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Abstract—Reduced-reference (RR) image quality assess-
ment (IQA) aims to use less reference data and achieve higher
quality prediction accuracy. Recent researches confirm that the
human visual system (HVS) is adapted to extract structural
information and is sensitive to structure degradation. Therefore,
in this paper, we try to represent image contents with several
structural patterns, and measure image quality according to
the structural degradation on these patterns. The classic local
binary patterns (LBPs) are firstly employed to extract image
structures and create LBP based structural histogram. And then,
the structural degradation is computed as the histogram distance
between the reference and distorted images. Experimental results
on three large databases demonstrate that the proposed RR IQA
method greatly improved the quality prediction accuracy.

Index Terms—Reduced-Reference, Image Quality Assessment,
Visual Structural Degradation, Local Binary Pattern

I. INTRODUCTION

Objective image/video quality assessment (IQA) plays an
important role in signal processing, such as in image/video
transmission, compression, restoration and display [1]. During
the last decade, a large number of IQA methods have been
proposed to predict image quality. Most of them are full-
reference (FR) methods which need the whole data of the
reference image. However, the reference image is always not
available, and a no-reference (NR) IQA metric is expected
in this condition. Due to the varied image contents and the
individual distortion types, NR quality prediction is extremely
difficult when no prior knowledge is available [2]

As a compromise between FR and NR, reduced-
reference (RR) IQA metrics are designed, which use partial
information of the reference image for quality prediction.
RR IQA metrics expect to use less data of the reference
image and achieve higher prediction accuracy [3]. Therefore,
some global features, within which the quality degradation can
be effectively represented, are extracted in RR IQA metrics.
According to the assumption that most real-world distortions
disturb the stable statistical properties of natural images [4],
Wang et al. [2] counted the change on marginal distribution
of wavelet coefficients of an image for its quality prediction.
Analogously, Gao et al. [5] suggested to measure the quality
based on the statistical correlations of wavelet coefficients in
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different subbands. In the recent, Soundararajan and Bovik [6]
suggested to measure the quality degradation according to the
scaled entropies of wavelet coefficients. Wu et al. [3] measured
the energy change of the visual contents caused by distortion
for RR IQA. However, these RR IQA metrics either perform
poorly with little data of the reference image, or need a large
amount of reference data to achieve good performance.

Recent science findings on visual perception indicate that
the human visual system (HVS) possesses an internal gener-
ative mechanism (IGM) [7], within which the primary visual
information is actively predicted and the residual uncertainty
is ignored [8]. Moreover, the HVS is highly adapted to extract
structural information for image perception and understand-
ing. Therefore, we try to separatively measure the structural
degradation on the primary visual information and the residual
uncertainty of an input image for quality prediction. According
to the IGM theory, an input scene is decomposed into two
portions (i.e., the predicted portion which mainly composes
of the primary visual information, and the residual portion
which includes the disorderly uncertainty) for separatively
processing. And then, the famous and well accepted structural
descriptor, local binary pattern (LBP) [9], is employed to
extract structural information of the two portions. And the LBP
histograms are created to represent the structural information
of the image. Finally, the structural degradation is computed as
the distance of the structural histograms between the distorted
and reference images, and the support vector regression (SVR)
procedure is adopted to pool the features and return the quality
score of the distorted image. Experimental results on three
large image databases demonstrate that the proposed RR IQA
method outperforms the state-of-the-art RR IQA methods.

The rest of this paper is organized as follows. In Section II,
image structures are analyzed and extracted with LBP for
quality assessment. Experimental results of the proposed RR
IQA method are presented in Section III. Finally, conclusions
are drawn in Section IV.

II. QUALITY MEASUREMENT WITH VISUAL STRUCTURAL
DEGRADATION

In this section, the visual structural information of an image
is analyzed and extracted with the classical LBP procedure
for image quality assessment. Firstly, according to the IGM
theory, an image is decomposed into predicted portion and



residual portion for separatively processing. And then, the LBP
procedure is briefly introduced for visual structural extraction.
Finally, the SVR model is employed for feature pooling and
quality prediction.

A. IGM based Image Decomposition

Recent research on the brain science indicated that the
HVS possesses an IGM for visual perception [8]. Within the
IGM, the primary visual content of the input retinal stimuli is
actively predicted according to the inherent priori knowledge,
and the remaining uncertainty is ignored for further process-
ing [7]. In summary, an image I should be decomposed into
two portions, the predicted portion Ip and the residual portion
Ir, for separatively processing. Moreover, a Bayesian brain
theory is introduced to mimic the active prediction [8]. The
core of the Bayesian brain theory is Bayesian probabilistic
prediction, which optimizes an input image by minimizing
its prediction error. For example, the value of a pixel x
can be predicted with its surrounding X . According to the
correlation between the central pixel x and its neighbors
xi∈X , the conditional probability p(x/X ) is maximizd for
error minimization. By taking the mutual information I(x;xi)
as the autoregressive coefficient, an autoregressive model is
created to mimic the active prediction in IGM of the HVS [10],

g′ =
∑
gi∈X

Cigi + ε, (1)

where g′ is the predicted value of pixel x, gi is the value of
the neighbor xi, Ci = I(x;xi)/

∑
k I(x;xk) is the normalized

coefficient, and ε is white noise. With (1), the primary visual
content of an input scene is actively predicted and the predicted
portion Ip is acquired. And the residual portion Ir (i.e.,
prediction error) of the original image (I) can be computed as
Ir = I − Ip.

