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Abstract

Coding artifacts are annoying in highly compressed signals. Most of the existing artifact re-

duction methods are designed for one specific type of artifacts, codecs, and bitrates, which are

complex and exclusive for one type of artifact reduction. Since both the compressed image/video

and the coding error contain information of the original signal, they are highly correlated. There-

fore, we try to recover some lost data based on the correlation between the compressed signal and

the coding error, and introduce a novel and universal artifact reduction method. Firstly, according

to the spatial correlation among pixels, a pixel-adaptive anisotropic filter is designed to reconstruct

the distorted signal. Next, a globally optimal filter is designed to further recover the coding loss.

Experimental results demonstrate that within an extensive range of bitrates, the proposed method

achieves about 0.8 dB, 0.45 dB, 0.3 dB, and 0.2 dB on average of PSNR improvement for JPEG,

MPEG4, H.264/AVC, and HEVC compressed signals, respectively.

Keywords: Artifact Reduction, Coding Loss Recovery, Correlation, Structural Self-Similarity,

Global Optimization

1. Introduction

Due to the limited available bandwidth and storage, image/video signals need to be compressed

with reduced bitrates [1]. During the lossy image/video compression (e.g., JPEG, JPEG2000,
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MPEGx, H.26x, etc.), the quantization process causes artificial discontinuity, such as blocking,

ringing, mosquito noise, and so on [2, 3]. In order to ameliorate the qualities of compressed

images/videos, appropriate postprocessing techniques are required at the decoder side [4, 5].

In the past decade, a series of coding artifact reduction methods have been introduced. In

the early stage, according to the dominant blocking artifacts in low bit rate, many deblocking

methods, which result in filtration (e.g., low-pass or average property) of signals [6–10], were

proposed. In fact, these deblocking procedures are smoothing operators, which smooth out both

the blocking artifacts and image details (e.g., texture and edge). In order to minimize the damage

to the image details (e.g., texture and edge) and remove the blocking artifacts, many post-filtering

schemes assume that most artifacts occur at some predictable positions [11–15]. However, for

MPEGx or H.26x compression, the blocking artifacts may occur anywhere of a frame as a result

of motion compensation [16–18]. Therefore, the positions where the blocking artifacts appear are

unable to be predicted [13, 19] for MPEGx or H.26x compression. In addition, image regions

with different types contents (i.e., plain, texture, edge, etc.) are firstly discriminated for adaptive

processing [20–22]. However, the discrimination of image contents is extremely difficult, and it is

also hard to accurately separate the blocking/ringing artifacts from the edge/texture information.

Besides, these existing approaches are content and codec dependent, and too many models and

parameters need to be decided. As a result, these existing approaches are restricted to certain

types of codecs, artifacts, and bitrates. Therefore, a universal coding artifact reduction method is

required.

In essence, the coding artifact reduction procedure can be viewed as an attempt of coding loss

recovery (the error between the original and the compressed images) [19]. Therefore, we try to

reduce the coding artifacts by image content reconstruction/recovery in the decoder side accord-

ing to the correlations of image pixels. It is well known that image contents are highly correlated

with their surroundings [23], and these correlated contents jointly present some self-similar struc-

tures [24]. The structural self-similarity is widely explored for image recovery. For example,

according to the characteristics of structures, distortions can be accurately removed for image de-

noising [25, 26]; distorted structures can be efficiently recovered for image deblurring [27] and

reconstruction [28, 29]. Moreover, in image compression, the compressed and lost parts usually
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present some common structural information of the original image. In other words, the coding

loss is also correlated with the compressed image [19, 30]. Therefore, we can recover the coding

loss according to its correlation with the compressed image.

In this paper, we try to recover the coding loss according to the correlation properties among

image/video contents, and introduce an universal artifact reduction algorithm. Firstly, we analyze

the relationship between the compressed image/video and the coding error. Secondly, the struc-

tural characteristics of the compressed image is explored, and a pixel-adaptive anisotropic filter is

designed to reconstruct the distorted contents by exploiting these highly correlated pixels. Thirdly,

based on the correlation between the compressed image and the coding error, a global optimal fil-

ter is designed to further recover the coding loss. Since the proposed algorithm recovers the lost

data based on the correlation among image/video contents, it is not restricted to one specific arti-

fact type. It is applicable to all codecs under any bitrate. Experimental results on JPEG, MPEG4,

H.264/AVC, and HEVC codecs demonstrate the effectiveness of the proposed algorithm.

