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Image Quality Assessment with Degradation on
Spatial Structure
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Abstract—In this letter, we introduce an improved structural
degradation based image quality assessment (IQA) method. Most
of the existing structural similarity based IQA metrics mainly
consider the spatial contrast degradation but have not fully
considered the changes on the spatial distribution of structures.
Since the human visual system (HVS) is sensitive to degra-
dations on both spatial contrast and spatial distribution, both
factors need to be considered for IQA. In order to measure
the structural degradation on spatial distribution, the local
binary patterns (LBPs) are first employed to extract structural
information. And then, the LBP shift between the reference and
distorted images is computed, because noise distorts structural
patterns. Finally, the spatial contrast degradation on each pair
of LBP shifts is calculated for quality assessment. Experimental
results on three large benchmark databases confirm that the
proposed IQA method is highly consistent with the subjective
perception.

Index Terms—Image Quality Assessment, Structural Degrada-
tion, Spatial Distribution, Local Binary Patterns

I. INTRODUCTION

We are living in a multimedia era, and objective image
quality assessment (IQA) plays an important role in multi-
media information processing, such as in signal transmission,
restoration, and display [1]. In the last decade, a lot of IQA
algorithms have been introduced for automatic and intelligent
quality measurement. The peak signal-to-noise ratio (PSNR)
metric is the most popular one, which directly measures
the signal error. Though PSNR is well defined with a clear
physical meaning, it does not consistent well with the human
visual perception [2]. Therefore, researchers try to mimic the
subjective perception of the human visual system (HVS) for
quality assessment.

Among all of these HVS-oriented IQA algorithms, structural
similarity based quality metric (SSIM) [3] is the most accepted
one. Since the HVS is highly adapted to extract structural
information for visual content understanding, the SSIM metric
measure the structural degradation (e.g., similarity on lumi-
nance, variance, and covariance) to acquire image quality.
Moreover, the SSIM metric is improved by further investiga-
tion on image structure [4]. In [5], both phase congruency and
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contrast are considered for structural degradation computation.
In [6], as the HVS is highly sensitive to image edge, the
structural information is represented by gradient, and image
quality is measured based on gradient degradation. These
metrics promote the performance of quality measurement.

Image structure appears as the relationships among pix-
els [7], which includes both spatial contrast and spatial dis-
tribution [8], and degradations on any of them will change
the characteristic of image structure. However, the existing
structural similarity based IQA metrics [3], [4], [5], [6] mainly
consider the degradation on spatial contrast, the change on
spatial distribution of structure is not fully considered. So we
suggest to take the structural degradation on spatial distribution
into account for quality assessment. How to describe the
degradation on spatial distribution of structure is still an
open problem. Since the local binary patterns (LBPs) [9] can
effectively represent the spatial distributions of joint pixels,
we adopt LBPs to describe the spatial structural information.
Moreover, distortions will cause LBP shifts between the ref-
erence image and the distorted image, e.g., blur distortion can
change an edge pattern into a flat pattern. Hence, the LBP shift
is proposed to measure the degradation on spatial distribution
of structure.

In this letter, we introduce a novel IQA method by con-
sidering structural degradation on both structural intensity and
spatial distribution. First, the structural intensity degradation
is computed as the contrast change, and the spatial distribution
degradation is calculated as the LBP shift between the refer-
ence and distorted images. And then, for each pair of LBP
shifts, all of the corresponding structural intensity degradation
is cumulated. Finally, the support vector regression (SVR)
procedure [10] is employed to pool the degradation on all
pairs of LBP shifts and return the quality score. Experimental
results on three large benchmark databases demonstrate that
the proposed IQA method is highly consistent with the human
perception.

The rest of this paper is organized as follows. In Section II,
structural degradation is measured based on LBP shift and
contrast change. Experimental results of the proposed IQA
method are presented in Section III. Finally, conclusions are
drawn in Section IV.

II. STRUCTURAL DEGRADATION AND QUALITY
MEASUREMENT

Structural information convey the main visual contents of
an image, and structural degradation will directly impact on
image perception. Here, we measure image quality via its
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visual content degradations on both structural distribution and
intensity.

First, structural distribution is analyzed with LBPs. The
spatial distribution of pixels jointly provide the shape charac-
teristic of image structure [9], [11]. According to the intensity
differences between the central pixel xc and its circularly
symmetric neighbor pixels xi, the classic uniform rotation
invariant LBPs procedure is introduced [8], as

LBP(xi) =

{∑P−1
i=0 s(gi − gc) if U(LBPP,R) ≤ 2

P + 1 else,
(1)

U(LBPP,R) = |s(gP−1 − gc)− s(g0 − gc)|

+
P−1∑
i=1

|s(gi − gc)− s(gi−1 − gc)|,
(2)

s(gi−gc) =

{
1, gi−gc ≥ 0

0, gi−gc < 0,
(3)

where gc and gi represent the gray values of the central pixel
xc and its neighbor xi, respectively; P represents the number
of neighbors, and R represents the radius of the neighborhood.
By considering the computational complexity and accuracy,
P and R are usually set as P=8 and R=1, respectively, and
there are 10 different types of uniform LBPs (see [8] for more
detail).

