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ABSTRACT

In this paper, we introduce a visual pattern degradation based full-reference (FR) image quality assessment (IQA)
method. Researches on visual recognition indicate that the human visual system (HVS) is highly adaptive to
extract visual structures for scene understanding. Existing structure degradation based IQA methods mainly
take local luminance contrast to represent structure, and measure quality as degradation on luminance contrast.
In this paper, we suggest that structure includes not only luminance contrast but also orientation information.
Therefore, we analyze the orientation characteristic for structure description. Inspired by the orientation selec-
tivity mechanism in the primary visual cortex, we introduce a novel visual pattern to represent the structure of a
local region. Then, the quality is measured as the degradations on both luminance contrast and visual pattern.
Experimental results on Five benchmark databases demonstrate that the proposed visual pattern can effectively
represent visual structure and the proposed IQA method performs better than the existing IQA metrics.
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1. INTRODUCTION

In the multimedia era, objective image quality assessment (IQA) plays an important role in valid information
selection from big data. During the past decade, a massive of IQA methods have been proposed for automatic
quality measurement. As a simple metric with clear physical meaning, the peak signal-to-noise ratio (PSNR)
is quite popular for quality measurement. However, it has been proved that this metric does not consistent
well with the subjective perception.1 Therefore, researchers tune to investigate the subjective perception of the
human visual system (HVS), and try to mimic the subjective properties for quality assessment modeling.

Since the HVS is highly adaptive to extract structural information for image understanding, a structural
similarity based quality assessment metric (SSIM)2 is introduced, within which the degradation on structure (i.e.,
local luminance, variance, and covariance) is measured. Following this, a lot of structural similarity based IQA
methods are proposed. Lin et al.3 adopted the contrast and congruency for structure representation, and the
quality is measured as the degradations on the two features. Liu et al.4 and Zhu et al.5 adopted the luminance
change to represent the structure, and the degradation on the edge height or the gradient are computed to
measure the quality, respectively. These structural degradation based IQA methods have greatly promote the
accuracy of quality assessment. However, these methods measure the structure with only luminance contrast
changes, they can be further improved by more information about images structures.

The interactions among pixels present the structure characteristic of images.6,7 Moreover, visual cognition
researches indicate that the HVS is sensitive to spatial luminance change and spatial orientation.8,9 Thus,
besides luminance contrast, distortions on spatial orientation will also degrade the structure of images, which
result in quality degradation. Therefore, in this paper, we suggest to measure the structural degradations on
both luminance contrast and spatial orientation for quality assessment.

The HVS presents obvious orientation selectivity mechanism for visual structure extraction.10–12 Further
studies on neuroscience indicates that orientation selectivity arises from the arrangement of excitatory and
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inhibitory interactions among neurons in a local receptive field of the primary visual cortex.13,14 Moreover,
neurons with similar preferred orientations present excitatory interaction, and neurons with dissimilar preferred
orientations present inhibitory interaction.15 Inspired by this, we calculate the preferred orientation of each
pixel as its gradient direction. Then, we analyze the similarity of preferred orientations between a pixel and
its circularly symmetric neighborhood to create an orientation selectivity based visual pattern (OSVP). With
OSVP and luminance contrast, a novel structure descriptor is introduced.

With the novel structure descriptor, a new IQA method is proposed. Firstly, the structural degradation on
luminance contrast is calculated. Next, the changes on OSVP types (shift from the original OSVP type to the
distorted OSVP type) are measured. Then, the luminance contrast degradations on each pair of OSVP type
shift are accumulated. Finally, the support vector regression (SVR) is employed for pooling the degradations on
all pairs of OSVP shifts, and the quality of an image is returned.

2. QUALITY ASSESSMENT WITH STRUCTURE DEGRADATION

In this section, the structural degradations on luminance contrast and OSVP are separately measured. And
then, by considering the degradations on the two features, the quality of an image is acquired.

2.1 Contrast Degradation

It is well known that the HVS is highly adapted to extract edge information for scene understanding, and is
extremely sensitive to distortions on the edge. Thus, the distortion on edge is firstly calculated for structure
degradation measurement. In this work, the edge magnitude is measured as luminance contrast (Lc),

Lc =
√

L2
h + L2
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where Lh and Lv are the luminance contrast alone the horizontal and vertical directions, which can be computed
as

Lh = F ∗ fh, (2)

Lv = F ∗ fv, (3)

where F is the input image, ∗ denotes the convolution operation, fh and fv are two filters alone horizontal and
vertical orientations. Here, we adopt the Prewitt filters for luminance contrast computation,
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Then, the structural degradation on luminance contrast is computed as the similarity between the reference
and distorted images,
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2Lr

cLd
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c)
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where Sl is the contrast degradation, Lr
c is the luminance contrast of the reference image, Ld

c is the luminance
contrast of the distorted image, and c is a small constant value to avoid the denominator being zero (we set
c=0.1 in this work).