The rest of this paper is organized as follows. In Section 2, we explore and illustrate the corre-

lation between the compressed image and the coding loss. The detailed recovery implementation

of the proposed artifact reduction method is presented in Section 3. Then, in Section 4 the perfor-

mance of the proposed method is demonstrated. Finally, we draw the conclusions in Section 5.

2. Image Correlation Analysis

During the lossy compression, some visual information is discarded through the coefficient

quantization, which reduces the amount of data for transmission and storage [16, 17]. Let I(x) de-

notes a pixel in the original image, and Ic(x) denotes the pixel in the compressed image (e.g., with

JPEG, JP2K, MPEG4, etc). The compression loss (discarded information, ∆I) can be expressed

as,

∆I(x) = I(x) − Ic(x), (1)

where ∆I(x) is the lost data of pixel I(x).

Generally, the compressed image Ic possesses the main contents of the original image, and

the compressed loss ∆I contains the residual information of the original image. Both of them
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(a) (b) (c)

Figure 1: An example of correlation between the coded image and the lost data. (a) The original image. (b) JPEG

coded image. (c) Lost data, in which the values are mapped into [0, 255] for a better view.

possess the structural information of the original image, and jointly present the visual contents.

An example of JPEG coding is shown in Fig. 1, in which (b) and (c) are the compressed and lost

parts of (a). As can be seen, though Fig. 1 (b) is distorted by noticeable artifacts, we can acquire

most of the visual information from Fig. 1 (b) as that provided by the original image (Fig. 1 (a));

meanwhile, Fig. 1 (c) presents the coarse contours of objects in Fig. 1 (a), with which we can

imagine and recognize objects in the original image (i.e., peppers in Fig. 1 (a)). In summary,

Fig. 1 (b) and (c) present some common structural information of Fig. 1 (a) (though Fig. 1 (b)

provides more detailed structures and Fig. 1 (c) only shows the coarse structures of the original

image). Therefore, the contents of the compressed image and the lost data are correlated at certain

level.

In order to further illustrate the correlation between the compressed image and the lost data,

a thorough analysis on image content similarity is made. Structural information represents the

main content of an image, which is adapted to be extracted for image perception and understand-

ing [31, 32]. Therefore, we try to extract structural information from images for content similarity

analysis. From the view of image processing, global image structure is usually represented by

local binary pattern based histogram [33], and local image structure is always represented by lu-

minance difference [34] or local variance [31]. In this work, the local variance on luminance is
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Table 1: Correlation between the compressed image and the lost data

image

bpp
0.25 0.5 1 2 3

Pepper 0.7845 0.7418 0.6483 0.3562 0.1241

Boat 0.7863 0.7718 0.7407 0.6467 0.5168

Barbara 0.6959 0.6790 0.6756 0.6241 0.4733

Huts 0.6355 0.6050 0.5570 0.4264 0.2755

adopted for local structure analysis,

V(x) =
1

(2r+1)2

∑
∆x

(I(x+∆x) − I(x))2, (2)

I(x) =
1

(2r+1)2

∑
∆x

I(x+∆x), (3)

whereV(x) is the variance of pixel I(x), ∆x is the location shift in the local region, I(x) is the local

mean value of pixel I(x), and r is the radius of the local region.

According to the Pearson correlation function [35], the structural correlation between the com-

pressed image and the lost data can be computed as,

C(Ic,∆I) =
1
N

∑
x

∑
x(Vc(x) −Vc)(Vd(x) −Vd)√

(
∑

x(Vc(x) −Vc)2)(
∑

x(Vd(x) −Vd)2)
, (4)

where C(Ic,∆I) is the similarity coefficient between Ic and ∆I; N is the total pixel number of image

Ic;Vc is the structural information of the compressed image Ic, andVc is the average value ofVc;

Vd is the structural information of the lost data ∆I, andVd is the average value ofVd.

Four oft-used images (i.e., Pepper, Boat, Barbara, and Huts) are chosen for correlation analysis,

which are mainly composed by smooth, edge, regular texture, and irregular texture, respectively.

