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Abstract

In this paper we present a redundancy reduction based approach for computational bottom-

up visual saliency estimation. In contrast to conventional methods, our approach determines the

saliency by filtering out redundant contents instead of measuring their significance. To analyze

the redundancy of self-repeating spatial structures, we propose a non-local self-similarity based

procedure. The result redundancy coefficient is used to compensate the Shannon entropy, which is

based on statistics of pixel intensities, to generate the bottom-up saliency map of the visual input.

Experimental results on three publicly available databases demonstrate that the proposed model is

highly consistent with the subjective visual attention.

Keywords: Redundancy Reduction, Image Structure, Self-Similarity, Bottom-Up Visual

Saliency, Visual Attention, Non-Local, Entropy, Human Visual System

1. Introduction1

The human visual system (HVS) has a remarkable ability to analyze complex visual inputs2

in real-time, which locates regions of interest very quickly [1]. Finding interesting objects is a3

critical task in many image and video applications, such as region-of-interest based image com-4

pression [2], object recognition [3], image retrieval [4], image composition from sketch [5], ad-5

vertisement design [6], image and video content adaptation [7], and quality evaluation [8, 9].6
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Researchers attempt to build computational models imitating the ability of the HVS to improve7

vision related intelligent systems.8

The rapid process during which the HVS scans the whole scene and guides eyes to focus on9

the most informative areas is called visual attention [1]. There exist two distinct mechanisms gov-10

erning this procedure [10, 11], which are the bottom-up stimulus driven and the top-down goal11

driven mechanisms, respectively. The two mechanisms jointly determine the distribution of atten-12

tion [12]. Bottom-up saliency estimation is the first step for image understanding and analysis,13

which is involuntarily response of environmental stimulus [1, 13]. In this paper, rather than build-14

ing a saliency model including both the bottom-up and top-down mechanisms, we provide a model15

for pure bottom-up visual saliency estimation from the perspective of redundancy reduction.16

1.1. Related works17

Current research on the computational visual attention tries to model bottom-up and top-down18

mechanisms. The bottom-up based computational model imitates the function of the preattention,19

which is involuntary and pure data-driven, to generate a saliency map showing the conspicuous-20

ness of each position. The top-down mechanism determines the final response of the HVS [14] and21

directs eye fixation [15] according to voluntary affections. The existing top-down based computa-22

tional models focus mainly on assessing contributions of each feature to fuse outputs of bottom-up23

based computational models [16–19].24

Researches in neuropsychology show that the bottom-up saliency of a given location is de-25

termined by how distinct it is from its surroundings [10, 20, 21]. Furthermore, the bottom-up26

attention is driven by visual features of images, such as color [22], contrast in luminance [23, 24],27

sizes of objects [25], distributional statistics [26], contrast in histogram [27], and discriminant28

analysis [28, 29]. Based on these results, many computational models have been proposed to29

estimate the bottom-up visual saliency [1, 10, 13, 30–33]. In summary, bottom-up saliency is es-30

timated with following steps: a) select a set of adequate features, b) evaluate the distinction over31

each feature, and c) fuse all channels of distinctions into the final saliency map.32

Most existing models try to select some “good” features, on which objects are the most dis-33

tinct against surroundings, for saliency estimation. In [34], Privitera and Stark evaluated the per-34
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formances of ten contrast based models on a single feature by comparing the generated saliency35

map with the eye fixation density map [34]. Koch and Ullman suggested that a set of elemental36

features affect the visual attention jointly rather than only one feature [20]. Taking a set of features37

into account, Itti et al. proposed a famous model for bottom-up visual saliency estimation [13]. In38

this work, Gaussian pyramids are created over color, orientation, and intensity, respectively. The39

“center-surround” differences are computed between levels in these pyramids and then combined40

as a uniform saliency map. Following this architecture, Le Meur et al. improved the normal-41

ization procedure by providing a coherent one [1]. Furthermore, Gao et al. compute the center-42

surround differences on these features employing a classification procedure [35]. In [36], Achanta43

et al. adopted the difference of Gaussian approach to compute the center-surround differences for44

saliency estimation. In the recent, according to the global contrast on color histogram, Cheng et45

al. [27] introduced an effective and efficient saliency detection model.46

However, studies on primary visual cortex suggest that saliency map might be irrelevant to cer-47

tain visual features [37] which means that saliency is untuned to specific features. Intuitively, any48

place distinct from its surrounding, with respect to any feature, is salient. In [18], Judd et al. col-49

lected a large set of low, mid and high-level features, such as intensity, orientation, color, horizon,50

people, face and car. Then a linear support vector machine is employed to train a saliency model,51

within which these distinct features are highlighted with large weights. However, it is imposible52

to exhaust all of the potential features for saliency detection. So a measurement of distinction is53

required to estimate the saliency under any potential features. In [38], a spectral residual proce-54

dure in spatial domain is introduced to estimate the distinction. According to the mechanism that55

visual attention focuses on informative places, we suggest that the quantity of information is an56

appropriate measurement for bottom-up saliency estimation.57

Estimating bottom-up visual saliency based on self-information emerges in recent years [39,58