2.2 OSVP Degradation

The HVS presents obvious orientation selectivity for visual structure extraction, and is highly sensitive to degra-
dations on orientation. Thus, the orientation selectivity mechanism is analyzed, and a novel OSVP is introduced
for quality assessment.

The orientation selectivity mechanism arises from the arrangement of neuron interaction in the primary visual
cortex. Moreover, the interaction type (excitatory and inhibitory interactions) decided by the similarity of the
preferred orientation. By imitating this, we firstly compute the preferred orientation for each pixel,

θ(x) = arctan
Lv(x)

Lh(x)
, (7)

where θ(x) is the preferred orientation of pixel x, Lh and Lv are the luminance contrast alone the horizontal and
vertical directions, as computed in (2) and (5) respectively.

The interaction type I(x|xi) is estimated as the similarity of the preferred orientations,

I(x|xi) =

{
1 if |θ(x)− θ(xi)| < T
0 else

, (8)

where ‘1’ (‘0’) means excitatory (inhibitory) interaction, and T is the judging threshold and we set T =6◦ here.

Finally, according to the arrangement of interactions between the central pixel and its symmetric neigh-
bors (e.g., 8 symmetric neighbors), the OSVP of the pixel is acquired, OSVP={I(x|x1), I(x|x2), · · · , I(x|xN )}.
In order to reduce the types of OSVP, we combine these patterns with the same number of excitatory interac-
tions. As a result, for a N-neighbor OSVP, there are N+1 types of OSVP, whose excitatory interaction numbers
are 0, 1, · · · , N . And in this paper,we name them as OSVP0, OSVP1, · · · , OSVPN .

With the degradation from distortion, the OSVP type for a pixel may shift from one type to another one.
For example, the white noise may distort a plain region into a disorderly region, namely, shift from OSVP0 into
OSVPN . Moreover, for M types of OSVP, there are M2 pairs of OSVP shift, and each pair of OSVP shift
represents different quality degradation.

2.3 Quality Assessment

Since different pair of OSVP shift results in different quality degradation, we accumulate the contrast degradations
for each pair of OSVP shift,

D(OSVPr
m,OSVPd

n) =
M∑
x=1

V(x,m, n), (9)

whereD(OSVPr
m,OSVPd

n) is the accumulated contrast degradations from OSVPm to OSVPn,M is the dimension
of the image, V is the valid contrast degradations, which is calculated as

V(x,m, n) =

{
Sl(x) if OSVPr(x)=m,OSVPd(x)=n

0, else
(10)

where Sl is the contrast degradation as computed in (6).

With (9) and (10), the contrast degradation on each pair of OSVP shift is computed. Then, we try to pool
all pairs of OSVP shift to acquire the quality of an image. As an effective pooling procedure for high dimensional
data, SVR is widely used in machine learning. Thus, the SVR is employed for feature pooling,

Q(Fr,Fd) = SVR (D,MOD) , (11)

where Q is the quality score, D is the structural degradation set defined as D = {D(OSVPr
m,OSVPd

n)|m =
0, · · ·N ;n = 0, · · ·N}, and MOD is the model for regression.



3. EXPERIMENTAL RESULTS

In this section, the quality degradations caused by different types of distortion are firstly illustrated to demon-
strate the proposed novel structure descriptor. Next, the performance of the proposed IQA method is verified
by comparing with the state-of-the-art IQA metrics.

3.1 Effectiveness of The OSVP

The proposed descriptor presents the structure on both luminance contrast and orientation, which can effectively
represent the degradation caused by different distortion types. As shown in Fig. 1, the GIRL image is distorted
by three different types of distortion, namely, White noise (Fig. 1 (a) with MOS = 4.54), Gaussian blur (Fig. 1
(c) with MOS = 2.43), and JPEG noise (Fig. 1 (e) with MOS = 1.88). It is well known that different types
of distortion generate different content degradations. As shown in Fig. 1 (a), the White noise adds disturbance
into the image, which has limited effects on visual structure. The Gaussian blur smoothen these regions with
luminance contrast, especially for the edge region, which mainly decrease the contrast value of visual structure.
The JPEG noise not only removes some high frequency information but also generates artifacts; as a result, it
decreases the contrast value of the edge region, and creates new edges in the smooth regions.