With the degradation from distortion, the LBP value of a
pixel can shift from one type to another ((as to be elaborated
next)). Moreover, different kinds of distortion result in differ-
ent LBP shifts. For example, blur noise mainly degrades the
edge of an image, and as a result, an edge pattern may be
shifted (distorted) into a flat pattern. In the contrary, JPEG
compression mainly causes blockness artifact, and as a result,
a flat pattern may be shifted (distorted) into an edge pattern.
Therefore, we suggest to measure the degradation on structural
distribution based on LBP shift. Since there are 10 different
types of LBPs, there can be 10 × 10 different pairs of LBP
shifts caused by distortions.

And then, we measure the degradations on structural in-
tensity. The structural intensity of each pixel is usually com-
puted as the edge height (strength), and the sobel operator is
employed to calculate the edge height E . With the structural
intensity, its degradation between the reference and distorted
images is computed as their similarity,

Se(xi, yi) =
2× E(xi) · E(yi) + C

(E(xi))2 + (E(yi))2 + C
, (4)

where xi and yi represent pixels in the reference and dis-
torted images, respectively; and E(xi) and E(yi) are their
corresponding edge heights; C is a small constant to avoid
the denominator being zero and is set as C = (0.05×L)2 [3],
where L is the number of gray levels of the input image.

So far, the visual content degradations on both structural
distribution and intensity are computed with LBP shift and
edge height similarity, respectively. For each pair of LBP
shifts, its corresponding structural intensity degradation can be
calculated as the cumulation of all of the edge height similar-
ities associated with current LBP shift. In order to highlight

the pixels with serious structural degradations and suppress
the pixels with slight structural degradations, the intensity
degradation is normalized with their average value. For a
distorted image Id ∈ RD1×D2 and its corresponding reference
image Ir ∈ RD1×D2 , the structural degradation on each pair of
LBP shifts (e.g., the m-th structural pattern (LBPr

m) from the
reference image shifts into the n-th structural pattern (LBPd

n)
from the distorted image) is calculated as

S(LBPr
m,LBPd

n) =
1

D1×D2

D1×D2∑
j=1

V(xj , yj ,m, n), (5)

V(xj , yj ,m, n) =


(
Se(xj , yj)− S̄e

)2
, if LBP(xj)=m

LBP(yj)=n

0, else
(6)

where S̄e is the mean value of Se(·), xj (yj) represents the
pixel in the reference (distorted) image, and kd (kr) represents
the index of the LBP pattern.

With (5), the structural intensity degradations for the 10×10
pairs of LBP shifts are acquired. Since each pair of LBP shifts
represents individual degradation of structural distribution, we
cannot simply pool them with an equal weight for quality
assessment. In this letter, the support vector regression (SVR)
is employed to learn a feature pooling method. SVR is proved
to be an effective procedure for high dimensional data pooling,
and is widely used in machine learning [12]. We adopt the
LibSVM package [10] to implement feature pooling,

Qs(I
r, Id) = SVR (S,MOD) , (7)

where Qs is the quality score, S is the structural feature set de-
fined as S = {S(LBPr

m,LBPd
n)|m = 1, · · · 10;n = 1, · · · 10},

and MOD is a trained model for regression.

III. EXPERIMENTAL RESULTS

In this section, the structural degradations on both structural
distribution and intensity are first demonstrated. And then, we
compare the proposed IQA method with the state-of-the-art
IQA metrics in three large benchmark databases to verify the
effectiveness of the proposed method.

Noise will degrade image structures on both structural inten-
sity and distribution. As shown in Fig. 1 (a) and (b), the hats
image is distorted by white noise and JPEG2000 compression,
respectively. Though the energy of noise in the two distorted
images is almost same (Fig. 1 (a) is with MSE=127 and
Fig. 1 (b) is with MSE=126), their subjective quality is
quite different (The MOS (mean opinion score) of subjective
viewing for Fig. 1 (a) is 5.27 and that for Fig. 1 (b) is 2.87;
the higher of MOS, the better perceived quality). By analyzing
the degradation on structural information, we have found that
the changes on the structural intensity (represented by edge
height) of the two distorted images are much similar, where the
average edge height difference is ∆E=5.63 for Fig. 1 (a) and
∆E=5.78 for Fig. 1 (b). Therefore, degradation on structural
intensity cannot accurately represent the quality degradations
of the two contaminated images. With further analysis we
have found their degradations on structural distribution are
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Fig. 1: Structural degradations on both intensity and distribution. (a) White noise distorted image with MSE=127, MOS = 5.27,
and the average edge height difference ∆E=5.63. (b) JPEG2000 compression distorted image with MSE=126, MOS = 2.87,
and ∆E=5.78. (c) and (d) are their sketch maps of structural degradations, where each bar means the structural intensity
degradation on the corresponding pair of LBP shift.

