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Abstract

In this paper, we introduce a novel just noticeable difference (JND) threshold estimation model

based on a spatial masking function taking both luminance difference and structural regularity

into account. Existing spatial masking functions underestimate the JND threshold for irregular

textural regions, because they mainly consider the amplitude of luminance change for simplicity.

As regular areas show weak masking effect due to their self-similar structures while irregular

regions present strong masking effect, the spatial structure directly determines spatial masking.

To effectively measure structural regularity in images under different contents, we propose an

adaptive non-local self-similarity analysis based procedure. Then we weight luminance differences

with similarity coefficients and deduce a new spatial masking function. Finally, an accurate JND

estimation model is introduced. Experimental results demonstrate that the proposed JND model

has a better visual effect than other models: it injects much noise into the insensitive regions,

whereas little into the sensitive regions.
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1. Introduction

The just noticeable difference (JND) threshold [1], which reveals the limitation of the human

visual perception, is useful in image and video compression [2, 3, 4], image quality evaluation [5],

watermarking [6], and so on. A lot of models have been proposed to estimate the JND threshold

in the transform or spatial domains in the last few years.

Transform domain JND threshold estimations are performed in DWT [7] and DCT [8, 9] sub-

bands, which usually consider the effects of spatial contrast sensitivity function (CSF), luminance

adaptation, and spatial masking. In sub-band JND estimators, an input image is divided into blocks

with small sizes to perform domain transformation. Further processing is applied on each block

individually. As the block division breaks up the spatial relationship to some extent, sub-band

based JND estimation models do not deal well with spatial structures for accurate spatial masking

estimation.

Considering the relationship among pixels, spatial domain models directly compute the JND

threshold for each pixel based on the spatial correlation between the central pixel and its local

surroundings. In these models [10, 11, 12], two factors, which are luminance adaptation and spatial

masking, are mainly taken into account, as shown in Fig. 1. The luminance adaptation models the

fact that the HVS is sensitive to the luminance difference [10]. Generally, the luminance adaptation

function is deduced according to Weber’s law [10], which adapts to the perceptual vision and is

widely used in spatial domain JND estimation.

Spatial masking is caused by interactions among stimuli [13]. It is a complicated visual per-

ceptual mechanism without a widely accepted analytic model. Most existing models intend to

estimate the spatial masking effect based on luminance contrast, which is a fundamental factor

affecting spatial masking. In Chou and Li’s model [10], the effect of spatial masking is computed

based on the maximum signal along four directions. In Chiu and Berger’s model [11], spatial

masking is determined by the bigger luminance contrast in horizontal and vertical directions. Un-

der these masking functions, places with high luminance contrast, e.g., edge regions, gain high

JND thresholds.

However, edges can hide little noise since the human visual system (HVS) is very sensitive to
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Figure 1: Architecture of the JND estimation model in spatial domain. Two factors, luminance

adaptation and spatial masking, are mainly taken into account. It is widely accepted that luminance

adaptation is deduced by Weber’s law. While the spatial masking effect is complicated and existing

models estimate it mainly based on luminance difference for simplicity. We find that structural

regularity is another determination on spatial masking. So we estimate the spatial masking effect

based on both luminance difference and structural regularity.

them [14]. To protect edge regions, Yang et al. [12] improved Chou and Li’s model. In their model,

the Canny edge detector is employed to detect edges firstly. Then these places are suppressed in

computing the JND threshold of spatial masking. The intrinsic mechanism of the spatial masking

function in Yang et al.’s model is still based on luminance contrast. Though the primary edge

regions are protected, the secondary edge regions emerge and regions with irregular textures are

still underestimated [15]. Therefore, further analysis on spatial masking is demanded to build an

accurate spatial masking function.

We have found that, besides luminance difference, structural regularity is another decisive

factor of the spatial masking effect, especially for natural images with complex textures. In fact,

the HVS is adapted to extract structural information in images [16]. Therefore, it is highly sensitive

to distortions in areas with regular structures, which means distortions in a region with regular

texture are easy to be found out (detailed analysis is provided in section 2.1). Furthermore, our

quantitative experiments certify that the JND thresholds are low in places with regular structures,

while high in irregular regions [8, 17]. This motivates us to develop a structural regularity based

spatial masking function for accurate JND threshold estimation.
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In this paper, we propose a novel spatial masking function based on the structural regularity

weighted luminance difference. Firstly, to effectively estimate the structural regularity of images

in spatial domain, i.e., the periodically self-repeating contents, we introduce a non-local proce-

dure. Considering the complexity of image background, a content adaptive similarity metric is

introduced. Then, the spatial masking effect is measured via weighting luminance differences by

similarity coefficients in a non-local region. Thus, an accurate spatial masking function is created.