The four images are compressed with JPEG codec under five different bitrates (i.e., 0.25, 0.5, 1,

2, and 3 bpps), and the correlations between these compressed images and their corresponding

lost data are computed with (4). The correlation coefficients of these images are listed in Tab. 1,

and their corresponding statistical values are shown in Fig. 2. From Tab. 1 and Fig. 2 we can
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Figure 2: Correlation between the coded image and the lost data

see that under high bitrate (e.g., 3 bpp), the compressed images are less correlated with their

corresponding lost data; whereas under low bitrate (e.g., 0.25 bpp), the correlations between the

compressed images and their lost data are strong. This is because under high bitrate, almost all of

the detail of the original image is preserved in the compressed image, and the lost data contains

little structural information of the original image; when the bitrate is low, more content is lost

during the compression, and the lost data contains much common structural information as that in

the compressed image. In summary, the compressed image is correlated with its lost data, and the

correlation between them will become stronger with the decrease of the bitrate.

According to the correlation analysis mentioned above, we suggest to separate the lost data

into two portions,

∆I(x) = ∆Ic(x) + ∆In(x), (5)

where ∆Ic represents the lost information related to Ic, and ∆In represents the lost information

related to random noise. We regard ∆Ic(x) as an approximation of ∆I(x), namely, ∆I(x)≈∆Ic(x),

because only ∆Ic is predictable according to Ic. In the next section, we attempt to recover the lost

portion ∆Ic based on Ic.
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3. Coding Loss Recovery

As analyzed in the above section, there exists correlation between the compressed image and

the lost data. In this section, we attempt to recover some coding loss based on the correlation.

Firstly, according to the correlations among nearby pixels, some coding loss on image structures

will be recovered through structural restoration. Then, a globally optimal filter is designed to

further improve the coding loss recovery.

3.1. Structural Self-Similarity Based Loss Recovery

Natural scenes are redundant, in which nearby pixels are always highly correlated and usu-

ally present self-similar structures, e.g., all pixels in a plain region are highly similar; and these

pixels with large luminance differences in a edge region jointly present the edge structure. This

self-similarity characteristic is useful for image recovery and reconstruction. According to the

structural self-similarity, these correlated pixels are found out to remove the noise [25, 26] and re-

store image contents [27, 29]. Here we adopt the structural self-similarity procedure, and recover

some loss of a pixel based on the correlation with its surroundings.

Firstly, the correlations between the central pixel I(xo) and its surrounding pixels I(yi) are

computed to find out these similar ones. The correlation coefficient between two pixels I(xo) and

I(yi) is usually computed as the distance of two patches Ω(xo) and Ω(yi) (which centered at I(xo)

and I(yi), respectively) [24, 25, 27].

S(xo, yi) =
1
α(xo)

exp
(
−d(xo, yi)

2σ2

)
, (6)

d(xo, yi) =
∥∥∥Ω(xo) −Ω(yi)

∥∥∥2

2
, (7)

α(xo) =
∑

yi

exp
(
−d(xo, yi)

2σ2

)
, (8)

where S(·) is the correlation coefficient, α(·) is a normalizing constant, and d(·) is the sum of

squared differences (∥ · ∥22) between two patches. The parameter σ is a decay rate controller. As

analyzed in the above section, the correlation between the compressed image and the lost data is

related to the compression rate. Under high bitrate, only a little information is lost during the com-

pression. So, the loss data is less correlated with the compressed image, and a fast decay rate (with
7



small σ value) is required to pop out these highly correlated pixels for content restoration. When

under low bitrate, much detailed information is lost during the compression, and therefore, the lost

data are highly correlated with the compressed image. In this case, a slow decay rate (with large

σ value) is required to find out these correlated information as much as possible for the lost data

recovery. Therefore, the decay factor is related to the lost data during the coding, and we set the

value of σ according to the energy of the lost data for the compressed image,

σ2 =
∥∥∥I − Ic

∥∥∥2

2
, (9)

where ∥ · ∥22 is the mean squared difference between the original image I and the compressed image

Ic. The value of σ is computed in the encoder side and transmitted to the decoder side within the

overhead information.

