bold.

Distortion Crit. Proposed IL-NIQE [23] NIQE [47] BRISQUE [48] MEON [54]

JP2K
PLCC 0.964 0.915 0.925 0.916 0.924
SRCC 0.949 0.911 0.905 0.902 0.911
RMSE 0.446 0.680 0.639 0.684 -

JPEG
PLCC 0.974 0.911 0.939 0.931 0.969
SRCC 0.933 0.884 0.883 0.876 0.919
RMSE 0.335 0.628 0.517 0.543 -

WN
PLCC 0.93 0.901 0.862 0.936 0.911
SRCC 0.930 0.892 0.849 0.932 0.908
RMSE 0.254 0.315 0.357 0.253 -

Gblur
PLCC 0.945 0.861 0.868 0.889 0.899
SRCC 0.947 0.862 0.845 0.894 0.891
RMSE 0.397 0.631 0.611 0.565 -
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TABLE V: Performance comparison on TID2013 and CSIQ when trained on LIVE.

IQM CSIQ TID2013
PLCC SRCC RMSE PLCC SRCC RMSE

Proposed 0.940 0.916 0.096 0.910 0.912 0.581
IL-NIQE [23] 0.906 0.880 0.119 0.873 0.877 0.683

NIQE [47] 0.890 0.866 0.128 0.822 0.814 0.795
BRISQUE [48] 0.840 0.826 0.153 0.721 0.726 0.969

CBIQ [55] 0.835 0.842 0.155 0.811 0.817 0.819
DIIVINE [21] 0.875 0.854 0.137 0.859 0.849 0.714

TABLE VI: Performance comparison on TID2013 and LIVE when trained on CSIQ.

IQM LIVE TID2013
PLCC SRCC RMSE PLCC SRCC RMSE

Proposed 0.936 0.947 9.581 0.917 0.902 0.560
IL-NIQE [23] 0.910 0.918 11.180 0.873 0.877 0.685

NIQE [47] 0.917 0.918 10.721 0.822 0.814 0.795
BRISQUE [48] 0.643 0.632 12.252 0.583 0.570 1.135

CBIQ [55] 0.828 0.811 11.974 0.851 0.803 0.733
DIIVINE [21] 0.522 0.520 13.654 0.812 0.764 0.814

TABLE VII: Performance comparison on LIVE and CSIQ when trained on TID2013.

IQM LIVE CSIQ
PLCC SRCC RMSE PLCC SRCC RMSE

Proposed 0.873 0.884 13.25 0.910 0.877 0.118
IL-NIQE [23] 0.913 0.915 10.99 0.906 0.880 0.119

NIQE [47] 0.917 0.918 10.72 0.890 0.866 0.128
BRISQUE [48] 0.789 0.795 11.82 0.839 0.808 0.153

CBIQ [55] 0.663 0.617 11.98 0.824 0.794 0.159
DIIVINE [21] 0.627 0.621 12.46 0.658 0.641 0.212

the characteristic, we give an example that displays the statisti-
cal distribution (i.e., p(X1), p(X3|X1)) on three images. The
characteristic is shown in Fig 3 , the (a), (b), (c) represent
the different original images, and (d) shows the statistical
distributions of these images. As can be seen, the statistical
distributions of different original images have same statistical
nature which provides a possibility to predict the image quality
by measuring the visual information entropy.

Different levels of distortions produce individual degrada-
tions on visual contents, and distortions will generate changes
on these statistical distributions. As shown in Fig 4, the
original hat scene is degraded by different levels of JPEG
distortions, the (a), (b), (c) distorted by the distortion of JPEG
gradually, and (d) displays the statistical distributions of these
images. As can be seen, different levels of distortions gener-
ate different changes on statistical distributions (i.e., p(X1),
p(X3|X1) ), which proves that these statistical probabilities
can efficiently represent the quality degradation on different
levels of distortions.

Moreover, the different types of distortions generate individ-
ual degradation on visual information, and different types of
distortions will degrade the statistical distributions dissimilarly.

(a) Hats (c) Birds(b) Plane

(d) s tatistical distribution

Fig. 3: An illustration about statistical distributions of different
original images.