Finally, a new JND estimation model is obtained by non-linearly combining luminance adaptation

and spatial masking.

The rest part of this paper is organized as follows. In section 2, we develop a novel spatial

masking function based on the analysis of structural regularity to create a spatial domain JND esti-

mation model. Experimental results on the spatial masking function and the overall JND threshold

are provided in section 3. In section 4, we conclude the proposed approach.

2. JND threshold computation

In this section, we introduce the computational model of JND threshold. Firstly, we analyze the

effect of structural regularity on spatial masking. Then we derive a new spatial masking function

via weighting luminance differences with similarity coefficients. Finally, a new JND threshold

estimator is proposed based on the new spatial masking function.

2.1. Spatial masking and image structure

The structural character of an image influences the spatial masking effect. Being sophisticated

to extract structural information from an input scene [18], the HVS is highly sensitive to distortions

in the place with regular structure, while insensitive to that in the irregular region. This is because a

regular image presents self-repeating structure, i.e., its patches are much similar to patches nearby.

With the comparison among these similar patches, it is easy to detect the distortion. So we should

consider the structural regularity when estimating the spatial masking effect.

To analyze the sensation of the HVS on image structural regularity, we adopt four represen-

tative images, as shown in Fig. 2(a)–(d), which are formed with equivalent number of black and

white pixels. Since the arrangements of the two kinds of pixels are dissimilar, the four images
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Figure 2: Image structural regularity influences the spatial masking effect. The top row shows

original images and the bottom row corresponding contaminated images. From (a) to (d), the

luminance contrast (represented by edge height) and the structural regularity are decreasing. Ac-

companying with the decrease of structural regularity, spatial masking effects in these images are

gradually increased and the noise becomes less sensitive.
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present different structures and textures. Fig. 2(e)–(h) are their corresponding noise contaminated

images under a same white noise. It is easy to sense the noise in (e) and (f), while very hard in (g)

and (h). Therefore, the spatial masking effects in (c) and (d) are stronger than that (a) and (b).

From the perspective of luminance edge height, Fig. 2 (a) and (b) are with high luminance con-

trast, while Fig. 2 (c) and (d) have low or even approximately no obvious edge. Since the existing

spatial masking functions are based on luminance contrast directly [10] or indirectly [12, 15], it

is hard for them to estimate the JND threshold accurately due to spatial masking effect, especially

to (d) which has approximately no edge. For example, according to Chou and Li’s model [10],

Fig. 2 (a) and (b) will get higher JND thresholds than (c) and (d), which contradicts the perception

of the HVS as mentioned in the above paragraph. Therefore, besides the luminance contrast, we

should take the spatial arrangement of pixels into account for masking effect estimation.

The regularity of image structure has a dominant effect on the sensitivity of distortion for

human visual perception. Since dependent pixels jointly carry structural information [16], the

image structure appears as the arrangements of and relations among pixels. Fig. 2 (a) and (b) are

with regular structures, as their pixels are strongly dependent and they possess high inter-pixel

redundancy. Though both images have large luminance edge heights, it is easy to predict the

value of a pixel from its surroundings, hence the HVS is highly sensitive to the distortion caused

by noise. Therefore, the spatial masking effects of the two images are weak and they can hide

little noise, as shown in Fig. 2 (e) and (f). With gradual decrease of the structural regularity, the

dependence among pixels in Fig. 2 (c) and (d) becomes weak, so it is hard to accurately predict

the value of a pixel from its neighbors. With non-uniform and irregular structural background,

the spatial masking effect is strong. As a result, both images can hide much noise, as shown in

Fig. 2 (g) and (h). In summary, structural regularity determines spatial masking, which indicates

that places with irregular structures appear stronger spatial masking effects than regular regions

do.