At this stage, according to the correlations with the surrounding pixels, the value of the central

pixel I(xo) is predicted and restored as following [25],

I1(xo) =
∑
yi∈R
S(xo, yi)Ic(yi), (10)

where I1(xo) is the predicted value of pixel I(xo); and R is the searching window, in which these

correlated pixels are used for restoration of the central pixel. So far, according to the correlations

among pixels, the coding loss is recovered to some extent, and the restored image I1 (composed

with the restored values p1) is acquired.

3.2. Global Optimization Based Loss Estimation

In the above subsection, the compressed image is restored based on the structural self-similarity.

Since the lost data is correlated with the compressed image, we can directly use the correlation

between the lost data and restored image I1 to further improve the loss recovery, which can be

expressed as,

∆Ic = t(I1), (11)

where t(·) represents the correlation between ∆Ic and I1. As pixels are correlated to their neigh-

borhood, a local filter is designed to predict the lost information of the central pixel,

∆Ic = FR ⊗ I1, (12)
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where FR is a local filter (with size R) for convolution whose elements indicates the contributions

of the neighboring pixels in I1, and the filter size R is chosen as a positive odd integer.

With (12), the predicted value of the original image I can be expressed as,

I2 = I1 + FR ⊗ I1 = HR ⊗ I1, (13)

HR = FR + δ (14)

where I2 is the recovery image, the filter HR is the same as FR except for the central element, and

δ is Dirac delta function.

The determination of HR can be regarded as a global optimization problem. Here we aim at

the minimization of the coding loss error, so HR can be set as,

ĤR = arg min
HR
∥I − I2∥22

= arg min
HR
∥I − HR ⊗ I1∥22.

(15)

Finally, according to (10) and (13), the coding loss in the compressed image Ic is recovered

to some extent, and we acquire the recovery image I2, within which we hope that the coding

error (I−I2) is smaller than the original compressed loss ∆I. In the proposed method, the energy

of the lost data σ and an optimal local filter ĤR are required to transmitted as the side information

of the bitstream, which are used for structure recovery and content estimation, respectively.

4. Experimental Results

In this section, the performance of the proposed coding loss recovery method is demonstrated.

First, the restored image is analyzed to demonstrate the effectiveness of the proposed coding loss

recovery procedure. Next, a comprehensive analysis is given to illustrate the improvement of the

proposed method in image/video quality. Finally, the proposed method is compared with the latest

artifact reduction methods to further demonstrate its effectiveness. In this experiment, ten oft-used

images [36] and five popular video sequences [37] are chosen, and the proposed method performs

on four types of codecs (i.e., JPEG, MPEG4, H.264/AVC, and HEVC) with an extensive range of

bitrates.
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The performance of the proposed method varies according to several parameters. In all exper-

iments given in this section, we use a same set of parameters. By considering the computational

complexity, the radius r in (2) is set as 2, and the local window R in (10) and (12) is set as a 5 × 5

block in the experiment. Thus, only 26 coefficients (one for the loss energy σ2 in (9) and 25 for

the filter HR coefficients in (14)) need to be packed and transmitted in the overhead.

4.1. Analysis of Loss Recovery

The proposed postprocessing method deems coding artifact reduction as coding loss recovery,

which removes the artifacts and restores image structures based on the correlations among pixels.

Therefore, the performance of the proposed method is highly related to the correlation between

the coded signal and the coding error, regardless of codecs. In this subsection, we demonstrate the

effectiveness of the proposed method on JPEG and MPEG4 codecs for image and video, respec-

tively.

Fig. 3 shows an example of JPEG coding loss recovery on the Barbara image. Under the JPEG

codec, the Barbara image is distorted with noticeable coding artifacts. As shown in Fig. 3 (a), the

face and ground regions are disturbed with blockiness artifacts, the edges of the table and arm are

contaminated with ringing artifacts, and so on. Though some structures of Fig. 3 (a) are distorted,

the primary contents are still remained, e.g., we can still perceive the primary visual contents of

the face, clothes, and table. In addition, as shown in Fig. 3 (c), the coding error map contains some

contour information of the original image. Therefore, both the coded image and the coding error

map contain some edges (e.g., the contours of the table and arm) and texture (e.g., the textures of

the tablecloth and the kerchief of the original scene) of the original image and they are correlated.

Moreover, according to (4), the correlation coefficient between Fig. 3 (a) and (c) is C=0.7172,

which further confirms that they are highly correlated.