Since the two portions (Ip and Ir) contain different visual
information and play different roles for image perception,
distortions on the two portions will result in different quality
degradations. We will discriminatively analyze the information
fidelities on the two portions for quality prediction in the next
two subsections.

B. LBP based Structure Extraction

Since image structures convey the main visual information
of a scene for perception and understanding [10], [11], we
extract image structures for quality prediction. In the past,
the first-order statistics of local property values, such as the
variance and covariance, are usually adopted to simply analyze
the character of image structure. These statistics values can
not characterize the spatial distribution of structure [9]. To
this end, the classic LBP procedure is employed for struc-
ture extraction in this work. the LBP value of a pixel xc

is computed as the difference with its circularly symmetric
neighborhood [9],

LBPP,R =

P−1∑
i=0

s(gi−gc)2
i, (2)

s(gi−gc) =

{
1, gi−gc ≥ 0

0, gi−gc < 0,
(3)

where gc (gi) is the gray value of the central pixel xc (the
neighbor xi), P is the number of neighbors, and R is the
radius of the neighborhood. By considering the computational
complexity and accuracy, we set P=8 and R=1 in our
experiments.

Further researches on LBP verified that the uniform
LBP patterns provide the vast majority structural informa-
tion (sometimes over 90%) [9]. According to the uniform
patterns, a locally rotation invariant pattern can be defined as:

LBPriu2
P,R =

{∑P−1
i=0 s(gi − gc) if U(LBPP,R) ≤ 2

P + 1 else,
(4)

where

U(LBPP,R) = |s(gP−1 − gc)− s(g0 − gc)|

+
P−1∑
i=1

|s(gi − gc)− s(gi−1 − gc)|.
(5)

With (4), the LBPriu2
P,R value of each pixel from image I can

be calculated. And then, the LBP based structural historgam
is mapped into P + 2 bins (P + 1 bins for all of the uniform
LBP patterns, and 1 bin for the other patterns) to represent the
structure of image I .

C. Quality Prediction

Distortions always damage the structures of images, and
we try to measure image quality based on visual structural
degradation. For a test image Id (and its reference image Io),
it is firstly decomposed with (1) to return the predicted portion
Idp (Iop ) and the residual portion Idr (Ior ). And then, with the
LBP procedure (4), their structural histograms are acquired,
which are expressed as Hd

p and Hr
d (Ho

p and Hr
o for the

reference image), respectively.
In order to measure the structural degradation, the similarity

formulation [11] is adopted to compute the changes on each
bins of the histogram,

HC(Idi , I
o
i ) =

2×Hd
i ·Ho

i

(Hd
i )

2 + (Ho
i )

2
, (6)

where i ∈ {p, r}.
For LBPriu2

8,1 , it contains 10 uniform LBP patterns. And
therefore, with (6), there are 20 features from the predicted
and residual portions. How to pool features for quality as-
sessment is still an open problem. For simplicity, all features
are considered to have the same importance [11], and are
equally accumulated to acquire the final score. However, it
is obvious that the 20 LBP features in this paper are not
equally important: 1) the visual contents in the predicted and
residual portions are quite different, and they play different
roles for image perception; 2) each LBP pattern represents
different spatial structure, and its change leads to different
quality degradation. Therefore, we employ a support vector
machine regressor (SVR) to learn a feature pooling method



(a) MOS=4.26 and MSE=256 (b) MOS=3.40 and MSE=294 (c) MOS=3.25 and MSE=230

Fig. 1: Example of image quality degradations under different types of distortions. (a) AWGN. (b) GBLUR. (c) JPG.

(a) (b)

Fig. 2: LBP based structural change under different types of distortions (i.e., AWGN, GBLUR, and JPG), and org represent
the histogram of the reference image. (a) and (b) The LBP histograms of Ip and Ir.

for quality measurement. SVR can effectively handling high
dimensional data [12], which has been widely used in feature
pooling. In this paper, we adopt the LIBSVM package [13] to
implement the SVR for quality assessment with a radial basis
function (RBF) kernel.

III. EXPERIMENTAL RESULTS

In this section, the LBP based histogram is firstly analyzed
to demonstrate its effectiveness of the proposed method. And
then, we compared the proposed method with three state-
of-the-art RR IQA metrics in three publicly databases (i.e.,
LIVE [14], TID [15], CSIQ [16]).