2.2. Spatial masking estimation

The spatial masking effect is caused by luminance change [19], which includes both structural

regularity and luminance difference. A region with small luminance difference has weak spatial
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Figure 3: Illustration for the non-local estimation weights. The estimation weights between the

estimation pixels (P0) and the observations (P1, P2, and P3) are based on their correlations rather

than geometric distances. Though P3 is the farthest one from P0, it is the most similar one to P0,

and has the largest weight w(P0, P3). Further more, w(P0, P1) is larger than w(P0, P2). Patches (A

as smooth patch, B as edge patch, and C as texture patch) locate at the right side show the weights

between the central pixels and their surroundings, and high luminance in the weight maps mean

their corresponding pixels are similar with the central pixels.

masking effect, since it is uniform and presents regular structure. On the contrary, for a region

with big luminance difference, its spatial masking effect is also weak if it has regular structure.

Only when the region is with both big luminance difference and irregular structure, it presents

strong masking effect. To model the mutual effect between the two factors, we weight luminance

difference with structural regularity in the spatial masking function.

In regions with regular structure, pixels are strongly dependent with their surroundings. There-

fore, we try to analyze the structural regularity based on self-similarity, which refers to the simi-

larities among pixels of a region. As images represent some periodically self-repeating structures,

we ought to find out these similar pixels for measuring the content’s self-similarity. In this paper,
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we adopt the non-local procedure to estimate the self-similarity.

Non-local is a scheme to exploit the structural similarity of image contents in spatial domain.

With this scheme, we can average out noise for image denoising [20], or seek the structural char-

acter for super-resolution [21] and image deblurring [22]. Within non-local means, the estimation

weights are based on the correlations between the estimation point and the observations [20, 23],

rather than the geometric distance between two pixels. In other words, observations similar to the

estimation point are highlighted with big weights in the non-local approach. As shown in Fig. 3,

though P3 is the farthest one from P0, it is most similar to P0 and has the largest weight w(P0, P3).

Moreover, P1 is more similar to P0 than P2 does, and w(P0, P1) is larger than w(P0, P2). Therefore,

the non-local approach exploits structural similarity of pixels.

With the non-local procedure, we measure the structural regularity by exploiting the self-

similarity in images. If the central pixel is highly similar to pixels in its non-local neighborhood, it

means the pixel locates in a region with regular structure, and vice versa. Therefore, we estimate

the structural regularity via computing similarity coefficients between the center pixel and its sur-

roundings. As illustrated by Fig. 3, the similarity coefficient between two pixels x and y is given

by

w(x, y) =
1
α(x)

exp
(
−d(x, y)

2σ2
x

)
, (1)

where α(x) =
∑

y exp
(
− d(x,y)

2σ2
x

)
is a normalizing constant, the parameter σx controls the decay rate

of the similarity coefficient, and d(x, y) denotes the distance between two rectangular local regions

Ω(x) and Ω(y) centering at x and y, respectively. There are several ways to define the distance

d(x, y). Here, we take the sum of squared differences between corresponding image patches Ω(x)

and Ω(y),

d(x, y) =
∥∥∥Ω(x) −Ω(y)

∥∥∥2

2
, (2)

where ∥ · ∥22 denotes the standard ℓ2 norm.

Since images are complex and variable, the parameter σx is expected to be content adaptive.

In denoising, Dore and Cheriet have provided a systematic analysis on setting up non-local pa-

rameters [24]. However, in spatial masking, the behavior of the parameter σx is slightly different.

So we provide another adaptive scheme. The contents in smooth regions, e.g., patch A as shown
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in Fig. 3, are homogeneous and most of the pixels are similar, while only a small part of pixels

are similar in rough regions, e.g., patches B and C as shown in Fig. 3. To effectively estimate

structural similarity, the similarity metric (1) is expected to restrain dissimilar pixels and highlight

similar ones. To achieve this goal, a fast decay rate in (1) is expected for rough region to find out

its structural character, while a slow one is demanded in smooth region for robustness and pre-

serving the contributions from most of pixels. Therefore, a sharp Gaussian function with a small

σx is assigned to a rough region, while a big σx to smooth region. As an effective metric of the

roughness of a region, the variance var(·) is adopted to value the variable σx,

σx =


σ0 if var(x) ≤ σ0

σ0

(
σ0

var(x)

)0.5
else

, (3)

where var(x) is the variance of the local region Ω(x), and the threshold σ0 represents the minimum

variance, under which the image content is considered to be smooth. In this paper, we set σ0 = 10.