In order to illustrate the effects from different types of distortion, the degradations on luminance contrast
is firstly analyzed. Here, the mean absolute different value of luminance contrast (we called LC) between the
reference image and the distorted image is computed. For the three distorted images, Fig. 1 (a), (c), and (f),
their corresponding LC values are 7.38, 6.78, and 8.16, respectively. According to the LC values, Fig. 1 (f)
distorted by the JPEG noise has the largest degradation, and Fig. 1 (a) distorted by the White noise has larger
degradation than that of Fig. 1 (c) distorted by the Gaussian blur. If we assess the quality with only the LC
value, the result will conflict the ground truth (the MOS value, which shows that Fig. 1 (a) has the best quality,
Fig. 1 (c) has better quality than Fig. 1 (e)). Therefore, the degradation on luminance contrast can not effectively
represent the degradation on visual structure, and more other features should be considered for visual structure
description.

In this work, we consider both luminance contrast and orientation for visual structure description. Different
types of distortion will result in different degradation on each pair of OSVP shift. The structural degradation
maps of these distorted images are shown in Fig. 1 (b), (d), and (f). As can be seen, the White noise obviously
increases the luminance contrast value of the smooth region. As a result, the smooth region may be distorted
into other types of regions, as shown in Fig. 1 (b), there are obvious changes on these bars corresponding to
the 9th type of the reference OSVP (OSVPr

8 appears at the smooth region). On the contrary, the white noise
mainly degrades the edge region. As a result, many regions may be degraded into smooth regions. As shown in
Fig. 1 (d), there are obvious changes on these bars corresponding to the 9th type of the distorted OSVP (OSVPd

8).
Since the JPEG noise results in much complex distortion (degrades some edges and creates some new edge), the
change on the structural degradation maps are much complex, which is quite different from that distorted by
White noise and Gaussian blur, as shown in Fig. 1 (f). According to the above analysis, we can conclude that
different types of distortion generate different degradations on luminance contrast and orientation; and therefore,
the proposed structure descriptor can effectively represent visual degradation from different distortion types.

3.2 Performance Comparison on Databases

In this subsection, the proposed OSVP method are compared with 9 latest and state-of-the-art IQA methods,
which are VSI,16 GMSD,17 IGM,18 FSIM,3 ADM,19 GSIM,4 MAD,20 VIF,21 and MSSIM.2 In order to make
a comprehensive comparison, 5 benchmark databases are adapted in this experiment: TID22 database, which
has 25 reference images and 1700 corresponding distorted images across 17 different types of distortion; CSIQ,23

which has 30 reference images and 866 corresponding distorted images across 6 types of noise; LIVE,24 which
has 29 reference images and 799 corresponding distorted images across 5 types of noise; IVC,25 which has 10
reference images and 185 corresponding distorted images across 4 types of noise; and TOY,26 which has 28
reference images and 196 corresponding distorted images across 2 types of noise



(a) (b)
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Figure 1: OSVP pair Shift under different types of distortion on GIRL image (with size 384 × 512). (a) White
noise distorted image, MOS = 4.54. (c)Gaussian Blur distorted image, MOS = 2.43. (e) JPEG noise distorted
image, MOS = 1.88. (b), (d), and (f) are their corresponding structure degradation maps.



Table 1: PERFORMANCE COMPARISON OF IQA METRICS ON 5 LARGE BENCHMARK DATABASES

DB
C.

A.
OSVP VSI GMSD IGM FSIM ADM GSIM MAD VIF MSSIM

TID

(1700)

PLCC 0.925 0.876 0.879 0.886 0.874 0.870 0.842 0.831 0.802 0.842

SRCC 0.920 0.898 0.891 0.890 0.880 0.862 0.850 0.834 0.749 0.853

RMSE 0.510 0.647 0.641 0.623 0.653 0.662 0.724 0.747 0.802 0.723

CSIQ

(866)

PLCC 0.955 0.928 0.950 0.928 0.912 0.928 0.896 0.950 0.923 0.900

SRCC 0.960 0.942 0.957 0.940 0.924 0.933 0.911 0.947 0.919 0.914

RMSE 0.077 0.098 0.082 0.098 0.108 0.097 0.117 0.082 0.101 0.115

LIVE

(799)