The proposed RR IQA algorithm is based on visual struc-
tural degradation, which measures the structural changes on
the LBP histograms. For example, the lighthouse distorted
with three types of distortions (additive white Gaussian
noise (AWGN), Gaussian blur (GBLUR), JPEG (JPG) com-
pression noise) is shown in Fig. 1, and their corresponding
LBP histograms are shown in Fig. 2. As can be seen in
Fig. 2, different types of distortions result in quite different
structure changes. As shown in Fig. 1 (a), the AWGN noise
brings in a lot of random disturbs, which mainly effect on the

residual portion. As a result, the energy on each bin of the LBP
histogram is greatly increased, as the light blue bar shown in
Fig. 2 (b). On the contrary, the GBLUR noise erases many
visual contents, as shown in Fig. 1 (b). This type of distortion
will decrease the structural information, as the yellow bars
shown in Fig. 2, the energies on all of these bins are obviously
decreased with a similar ratio. The JPG noise degrades the
structural information of the image, such as the blockness
artifact as shown in Fig. 1 (c), which decrease the energies on
most structural bins. Meanwhile, the blockness brings in new
edges between patches, which results in remarkable increasing
at the 9th bin of the histograms. In summary, different types of
distortions cause different damages on visual structures, and
the LBP based structural histogram can effectively represent
the visual information degradations.

And then, we compare the proposed method with three
existing RR IQA metrics (i.e., RRVIF [3], WNISM [2] and
RRED [6]) to demonstrate the performance on three large
databases. Since the proposed method adpots SVR for feature
pooling, which requires a training procedure, we need to divide
each database into train and test subsets. In our experiment,
80% of the reference images and their corresponding distorted



TABLE I: PERFORMANCE OF IQA INDICES ON LIVE
DATABASE.

DB Crit.
Algo. Proposed RRVIF WNISM RRED

No. of scalars 20 2 18 20

AWGN
CC 0.990 0.957 0.890 0.938

SRCC 0.982 0.946 0.870 0.950
RMSE 2.25 4.66 7.29 9.71

GBLUR
CC 0.966 0.955 0.888 0.956

SRCC 0.960 0.961 0.915 0.951
RMSE 3.98 4.66 7.22 5.43

JPEG
CC 0.894 0.895 0.876 0.962

SRCC 0.858 0.885 0.851 0.956
RMSE 6.94 7.15 7.71 4.7

J2K
CC 0.927 0.932 0.924 0.956

SRCC 0.913 0.950 0.920 0.951
RMSE 5.96 5.88 6.18 3.28

FF
CC 0.950 0.944 0.925 0.892

SRCC 0.926 0.941 0.923 0.920
RMSE 4.86 5.42 6.25 12.86

Overall
CC 0.935 0.725 0.710 0.831

SRCC 0.932 0.732 0.703 0.834
RMSE 9.59 17.6 18.4 15.2

TABLE II: OVERALL PERFORMANCE OF IQA INDICES ON
CSIQ and TID DATABASES.

DB Crit.
Algo. Proposed RRVIF WNISM RRED

CSIQ
CC 0.873 0.698 0.696 0.780

SRCC 0.872 0.733 0.705 0.780
RMSE 0.126 0.182 0.189 0.164

TID
CC 0.814 0.535 0.572 0.725

SRCC 0.819 0.500 0.495 0.709
RMSE 0.773 1.134 1.101 0.924

images are randomly chosen for training, and the rest for
testing. Moreover, to eliminate performance bias, we repeat
this random train-test procedure 100 times and calculate the
average performance for the final result.

The performce on LIVE database, which consists
of five types of distortions (additive white Gaussian
noise (AWGN), Gaussian blur (GBLUR), JPEG (JPG) com-
pression, JPEG2000 (J2K) compression, and a Rayleigh fast-
fading channel simulation (FF) noise), is listed in Table I.
As can be seen, the proposed metric uses similar quantity of
the reference data as WNISM and RRED, while much more
than RRVIF. Meanwhile, the proposed method use LBP based
strcuctural histogram, which can effectively represent quality
degradation caused by different types of distortions. And
therefore, the performance of the proposed method is greatly
improved: it performs better than the other three metrics on
three types of distortions (i.e., AWGN, GBLUR, and FF), has
similar performance with the best metric on the other two types
of distortions, and the overall performance of the proposed
metric is much better than the other metrics.

In order to further demonstrate the effectiveness of
the proposed metric, performance on the other two large
databases (i.e., CSIQ and TID) is given in Table II. As can be
seen, on both databases, the proposed metric returns much
larger CC and SRCC values than that of the other three
metrics (i.e., RRVIF, WNISM, and RRED), and also has

smaller RMSE values than the other RR IQA metrics. This
further confirms that the proposed RR IQA metric outperforms
the state-of-the-art RR IQA metrics.

IV. CONCLUSION

In this paper, we have introduced a novel RR IQA metric
according to the visual structural degradation. The RR IQA
metrics aim to use less reference data and achieve higher
prediction accuracy. Since the HVS is highly adapted to extract
structural information and is sensitive to structural degradation,
we suggested to represent the image structure with several
uniform LBP patterns, and measure image quality based on
the structural changes on these patterns. Experimental results
on different types of distortions demonstrate that the proposed
LBP based structural histogram can effectively represent the
structure degradation. Moreover, performance on three pub-
licly available databases demonstrate that the proposed RR
IQA metric performs much better than the existing RR IQA
metrics, and is highly consistent with the subjective perception.
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