quite different. White noise mainly adds random disturbances
into the image, which results in random changes on structural
distribution (i.e., random LBP shifts). As shown in Fig. 1 (c),
there exists degradation on each pair of LBP shifts, while
no one is dominant. However, the degradations caused by
JPEG2000 compression is quite different from white noise,
which mainly brings ringing artifact in the edge regions, as
shown in Fig. 1 (b). As a result, the structural degradations are
mainly concentrated on several pairs of LBP shifts, as shown
in Fig. 1 (d). Under different LBP shifts, the two contaminated
images present different quality degradations. Therefore, we
should consider structural degradations on both intensity and
distribution for quality assessment, and the proposed LBP
shift can effectively represent the distortions on structural
distribution.

In order to make a comprehensive analysis on the perfor-
mance, we compare the proposed method with 8 state-of-the-
art IQA metrics, namely, IGM [4], FSIM [5], ADM [13],

GSIM [6], MAD [14], VIF [15], MSSIM [3], and PSNR. Three
performance criteria are adopted, which are Pearson linear
correlation (CC), the Spearman rank-order correlation coeffi-
cient (SRCC), and the root mean squared error (RMSE) [13].
Meanwhile, the performance of these IQA metrics are verified
with three large benchmark databases: TID [16], which is
composed with 25 reference images and 1700 distorted images
across 17 types of noise; CSIQ [17], which is composed with
30 reference images and 866 distorted images across 6 types
of noise; and LIVE [18], which is composed with 29 reference
images and 799 distorted images across 5 types of noise.

Since the proposed IQA method employs SVR procedure
for quality assessment, we randomly select 80% reference
images and their corresponding distorted images for training
SVR model and the rest for testing. In order to eliminate the
performance bias, the 80%-20% training-testing SVR proce-
dure is repeated for 100 times, and the average performance is
calculated for the final result. The performance of the proposed
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TABLE I: PERFORMANCE COMPARISON OF IQA METRICS ON 3 LARGE BENCHMARK DATABASES

DB
Crit.

Algo.
Proposed IGM FSIM ADM GSIM MAD VIF MSSIM PSNR

TID
(1700)

CC 0.914 0.886 0.874 0.869 0.846 0.831 0.809 0.843 0.531
SRCC 0.908 0.890 0.881 0.862 0.855 0.834 0.750 0.853 0.525
RMSE 0.543 0.623 0.653 0.662 0.715 0.747 0.789 0.730 1.137

CSIQ
(866)

CC 0.960 0.928 0.912 0.928 0.898 0.950 0.928 0.900 0.800
SRCC 0.965 0.940 0.924 0.933 0.917 0.947 0.919 0.914 0.806
RMSE 0.073 0.098 0.108 0.098 0.116 0.082 0.098 0.115 0.158

LIVE
(799)

CC 0.961 0.958 0.960 0.936 0.944 0.967 0.960 0.943 0.872
SRCC 0.964 0.958 0.963 0.954 0.955 0.967 0.963 0.945 0.876
RMSE 7.457 7.925 7.678 9.627 9.038 6.924 7.673 9.096 13.37

Average
CC 0.937 0.914 0.905 0.900 0.883 0.894 0.876 0.881 0.681

SRCC 0.936 0.919 0.912 0.902 0.895 0.895 0.844 0.891 0.681

IQA method and the 8 state-of-the-art IQA metrics on the three
databases (TID, CSIQ, and LIVE) are listed in Table I. As can
be seen, the proposed method has larger CC and SRCC values
and smaller RMSE values than the other state-of-the-art IQA
metrics on both TID and CSIQ databases, which means the
proposed method outperforms the existing metrics on the two
databases. Meanwhile, the proposed method performs almost
the same to the best metric (i.e., MAD) on the LIVE database.
Furthermore, the weighted average values on CC and SRCC
values (no RMSE average value since its range in the three
databases are quite different) of the proposed metric are also
larger than the existing metrics, which further confirm that the
proposed IQA method outperforms the-state-of-the-art metrics.

IV. CONCLUSION

In this letter, we have introduced an improved structural
degradation based IQA method. The HVS is highly sensitive
to distortion on image structure, and structural similarity is
widely used for IQA. However, the existing structural similar-
ity based IQA methods mainly consider structural degradation
on spatial contrast, without proper addressing the degradation
on spatial distribution. We have suggested to take both factors
into account for IQA. To this end, we first analyzed the spatial
distribution of image structure with LBPs. Since noise distorts
structural patterns, the degradation on structural distribution is
measured with LBP shift between the reference and distorted
images. Next, the structural intensity degradation on each pair
of LBP shifts was calculated. Finally, the degradations on all
pairs of LBP shifts were pooled with SVR procedure toward
the quality score. Experimental results have demonstrated that
the proposed IQA method is highly consistent with the HVS
perception.
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