PLCC 0.965 0.938 0.957 0.957 0.960 0.936 0.944 0.967 0.960 0.941

SRCC 0.965 0.952 0.960 0.958 0.963 0.946 0.956 0.967 0.963 0.945

RMSE 7.174 9.457 7.965 7.925 7.677 9.619 9.012 6.923 7.669 9.266

IVC

(185)

PLCC 0.934 0.912 0.923 0.913 0.938 0.913 0.939 0.921 0.903 0.893

SRCC 0.913 0.899 0.914 0.903 0.926 0.903 0.929 0.915 0.896 0.884

RMSE 0.416 0.500 0.467 0.497 0.423 0.496 0.419 0.475 0.524 0.548

TOY

(168)

PLCC 0.921 0.898 0.890 0.899 0.925 0.953 0.943 0.952 0.932 0.916

SRCC 0.908 0.893 0.883 0.891 0.918 0.940 0.930 0.938 0.918 0.905

RMSE 0.502 0.580 0.601 0.578 0.501 0.401 0.440 0.402 0.478 0.531

Aver.
PLCC 0.941 0.910 0.920 0.917 0.922 0.920 0.913 0.924 0.904 0.898

SRCC 0.938 0.917 0.921 0.916 0.922 0.917 0.915 0.920 0.889 0.900

In order to evaluate the performance of these IQA methods on a common space, a mapping function18 is
adopted to regress the computed quality score,

Sr = β1

(
1

2
− 1

1 + exp(β2(S0 − β3))

)
+ β4 S0 + β5, (12)

where {β1, β2, β3, β4, β5} are five parameters to be fitted.

To measure the conformity between the computed quality score and the ground truth (MOS), three classic
performance criteria are adopted, namely, the Pearson linear correlation (PLCC), the Spearman rank-order
correlation coefficient (SRCC), and the root mean squared error (RMSE).18 A better IQA method will return
larger PLCC and SRCC, and a smaller RMSE value. Since the proposed OSVP based IQA method employs
the SVR procedure to measure image quality, 80% reference images and their corresponding distorted images
are randomly selected to train the SVR model, and the rest images are chosen for test. Moreover, in order to
eliminate the performance bias, the train-test procedure is repeated for 100 times, and the average performance
is adopt for the final result.

The performance of there IQA methods are listed in Tab. 1. On TID database, the proposed method has
much larger PLCC and SRCC values than all of the other methods, and has a much smaller RMSE value than
the other one. According to the results on the three criteria, the proposed method performs obviously better
than the other IQA methods on TID database. The performances on the CSIQ database are much similar
with that on TID database, which shows that the proposed method performs the best on this database (has
the largest PLCC and SRCC values, and smallest RMSE value). On LIVE and IVC databases, the proposed



method has almost same PLCC, SRCC, and RMSE values with the best methods (i.e., on LIVE database, the
PLCC, SRCC, and RMSE values of the best one (MAD) are 0.967, 0.967, and 6.923, respectively; and these
values of the proposed method are 0.965, 0.965, and 7.174, respectively. On IVC database, these values of the
best one (GSIM) are 0.939, 0.929, and 0.419, respectively; and these values of the proposed method are 0.934,
0.913, and 0.416, respectively). On TOY database, the proposed method performs slightly worse than the best
one (ADM). Moreover, the average performance values on the five databases (we only list PLCC and SRCC
values, while no RMSE, that is because the range of RMSE in these databases are quite different) are listed at
the bottom of Tab. 1, which shows that the proposed method has much larger PLCC and SRCC values than
any other IQA methods. Therefore, we can conclude that the proposed IQA method outperforms the latest and
state-of-the-art IQA methods.

4. CONCLUSION

In this letter, we have proposed to represent the visual structure of an image with both luminance contrast and
orientation, and introduced a novel OSVP based IQA method. It is well known that the HVS is highly adapt to
extract structure from an image for scene perception, and the HVS is extremely sensitive to distortions on visual
structure. However, how to effectively represent visual structure is still an open problem. Most existing IQA
methods only calculate the degradation on luminance contrast for quality assessment. Inspired by the orientation
selectivity mechanism in the primary visual cortex, we suggested to consider the orientation change caused by
distortion. By imitating the excitatory and inhibitory interactions among nearby neurons, an OSVP is introduced
to represent the orientation distribution of visual structure. Then, the degradations on both luminance contrast
and orientation are measured. Finally, all features are pooled to return the quality. Experimental results on
five databases have demonstrated that the proposed IQA method performs highly consistent with the subjective
perception.
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