According to the correlation between the coding error and the coded signal, the proposed

method can remove some coding artifacts and recover some distorted information. Fig. 4 shows

four different patches (A, B, C, and D) from the Barbara image, where the first column is the

original signals, the middle column is the coded signals, and the last column is the restored sig-

nals. The correlations between the four coded patches and their corresponding coding errors are
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(a) Coded image with PSNR=24.77 (b) Restored image with PSNR=26.01

(c) Coding Error (d) Restored residual

Figure 3: An example of coding loss recovery for JPEG codec. (a) The JPEG compressed image (PSNR=24.77). (b)

The restored image of (a) (PSNR=26.01). (c) Coding loss between the original image and (a), and their correlation

coefficient C=0.7172. (d) Residual between the original image and (b), and their correlation coefficient C=0.5866.
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(a) Original (b) JPEG coded (c) Restored

Figure 4: An example of coding loss recovery for different image patches. From the top to the bottom rows, they are

named as A, B, C, and D patches.

Table 2: Coding Loss Recovery for Image Patches with Different Correlation Coefficients.

Patch C PSNRc PSNRr ∆PSNR

A 0.7833 32.80 35.35 2.55

B 0.7380 21.41 22.84 1.43

C 0.4936 24.42 25.16 0.74

D 0.2870 23.93 24.36 0.43
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listed in Table 2. Patch A locates at the smooth ground. Though A is distorted with obvious

blockiness (PSNR=32.80 dB), the content in A is highly correlated with its corresponding coding

error (C=0.7833). With the proposed method, the blockiness in A is effectively removed, as the

restored patch shows in Fig. 4 (PSNR=35.35 dB). For the edge and texture patch B, the correlation

between its coded content and coding error is also strong (C=0.7380) and some distorted contents

are successfully restored (∆PSNR=1.43 dB).

With the decrease of correlation between the coded signal and the coding error, less distorted

information can be restored. For example, as patches C and D show in Fig. 4, the correlations be-

tween the coded signals and the coding errors (the correlation coefficients are 0.4936 and 0.2870

for C and D, respectively) are weaker than these of A and B. Since the proposed method recoveries

coding error depending on the correlations, less information is restored for patches C and D (the

∆PSNR values for them are 0.74 dB and 0.43 dB, respectively). Moreover, if a coded image has

a high correlation coefficient with the coding error but a local region is actually weakly correlates

to its coding error, the distorted contents in such a local region may mislead the restoration of its

coding loss. For example, as shown in patch D (the correlation coefficient of patch D is C=0.2870

and that of the whole image is C=0.7172), when removing the blockiness, some detailed informa-

tion (especially for these pixels nearby the blockiness contents) is also removed.

In general, the proposed method can effectively remove the JPEG coding artifacts and restore

some lost information. By comparing Fig. 3 (a) and (b), it can be seen that the restored im-

age (PSNR=26.01 dB) has a better quality than the coded image (PSNR=24.77 dB). Moreover,

the correlation between the error data Fig. 3 (d) and the recovery image Fig. 3 (b) (C=0.5866) is

smaller than that between Fig. 3 (a) and (c), which further confirms that some correlated informa-

tion is restored with the proposed method.

In addition, an example of MPEG4 coding loss recovery is given to demonstrate the effective-

ness of the proposed method for video sequences. As shown in Fig. 5, where (a) is the MPEG4

compressed frame with PSNR=28.43 dB (we randomly select a frame from the foreman video

sequence) and (b) is the restored frame with PSNR=29.10 dB. According to the correlations be-

tween the compressed image and the lost data, many lost contents are effectively recovered with

the proposed method. By comparing Fig. 5 (a) with (b), it can be seen that the blockiness in the
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(a) Coded frame (b) Restored frame

Figure 5: An example of coding loss recovery with MPEG 4 codec on foreman video sequence. (a) The MPEG4

compressed frame with PSNR=28.43 dB. (b) The restored frame of (a) with PSNR=29.10 dB.

face and wall is obviously removed, and the plain region in (b) is more smooth than that in (a).

Moreover, the Gibbs effect in these regions with large luminance changes (e.g., around the edges

of the building and the safety helmet) is restored. However, some detailed information is misla-

beled as artifact, such as the texture in the building, and is removed in the proposed model. In

summary, Fig. 5 (b) is much more similar with the original frame than Fig. 5 (a) (the PSNR value

of (b) is higher than that of (a)).