In the Fig 5 , (a), (b), (c), (d) are distorted by JPEG, WN,
BLUR, and JP2K, and (e) displays the different statistical
distributions of a same image distorted by different distortions.
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(a) Level 1 (b) Level 2 (c) Level 3

(d) different level

Fig. 4: An illustration about statistical distributions of different
levels of distortions on a same image.

(a) JPEG (b) WN (c) BLUR (d) JP2K

(e) different noise 

Fig. 5: An illustration about statistical distributions of different
types of distortions on a same image.

As can be seen, it proves that these statistical probabilities
(i.e., p(X1), p(X3|X1) ) can efficiently represent the quality
degradation on different types of distortions.

Since the image quality predicted by the statistical distri-
butions of three local features, it is meaningful to understand
the contribution of each feature to the whole prediction perfor-
mance. In our experiments, we test the statistical distributions
of different features on LIVE database by using 80% − 20%
training-testing procedure. The Table VIII lists the PLCC,
SRCC and RMSE results on the LIVE database. In this table,
I, G and O represent the feature of the local intensity, the
local gradient and the local orientation selectivity about an
image. As can be seen, each individual feature contributes to
the experimental results. And compared to the other statistical
distributions, the proposed method based on the statistical
distribution of all the features performs best. It also proves
the rationality of the proposed method.

In this work, we obtain the experimental results by the
regression approach SVR. In order to eliminate the bias
caused by the regression algorithm, other common regres-
sion algorithms (i.e. random forest regression (RFR), back

TABLE VIII: Performance evaluation on LIVE database with
different statistical distributions

IQM PLCC SRCC RMSE
I 0.891 0.878 12.225
G 0.794 0.749 16.480
O 0.932 0.930 9.853

I+G 0.923 0.917 10.371
I+O 0.950 0.948 8.445
G+O 0.950 0.948 8.489

Proposed(All) 0.974 0.971 6.158

TABLE IX: Perforamce evaluation on LIVE database with
different regression approaches.

Regression PLCC SRCC RMSE
RFR 0.969 0.968 6.584

BPNNR 0.952 0.950 8.121
ABR 0.969 0.966 6.475
DTR 0.931 0.923 9.670
SVR 0.974 0.971 6.158

propagation neural network regression (BPNNR), adaptive
boosting regression (ABR), decision tree regression (DTR))
are adopted to compare with SVR. Experiments are carried
out on LIVE database by using 80% − 20% training-testing
procedure. The Table IX lists the PLCC, SRCC and RMSE
results produced by different regression algorithms. As can be
seen, for the performances regressed by the RFR and ABR
algorithms, there is no significant difference between them
and the performances generated by SVR. The performances of
the BPNNR algorithm are slightly worse than SVR algorithm.
However, the performances of DTR algorithm are worse than
the SVR algorithm obviously. Although the proposed method
dose not obtain the best results on all regression algorithms,
the proposed method has a good performance in most of
these algorithms. Thus, we can draw the conclusion that the
performances of the proposed method do not depend on a
particular regression algorithm, and it also corroborates the
efficacy and the efficiency of the proposed method.

V. CONCLUSION

In this work, a novel BIQA method based on the joint
entropy degradation is proposed. Distortions degrade the visual
information of an image. Moreover, the visual contents of an
image suffer from individual degradations by different types
and different levels of distortions, which makes it difficult
to measure the quality degradation. From the perspective of
information theory, the amount of visual information that an
image contains can be measured by the visual information
entropy. Inspired by researches on the neuroscience, the visual
information can be represented by a series of features. Thus,
we have proposed to measure the degradations of the visual
feature entropy for image quality.

By deducing the visual feature entropy, the amount of
visual information is related to the statistical probabilities
and conditional probabilities of the visual features. Then, the
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relationship between the visual information and the distribu-
tion probabilities of features are analyzed. Finally, the quality
of an image is predicted by measuring the changes on the
distribution probabilities of the visual features. The experimen-
tal results show that the proposed method outperforms other
state-of-the-art BIQA methods, and has a good generalization
capability on cross-database evaluation.
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