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Abstract—In this paper, we introduce a unified spatial masking
function for the estimation of just-noticeable difference (JND).
Conventional models estimate several parts independently, and
then combine these parts to get the JND. In this work, we treat
the spatial masking effect as a nonlinear transformation of the
luminance adaptation. To model the transformation, we measure
the deviation of image contents from the ideal patterns to es-
tablish luminance adaptation rules. Considering both luminance
difference and structural regularity, we derive a nonlinear spatial
masking function by modulating luminance adaptation with the
deviation coefficients. The masking function deduces an accurate
estimation of the JND. Experiments demonstrate the validity of
the proposed framework.

Index Terms—Just-Noticeable Difference; Spatial Structure;
Luminance Adaptation; Luminance Difference

I. INTRODUCTION

Just-noticeable difference (JND) reveals limitations of hu-
man visual perception. For applications in which humans are
the information sink of visual contents, JND provides great
benefits [1], [2]. For instance, in image and video compression,
the precision of quantization can be adjusted according to JND
to save the code length or to improve the perceptual visual
quality [3], [4]. In addition, it also helps to evaluate the image
quality [5].

Existing models for JND estimation can be categorized into
two classes according the domain knowledge they rely on.
In transform domain methods [6], [7], images are divided
into small blocks to apply domain transformation. Succeeding
operations are performed on each block. As the block division
corrupts image contents, such methods do not deal well with
spatial structures.

In spatial domain methods [3], [8]–[10], luminance adapta-
tion (LA) and spatial masking are the mainly considered fac-
tors. Generally, the LA part is modeled according to Weber’s
law [8]. As LA is valid only for image patterns with uniform
foreground and background, researchers construct various spa-
tial masking functions to make JND estimation feasible for
natural images. In Chou and Li’s work [8], spatial masking is
constructed according to the maximum directional luminance
difference (LD). However, since the human visual system are
very sensitive to edges, this method over-estimated the JND
threshold for edges. Yang et al. suggested to weight edge
places with small values [3]. This method protects the primary
edges, but the secondary edges are corrupted. In addition, the

JND of regions with disorderly distributed intensities is still
underestimated [9], [10].

The LA models the JND in an ideal condition that uniform
foreground is over uniform background. As an image is with
abundant textures, we divide the patterns of image contents
to two classes. One is with regular textures, the other is with
irregular ones. In this work, the JND for both cases are derived
by measuring the deviation of the image contents to the ideal
case. To achieve this, we build a unified spatial masking
function, which is inherently a nonlinear transformation to
LA, to estimate the JND. Two components, the LD and
the structural regularity (SR), are employed to measure the
deviation of regular and irregular textures from the ideal case,
respectively.

For LD, the linearity of conventional models is valid only
for LD values less than 80 [11]. So we build a nonlinear LD
function, which keeps the linearity well for low LD values,
while deviates greatly from the linear function at large LD
values.

The SR measures the orderliness of image contents. From
our empirical perspective, humans are hard to perceive noise
in regions with disorderly distributed pixels. On the contrary,
uniform regions, or regions with orderly distributed pixels, can
hide very little noise. We employ a non-local procedure to get
the measurement of the orderliness of image contents, i.e., the
SR. This part is also non-linearly proportional to the LA, like
the LD part.

The rest part of this paper is organized as follows. Section II
introduce the unified spatial masking function based JND es-
timation framework. Section III provides experimental results
demonstrating the validity of the proposed framework. And
conclusions and discussions are given in Section IV.

II. UNIFIED SPATIAL MASKING BASED JND ESTIMATION

The processing flowchart of our unified spatial masking
based JND estimation framework is illustrated as Fig. 1.
As shown in the flowchart, the LA map is first constructed
according to Weber’s law. Then the LD and SR maps are
created independently. After that, nonlinear transformations
are applied to both LD and SR maps. Finally, the LA, LD,
and SR components are combined by multiplication to obtain
the JND. Based on the estimated JND mask, noise are added to
the original image to evaluate the performance of the proposed
JND estimation framework.



Fig. 1: The processing flowchart of our unified spatial masking based JND estimation framework.
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Fig. 2: Filters for four directions.

A. Luminance Adaptation

LA is the foundation of JND estimation. As it has been well
established, we follow Chou and Li’s formulation [8], i.e.,

LA(x) =

{
a0 + a1

√
B(x)/B0 If B(x) < B0

γ[1 +B(x)] else
, (1)

where a0 = 20, a1 = −17, γ = 3/128, B0 = 127, and B(x)
is the background luminance of pixel x.

B. Luminance Difference

In Chou and Li’s work [8], LD is defined as

LD′(x) = max
k=1,...,4

Gk(x), (2)

Gk = φ∇k ∗ I, (3)

where φ is the normalizing coefficient with φ = 1/16, I is the
original image, ∇k are four directional filters, whose kernels
are shown in Fig. 2, and symbol ∗ denotes the convolution
operation.

Chou and Li used the LD defined in (2) to estimate JND.
However, the validity of the linearity of this model is hold only
for LD values less than 80, according to the study in [11]. For
LD values larger than 80, Chou and Li’s model [8] produces
over estimated JND. To tackle this problem, we define the
following LD coefficient,

CLD(x) =
LD2(x)

(L/3)2 + LD2(x)
, (4)

where L is the maximum gray level of the image. The
truncated LD value is given by

LD(x) = max
{
0,LD′(x)− LA(x)

}
, (5)

which makes LD take into effect only when its value is larger
than LA.
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Fig. 3: The LD coefficient. The dashed line is drawn according
to the study in [11].