According to the above analysis, we can conclude that the proposed postprocessing method

recovers some coding loss based on the inner correlation of images, and it works for different

types of codecs (e.g., JPEG and MPEG4) and signals (e.g., still image and video sequence).

4.2. Improvement in Image/Video Quality

In order to make a comprehensive analysis, we verify the proposed method with four types

of codec (i.e., JPEG, MPEG4, H.264/AVC, and HEVC) under some oft-used databases (i.e., the

USC-SIPI image database [36] and Derf’s collection of video test media [37]). And an extensive

range of bitrates is chosen in this experiment to demonstrate the quality improvement.

Table 3 shows the quality improvement (represented by the PSNR value) of the proposed
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Table 3: The improvement of image quality during the loss recovery on JPEG image, where ∆PSNR means the

quality (i.e., PSNR) increase of the recovered image against the coded image.

∆PSNR (dB)

bpp
3 1.5 1 0.5 0.3 0.2

Indian 0.38 0.60 0.69 0.67 0.87 0.94

Barbara 0.33 0.63 0.98 1.30 1.22 1.29

Lena 0.50 0.50 0.68 0.92 1.16 1.22

Pepper 0.60 0.25 0.47 0.80 1.22 1.35

Boat 0.55 0.74 0.97 0.94 1.07 1.07

Huts 0.58 0.52 0.58 0.60 0.83 0.96

Car 0.46 0.70 0.80 0.85 0.97 1.03

Airplane 0.55 0.67 0.83 0.95 1.17 1.21

Couple 0.61 0.41 0.47 0.69 1.01 1.11

Milk 0.56 0.36 0.65 1.02 1.06 1.19

Mean 0.51 0.54 0.71 0.87 1.06 1.14
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Table 4: The improvement of quality during the loss recovery on MPEG4 coded video sequence, where ∆PSNR means

the quality (i.e., PSNR) increase of the recovered video against the coded video.

dB

kbps
1024 512 256 192 128 64

Akiyo 0.20 0.26 0.53 0.51 0.59 0.72

Bowing 0.29 0.38 0.62 0.65 0.58 0.66

Foreman 0.21 0.33 0.38 0.34 0.55 0.76

Mobile 0.39 0.44 0.40 0.38 0.23 0.21

Mother-Daughter 0.37 0.35 0.45 0.39 0.46 0.65

Mean 0.29 0.35 0.48 0.45 0.48 0.60

method against JPEG coding. In this experiment, ten oft-used images from the USC-SIPI image

database [36] are chosen. In order to conduct a comprehensive test on the performance of the

proposed method, these images are coded in an extensive range of bitrates (0.2∼3.0 bpp; the

bitrate of 0.2 bpp is for extremely low rate coding, while 3.0 bpp is far beyond the highest bitrate

in common use).

Generally, little information is lost during the JPEG coding with high bitrate, and the cor-

relation between the lost data and the compressed image is low. Thus, less information can be

recovered, and the improvement on image quality (∆PSNR) is limited, as shown in the second

column (under 3 bpp) of Table 3. With the decrease of the bitrate, more structural information will

leak into the lost data, and the correlation between the loss and the compressed image becomes

higher. Therefore, more structural information can be recovered, and an obvious improvement

on image quality is achieved, as shown in the last column (under 0.2 bpp) of Table 3. More-

over, the average values of ∆PSNR (as shown in the last row of Table 3) further demonstrate that

more information can be recovered under lower bitrate for JPEG coded images. In summary, the

improvement is obvious throughout all bitrates of JPEG codec, with an average of 0.51 dB im-

provement at very high bitrate (3 bpp) and 1.14 dB for low bitrate (0.2 bpp). It achieves about 0.8

dB of average PSNR improvement over all of the bitrates against the standard JPEG scheme.
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Table 5: The improvement of quality during the loss recovery on H.264/AVC coded video sequence, where ∆PSNR

means the quality (i.e., PSNR) increase of the recovered video against the coded video.