Then, weighting the luminance differences between the central pixel and pixels in its non-local

surroundings by their similarity coefficients, the spatial masking function is deduced,

Ttex(x) =
∑

y∈R(x)

w(x, y)
(
I(x) − I(y)

)
, (4)

where I is the original image, and R is a non-local surroundings. Since pixels have strong correla-

tions with their nearby pixels [20], the correlations will always decay when the distance increasing.

For simplicity, we employ a big enough rectangular neighboring region R.

2.3. JND threshold computation

In spatial domain, the JND threshold of each pixel from an achromatic image is primarily

affected by two factors [10, 12]. One is the spatial masking effect, which has been analyzed in

detail in the previous subsection. The other is the background luminance adaptation. Inspired by

Weber’s law, which indicates that the ratio of the just noticeable illuminance change to the back-

ground illuminance is approximate constant, a perceptual experiment is designed to test the JND

threshold due to background luminance, and the luminance adaptation function is deduced [10],

Tlum(x) =


a0 + a1

√
B(x)
B0

If B(x) < B0

γ + γB(x) else
, (5)
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where a0 = 20, a1 = −17, γ = 3/128, B0 = 127, and B(x) is the background luminance of the

pixel x.

The visibility threshold is determined by luminance adaptation and spatial masking simulta-

neously. The luminance adaptation of a region is decided by its background, and that the spatial

masking effect is caused by its foreground content. The two parts jointly operate on the human

visual perception. So we compute the overall JND threshold based on a combination of the two

parts rather than getting the bigger one with the winner-take-all scheme. Furthermore, there exists

overlapping between the two parts, thus we cannot directly add the two parts for combination.

Since the bigger part plays a more important rule in the overall JND value, we should weight the

two parts with their own values for combination. Here, we combine the two derivations, the lumi-

nance adaptation function (5) and the spatial masking function (4), with a nonlinear procedure [17]

to acquire the overall JND value of a pixel.

Tjnd(x) = θ(x)Tlum(x) +
(
1 − θ(x)

)
Ttex(x), (6)

where Tjnd(x) is the JND threshold of pixel x, the weight is θ(x) = Tlum(x)
Tlum(x)+Ttex(x) , which is normalized

to highlight the important part.

3. Experimental results and discussion

In this section, experiments are demonstrated to evaluate the performance of the proposed

content adaptive JND estimation model. According to the JND estimation functions derived in

section 2, we firstly compute the JND threshold of an input image. Then, we inject JND guided

noise into images to make a comparison with other JND models. The JND guided noise shaping

equation is

I′(x) = I(x) + βs(x)N(x), (7)

where I′ is the image contaminated by JND noise N. The parameter β regulates the energy of JND

noise among different models, and s takes +1 or −1 randomly. In our experiment, we take the size

of Ω(·) as 7 × 7 and the size of R as 21 × 21.
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Figure 4: Indian images, in the size of 512 × 512, are contaminated by the spatial masking JND

noises with a same MSE of 41.18. The top row shows contaminated images and the bottom row

the maps of the spatial masking noises. (a) and (d) Chou et al.’s model. (b) and (e) Yang et al.’s

model. (c) and (f) The proposed model.

3.1. Spatial masking effect

Different to conventional computational functions based on luminance edge height [19, 10], the

proposed spatial masking function considers both luminance difference and structural regularity.

According to (4) and (7), the JND noise due to spatial masking, i.e., set N = Ttex, is injected

into the Indian image. Then, we make a comparison with Chou et al.’s [10] and Yang et al.’s [12]

spatial masking procedures (the energy of noise is the same), as shown in Fig. 4. Since spatial

masking is directly computed based on luminance edge height in Chou et al.’s model, most noise

is injected into primary edge regions. Moreover, the noise mask of Chou et al.’s model looks like

11



an edge detection result, as shown in Fig. 4 (d). We can easily sense the distortion in edge regions,

i.e., the black coat edge region of the Indian in Fig. 4 (a), as the HVS is sensitive to it. Though

little noise is injected into the primary edge regions by Yang’s model, much noise moves to the

secondary edge regions, i.e., the edge of the face in Fig. 4 (b), which we can also easily sense.