The curve of LD coefficient with respect to LD values is
shown in Fig. 3. The linear part is drawn with a dashed line
according to the experimental curve given in [11]. It can be
seen that, our LD coefficient approximates the dashed line
well for small LD values while punishes the over-estimation
for LD values larger than 80.

C. Structure Regularity

According to our empirical perspective, disordered regions
can conceal large quantity of noise. And most conventional
JND estimation model under-estimates the JND level for
disordered regions. In this work, we employ the following
non-local procedure to measure the structure regularity,

SR′(x) =
∑

y∈R(x)

S(x, y)
(
I(x)− I(y)

)
, (6)

where x and y are two distinct pixels, S(x, y) is the similarity
between x and y, I is the original image, and R(x) is a region
surrounding pixel x. The similarity S(x, y) between two pixels
x and y is calculated by

S(x, y) =
1

α(x)
exp

(
−d(x, y)

2h2
x

)
, (7)

where α(x) =
∑
y
exp

(
−d(x,y)

2h2
x

)
is a normalizing constant,

parameter hx controls the decay rate of the similarity, and
d(x, y) denotes the distance between two local regions Ω(x)
and Ω(y) centering at x and y, respectively. Here, we take



d(x, y) as the sum of squared differences between correspond-
ing image patches Ω(x) and Ω(y), i.e.,

d(x, y) =
∥∥Ω(x)− Ω(y)

∥∥2
2
. (8)

As an effective metric of the roughness of a region, the
variance σ(x) of the local block Ω(x) is adopted to adjust the
decay variable hx,

hx =

{
σ0 If σ(x) ≤ σ0

σ0

√
σ0/σ(x) else

, (9)

with σ0 = 10 in this paper.
Similar to the LD coefficient, we define the following

nonlinear structural regularity coefficient,

CSR(x) =
SR(x)

5σ(x) + SR(x)
. (10)

The truncated SR is obtained as

SR(x) = max
{
0, SR′(x)− LA(x)

}
. (11)

D. JND Estimation

Since we model the JND for non-uniform image contents as
deviations from uniform patterns, the final JND is estimated
by applying the spatial masking of both LD and SR as

JND(x) =
[
1 + kLDCLD(x)

][
1 + kSRCSR(x)

]
LA(x), (12)

where parameters kLD and kSR are set to 2 and 8, respectively.

III. EXPERIMENTAL RESULTS

In this section, we show the performance of the proposed
JND estimation framework. We implement Chou and Li’s
method [8], Yang et al.’s method [3], and Zhang et al.’s
method [6]. And we compare these methods with the proposed
one on several test images. Two typical images, the tank and
cameraman, are illustrated in Fig. 4 and Fig. 5, respectively.
Other test images are with similar performance.

In the tank test case, which is taken from the USC-SIPI
image database [12], as shown in Fig. 4, our method adds less
noise to the tank while more to the messy grassland than the
other three methods. As the tank is a very regularly structured
target, the visual quality degradation is heavy in the noisy
images generated according to the other three models. This is
because edges on the tank are corrupted by noise. In addition,
the tank is the perceptually salient object in this image, so
corrupting the tank gives uncomfortable visual impression.

For the cameraman image, as shown in Fig. 5, our method
gives the most comfortable visual experience. Because our
method adds most noise to the grassland in the image where
more noise can be concealed. Chou and Li’s model [8] and
Yang et al.’s method both over-estimate the JND level on the
cloth of the man. Adding more noise on these parts produce
very uncomfortable visual experience. Zhang et al.’s method
adds more noise on edges, which corrupt the sharpness of
edges around the salient objects, the man and the tripod. On the
contrary, our method adds noise to edges without corrupting
the smoothness in both tangent and normal directions of edges.

From these experiments we can summarize the contributions
to the final JND of the three components. LA is mainly for
the uniform regions in images, LD are dominant at edges.
Both LA and LD are over-estimated in conventional methods.
SR is for regions with disordered (or irregular) textures. This
factor is generally under-estimated in conventional methods.
The proposed unified spatial masking gives a well balance of
these factors and produces accurate JND estimation.

IV. CONCLUSIONS

In this paper, we propose a unified framework for pure
spatial masking based JND estimation. Our contributions are
in two aspects. On one hand, we provide a method to fix
the deviation from the linear Weber’s law. On the other hand,
we introduce a procedure to measure the regularity of image
structures to improve the performance of JND estimation on
regions with disordered textures. Experimental results show
the validity and effectiveness of the proposed framework.

In the future, we plan to investigate the intrinsic biological
mechanism associated with the two nonlinear equations.
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Chou Yang Zhang Ours

Fig. 4: Performance comparison of JND estimation methods on the test image tank. The top row shows JND masks, and the
bottom row the JND guided noisy images (under the same energy level of noise with MSE = 71.29). Our method adds less
noise to the visually salient tank while more to the messy grassland than the other three methods.

Chou Yang Zhang Ours

Fig. 5: Performance comparison of JND estimation methods on the test image cameraman. The top row shows JND masks
and the bottom row the JND guided noisy images (under the same energy of noise level with MSE = 63.35). Our method
gives the most comfortable visual experience, because our method adds most noise to the grassland in the image where more
noise can be concealed.