dB

kbps
1024 512 256 192 128 64

Akiyo 0.32 0.27 0.27 0.26 0.23 0.23

Bowing 0.32 0.32 0.37 0.44 0.55 0.49

Foreman 0.28 0.32 0.31 0.32 0.31 0.32

Mobile 0.30 0.30 0.28 0.27 0.22 0.14

Mother-Daughter 0.40 0.34 0.32 0.34 0.32 0.27

Mean 0.33 0.31 0.31 0.32 0.33 0.29

Table 6: The improvement of quality during the loss recovery on HEVC coded video sequence, where ∆PSNR means

the quality (i.e., PSNR) increase of the recovered video against the coded video.

dB

kbps
1024 512 256 192 128 64

Akiyo 0.19 0.19 0.20 0.23 0.26 0.37

Bowing 0.13 0.14 0.19 0.20 0.23 0.29

Foreman 0.11 0.01 0.07 0.10 0.14 0.20

Mobile 0.15 0.17 0.18 0.19 0.19 0.18

Mother-Daughter 0.26 0.23 0.22 0.22 0.23 0.21

Mean 0.17 0.15 0.17 0.19 0.21 0.25
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Besides JPEG codec, we verify the proposed method on MPEG4, H.264/AVC, and HEVC

codecs for video sequences. Five oft-used video sequences (i.e., Akiyo, Bowing, Foreman, Mobile

and Mother-Daughter) from Derf’s collection of video test media [37] are chosen. The FFmpeg

software [38] and HEVC codec [39] are adopted to compress these sequences with an extensive

range of bitrates (64∼1024 kbps). IPPP GOP structure is used in the experiment, where the GOP

length is 12 frames (the default value in FFmpeg software). The improvements in video qual-

ity (represented by increased PSNR) are listed in Tables 4, 5, and 6, respectively.

As shown in Table 4, under high bitrate (1024 kbps), the lost information during MPEG4 com-

pression is less correlated with the coded sequence and little structural content is recovered (with

an average improvement of 0.29 dB). While under low bitrate, much more information is lost dur-

ing MPEG4 compression, and the correlation between the lost data and the compressed sequence

is high. With the proposed correlation based loss recovery method, the lower the bitrate is, the

more structures that can be restored. Under the lowest bitrate (64 kbps), an average of 0.60 dB

improvement is achieved for these sequences. In summary, it achieves about 0.45 dB of average

PSNR improvement over all of the bitrates against the standard MPEG4 scheme.

However, the coding loss recovery results on H.264/AVC and HEVC codecs are much differ-

ent from that of MPEG4. As shown in Table 5 (Table 6), the improvement is less related to the

bitrate, and an average of 0.3 dB (0.2 dB) improvement can be achieved for all bitrates. With

further analysis we have found that during the H.264/AVC and HEVC compressions, a sophisti-

cated deblocking filter is used and the blcokiness artifacts have already been removed [5, 40, 41].

This result further confirms that the proposed method is not only restrict to a certain type of arti-

fact (blockiness).

In view of the above, the proposed correlation based coding artifact reduction method is regard-

less of codecs, which works well with JPEG, MPEG4, H.264/AVC, and HEVC. Furthermore, the

proposed method can effectively reduce the coding artifacts within an extensive range of bitrates.

4.3. Performance Comparison

Finally, we compare the proposed method with two latest coding artifact reduction methods (

i.e., Shao et al.’s method [3] (within which a training model for content classification is demanded
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(a) Shao (b) Zhai

Figure 6: Artifact reduction on JPEG coded image. (a) The output of Shao’s model [3] with PSNR=25.16 dB. (b) The

output of Zhai’s model [13] with PSNR=25.71 dB. Their corresponding JPEG compressed image (with PSNR=24.77

dB) and the output of the proposed model (with PSNR=26.01 dB) are given in Fig. 3.
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at the decoder side) and Zhai et al.’s method [13]) (in which a quality score of the decoded image

is packed and transmitted in the overhead) to further demonstrate the effectiveness. Fig. 6 shows

the artifact reduction results of Shao et al.’s model [3] and Zhai et al.’s model [13] on the Barbara

image (compressed with JPEG codec), and the corresponding JPEG compressed image and the

restored result of the proposed method are shown in Fig. 3.