This is because the edge regions, including both primary and secondary edges, present strong

self-repeating structures, the spatial masking effect is weak in this kind of regular regions. With

the proposed spatial masking procedure, the noise is mainly distributed into the irregular textural

regions, while the smooth and edge regions are effectively protected, as shown in Fig. 4 (c) and

(f).

For further analysis of the spatial masking functions, we extract some representative patches

from the Indian image to make detailed comparisons. As shown in Fig. 5, in the first column, four

image patches are extracted from the original Indian image, each with a size of 60 × 60. From

top to bottom, we denote them asA, B, C, andD, respectively, for the convenience of discussion.

Patches A and B possess some prominent edge regions. They are severely distorted with Chou

et al.’s model. The distortions are small in Yang et al.’s model, while tiny in the proposed model.

Patch C contains some secondary edge regions, such as the mouth and jaw. Yang et al.’s model

produces the most severely distorted patch, and the proposed model outputs the best result in all

three models. As patchD shows, it is an irregular textural region which is insensitive to the HVS.

The proposed model injects most of the noise into it, while Chou et al.’s and Yang et al.’s models

inject less.

In summary, the proposed spatial masking function effectively protects the HVS sensitive re-

gions (e.g., the smooth and edge places), while injects much noise into insensitive regions (e.g.,

the irregular places) at the same time. The proposed spatial masking function produces a better

perceptual spatial masking JND result.

3.2. JND threshold

By taking N(x) = Tjnd(x) in the JND guided noise shaping equation (7), we inject the overall

JND noise into the Cameraman image and make a comparison among the proposed model, Chou

et al.’s model [10], and Zhang et al.’s model [8]. The contaminated images and their corresponding
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Original Chou Yang proposed

Figure 5: Detailed analysis on some patches (60 × 60) of the Indian image. From top to bottom,

we denote the patches as A, B, C, and D, respectively. From left to right, columns are original

patches, results of Chou et al.’s model, results of Yang et al.’s model, and results of the proposed

model, respectively.
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noise mask maps are shown in Fig. 6. Because Chou et al.’s model is a local information based

method, most of the noise is uniformly distributed at edge regions and the black coat region, as

shown in Fig. 6 (d). The edge regions are evidently distorted by too much noise in Fig. 6 (a).

Since the transform domain JND method is operated on individual blocks, as Fig. 6 (e) shows,

the noise mask map of Zhang et al.’s model appears strong blocking artifact. That is because

pixels in edge regions and their neighborhoods are cut into a same grid for computing the JND

threshold, which are overestimated and are severely distorted with strong blur, as Fig. 6 (b) shows.

The proposed JND estimation model is content adaptive, it injects most of the noise into texture

regions, especially the irregular grass region, and effectively protects the edge and plan regions, as

Fig. 6 (f) shows. The contaminated image of the proposed model is shown in Fig. 6 (c), it has a

better perceptual vision than the other two.

Three patches extracted from the Cameraman image are shown in Fig. 7 for detailed compar-

isons. The contaminated patches are extracted from their corresponding noised images. In patch

E, the result of Chou et al.’s model is severely distorted at the edge region. The neighbor of the

edge region and the face in patch E are grossly distorted with Zhang et al.’s model. However, the

output of the proposed model for patch E appears almost intact. The effects of these algorithms’

outputs for patch F are similar to E, such as there is strong blur in Chou et al.’s and Zhang et al.’s

results. The HVS is insensitive to the glass region G, which has irregular texture. The proposed

model injects more noise into this region than the other two models. With the novel spatial mask-

ing function, the proposed JND estimation model provides a better perceptual quality than Chou

et al.’s and Zhang et al.’s models.

3.3. Subjective quality evaluation

In order to provide a comprehensive comparison among the JND estimation of these algo-

rithms, we perform subjective quality evaluation. In our experiments, 10 images are chosen as

test images. Due to the limitation of the resolution of our screen, original images are resized to

256 × 256 first to perform the JND guided contamination. Then, the original image and the con-

taminated images (with the same level of noise) are shown on the screen for subjective evaluation.