In Shao et al.’s model, image contents are firstly classified into three types for discriminatively

processing, namely, detailed, intermediate, and smooth regions. However, content classification is

a difficult work even for uncontaminated image. Moreover, the classification thresholds are related

to the content of the image and the energy of noise, however they are set as fixed values in Shao et

al.’s model. Therefore, fixed thresholds cannot achieve better results. As shown in Fig. 6 (a), the

floor and the wall are accurately classified into smooth regions, and the blockiness artifacts in these

areas are effectively reduced. However, the face region is much more complicated and cannot be

accurately classified. As a result, the deblocking effect on the face is not so well. Moreover, the

artifacts in the edge of arm and scarf are still obvious. Though some artifacts are removed within

Shao et al.’s model (the PSNR of Fig. 6 (a) is 25.16 dB, which is higher than that of the original

compressed image with PSNR=24.77 dB), its quality is not as good as the proposed method (with

PSNR=26.01 dB).

In Zhai et al.’s model, a shifted window is adopted to find out these similar blocks in the

surroundings for central block smoothing. The threshold of the similarity determination comes

from the quality of the compressed image. As shown in Fig. 6 (b), with Zhai et al.’s model, the

blocking artifacts in the smooth regions are effectively removed. However, the luminance change

in the edge and texture regions are large, and it is difficult to find out these similar blocks under a

fixed threshold. As a result, the artifacts in the arms, edge of the chair, and the scarf cannot be fully

removed. And the quality improvement of Zhai et al.’s model on Fig. 6 (b) (with PSNR=25.79

dB) is slightly lower than that of the proposed method (as shown in Fig. 3 (b) with PSNR=26.01

dB).

For a much comprehensive comparison, a large range of bitrate (0.2∼1.2 bpp) is used for test.

In this experiment, ten oft-used images from the USC-SIPI image database [36] (same as that

listed in Table 3) are chosen, and are compressed with JPEG codec under different bitrates. The
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Figure 7: Comparison among JPEG artifact reduction methods.

average performances of these methods on these images are shown in Fig. 7. As can be seen,

under low bitrate, all of the three methods achieve improvement on the JPEG coded images, and

the proposed method performs slightly better than the other two methods. With the increase of

the bitrate, Shao et al.’s method will over smooth the image, and disturb the detail of the original

image; with the guide of the image quality factor, Zhai et al.’s method almost does not process

the compressed image under high bitrate, which results in a similar PSNR value with the original

compressed image; the proposed method can still improve the quality of the compressed image

under high bitrate. In conclusion, the proposed method performs better than Shao et al.’s and Zhai

et al.’s methods under different bitrates.

Furthermore, according to the inner mechanisms of Shao et al.’s and Zhai et al.’s methods,

they are only effective for blocking artifact reduction. While as analyzed in the above subsection,

the proposed method works well for all kinds of artifacts, such as blocking, ringing, mosquito,

etc. And the proposed method can be used for a large variety of codecs (e.g., JPEG, MPEG4,

H.264/AVC, HEVC, etc). Thus, the proposed method is more universal than the existing artifact

reduction methods.
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5. Conclusion

In this paper, we have introduced a novel postprocessing method for image/video coding arti-

fact reduction. During the lossy compression, the main content of the original signal is preserved

in the compressed part. Both of the compressed part and error signal contain the structural in-

formation of the original signal, and they are correlated (the correlation decreases when the bit

rate increases). We adopted the structural similarity formulation to quantitatively analyze the cor-

relation between them, and confirmed that they are highly correlated especially for low bitrate

compression.

Since the compressed image/video and the coding loss data are correlated, we restored some

loss data from the compressed image/video based on their correlation. Firstly, according to the

correlations among pixels, a pixel-adaptive anisotropic filter was introduced, within which these

highly correlated pixels were used to restore the distorted structures. Next, a globally optimal filter

was designed to further improve the coding loss recovery. Since the proposed method reduces

coding artifacts based on correlation, it can be universally used for postprocessing and works well

for all types of codecs, artifacts, and bitrates. Experimental results on image/video coding loss

recovery demonstrate that the proposed method achieves 0.8 dB, 0.45 dB, 0.3 dB, and 0.2 dB on

average of PSNR improvement on JPEG, MPEG4, H.264/AVC, and HEVC compressed signals,

respectively. Comparing with the existing artifact reduction methods, it is more universal and

better performing.
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