During the experiments, the position of the original image is constant (locates at the top left of the
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(a) (b) (c)

(d) (e) (f)

Figure 6: Cameraman images, in the size of 256 × 256, are contaminated by overall JND noises

with a same MSE of 53.15. The top row shows contaminated images and the bottom row the JND

noise masks. (a) and (d) Chou et al.’s model. (b) and (e) Zhang et al.’s model. (c) and (f) The

proposed model.

screen), while the positions of the contaminated images are randomly located at the other three

places. Fifteen subjects are invited into our evaluation. Each subject is requested to assign a score

to the three images being compared. The one which provides the best perceptual quality and is

most similar to the original image gains the highest score 3, the secondary one gains 2, and the

poorest gains 1. Images with similar perceptual quality gain the same score.

The subjective evaluation results on the contaminated images with JND threshold due to spatial

masking are shown in Table 1. For most images, the proposed spatial masking procedure gains

the highest scores. The average score of the proposed procedure is far better than Chou et al.’s and
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Original Chou Zhang proposed

Figure 7: Detailed analysis on some patches (60 × 60) of the Cameraman image. From top to

bottom, we name the patches as E, F , and G, respectively. From left to right, columns are original

patches, results of Chou et al.’s model, results of Zhang et al.’s model, and results of the proposed

model, respectively.
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Table 1: Subjective quality evaluation on images contaminated by spatial masking guided noises.

For each image, noises added by the three models are with a same energy.

Image Chou Yang Proposed

Indian 1.8000 1.2667 2.8667

Barboon 1.0667 2.5333 2.6667

Babara 1.1333 2.1333 2.4000

Lena 1.8000 1.8000 2.2000

Parrot 2.5333 1.8667 2.2000

Pepper 1.6000 1.8667 2.4667

Cameraman 2.0000 1.6667 2.6667

Boat 1.6000 2.5333 2.2000

House 1.1333 2.0000 2.6000

Port 2.0000 2.2000 2.3333

Average 1.6667 1.9867 2.4600

Yang et al.’s models. Table 2 shows the subjective evaluation results on the contaminated images

with overall JND guided noise. As suppressed by the luminance adaptation to some extent when

combining for the overall JND threshold, the spatial masking effect is not as obvious as in Table 1.

However, the proposed model still outperforms Chou et al.’ and Zhang et al.’s models, which

further confirms the effectiveness of the proposed spatial masking procedure.

4. Conclusions

In this paper, a novel image domain JND estimation method is proposed. From empirical stud-

ies, we have found that places with regular structures can hide little noise, whereas irregular places

can hide more. So we analyze the effect of structural regularity on spatial masking and introduce a

novel spatial masking function. Considering the correlations among pixels, we estimate structural

regularity with a non-local self-similarity based procedure. The spatial masking effect is estimated

via weighting luminance differences with similarity coefficients. Then, combining spatial mask-
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Table 2: Subjective quality evaluation on images contaminated by the overall JND guided noises.

For each image, noises added by the three models are with a same energy.

Image Chou Zhang Proposed

Indian 2.4667 1.6667 2.7333

Barboon 2.0000 2.4667 2.6667

Babara 2.3333 1.6667 2.2000

Lena 2.2000 1.8667 2.3333

Parrot 2.3333 1.9333 1.9333

Pepper 1.6000 2.0667 2.4667

Cameraman 2.0667 2.3333 2.4000

Boat 2.2000 1.9333 2.5333

House 1.9333 2.5333 2.6000

Port 2.2000 2.0000 2.4667

Average 2.1333 2.0467 2.4333

ing and luminance adaptation with a nonlinear procedure, the overall JND threshold is deduced.

Since the proposed spatial masking function is content adaptive, no explicit approach is required

to discriminate plain, edge, and texture regions. Experimental results show that the proposed algo-

rithm injects less noise into the HVS sensitive regions, while much more into insensitive regions.

The proposed model has an aggressive JND estimation on gray images without causing visible

distortion.

Though the proposed JND estimation model offers a much accurate JND threshold, some as-

pects remain for improvement. Visual masking is so complicated that there is no complete analysis

about it, thus further investigation on the spatial masking function is needed. The proposed model

merely considers gray and still images, we plan to extend it to color and dynamic images.
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