40]. In [39], independent component analysis is firstly applied on image blocks to reduce the cor-59

relation among pixels. Then the likelihood of each pixel is estimated globally for self-information60

computation. In [40], with principle component analysis based dimensionality reduction, the like-61

lihood of the local region for each pixel is computed via kernel density estimation. Then, the visual62

saliency map is generated according to Shannon self-information.63
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Using self-information is less robust than entropy because the latter is an expectation of the64

former. In the meanwhile, component analysis breaks down, at least in some degree, the spatial65

correlations among pixels, which is one of the dominant factors affecting visual saliency as we66

will show in this paper.67

1.2. Our approach68

In this paper, we focus on estimating bottom-up visual saliency based on redundancy reduc-69

tion. In natural images, similar regions, which jointly represent some self-repeating structures,70

contain abundant redundancy. The redundant place carries little information and is simple to be71

understood. So, these redundant regions can be processed instantly (by brain) and attract little72

attention. While the informative regions are much complex and will attract most of attention for73

further processing. In summary, when scanning an input scene, the HVS can quickly process74

redundant places, and focus attention on the rest regions which contain abundant information.75

Therefore, we attempt to compute the redundancy of each input part, and filter out the redundancy76

to pop-out the saliency regions.77

Traditionally, the saliency is computed based on information measurement. Shannon entropy78

is an effective metric for information measurement, which is based on the statistic probabilities of79

events. For simplicity, the intensity distribution of pixels are adopted for entropy computation [26,80

34]. This procedure only considers the probabilities [41] and ignores the correlations among81

pixels, so the result is redundant. Places with identical statistic probabilities may have different82

correlated pixels and present different structures. For example, places with regular arrangements83

are highly correlated and present self-similar structures, which are very redundant to the HVS.84

So we need to consider the dependence among pixels, and remove the redundant information for85

saliency estimation. To this end, PCA/ICA procedures are adopted to eliminate the correlations86

among pixels for information computation [39, 40]. These methods isolate the central blocks from87

their surroundings and only consider the correlations of pixels in a small local patch. Therefore,88

how to effectively remove the correlations and discard the redundancy is the key issue for image89

saliency estimation.90

Non-local means algorithm is an effective way to deal with the spatial redundancy of images.91
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In [42], with the non-local procedure, the spatial redundancy is fully used and the central pixel is92

restored according to the correlations with its surrounding pixels.93

From the perspective of non-local means, redundant regions are highly similar with some other94

regions in their non-local neighborhoods. So we can directly measure the redundancy of each95

region by computing the structural similarity with its surrounding. In this paper, a non-local self-96

similarity procedure is introduced to thoroughly analyze the structural redundancy in an image.97

With the computation of the structural similarity between the central pixel and its neighboring98

pixels in a non-local region, the self-similarity coefficient of a pixel is acquired, which is called99

the redundancy coefficient. Then, we amend the normal entropy with the redundancy coefficient100

to discard the redundant information. Finally, integrating with color and scale spaces, we extend101

our procedure from scalar images to color images, and create a novel redundancy reduction based102

saliency estimation model for natural images. We test the proposed model on three publicly avail-103

able databases and achieve results which are highly consistent with the subjective visual attention.104

The rest part of this paper is organized as follows. In Section 2, we analyze the spatial redun-105

dancy in images, and create a novel redundancy reduction based bottom-up saliency estimation106

model. Then experimental results on three public databases and conceptual test images are illus-107

trated in Section 3. Finally, conclusions are drawn in Section 4.108

2. Redundancy Reduction Based Saliency Estimation109

In this section, we firstly analyze the structural redundancy based on self-similarity. Then,110

we construct a computational procedure to measure the saliency of each pixel in scalar images111

with redundancy reduction. Finally, by taking color and scale information into account, a novel112

redundancy reduction based saliency estimation model is created for natural images.113

2.1. Structural Redundancy and Self-Similarity114

As pixels provide information jointly, a critical issue for computing the information that each115

pixel possesses is to quantitatively evaluate the redundancy among pixels. In this subsection,116

we discuss the computation of structural redundancy based on self-similarity within a non-local117

region.118
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(a) (b)

Figure 1: Example of structural redundancy and self-similarity. (a) The original image. (b) The

redundancy and self-similarity in different parts of the image.

The concept of self-similarity originates from research on fractals [43]. Several methods have119

been proposed for image analysis [44, 45] and points of interests detection [46]. Here, for the120

purpose of redundancy evaluation, image self-similarity is considered as how well a region in an121

image can be approximated by other regions [47].122

Intuitively, a region with regular or similar structure is more redundant than that with irregular123

or varying contents because one part can be inferred easily from the other parts in the former124

case. For example, as shown in Fig. 1, the three patches A, B, and C are with three representative125

structures. Patch B locates in a lawn, where the structure is highly self-similar. The information126

in patch B is so redundant that even though this patch is covered, it is quite easy for the HVS to127

reconstruct the content with the help of its surrounding contents. The structure of patch A is less128

self-similar than that of patch B, but it is also highly correlated with its surrounding and represents129

some redundant information, such as trees, mountains, and the sky. Therefore, the HVS can restore130

the rough content of patch B according to the structures of its surrounding. Furthermore, patch C131

possesses a unique horse object in the image. This patch is informative and presents quite different132

structure compared with its surrounding. We can hardly recover this patch since correct logical133

deduction is very hard to make according to its surrounding. Therefore, structural self-similarity134

is an effective measurement on redundancy.135
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According to discussions above, we introduce a quantitative self-similarity measurement em-136

ploying the non-local means filtering kernel [42]. Suppose f (x) be a scalar image, and symbols137

F(x) and F(y) denote the vectors formed by concatenating all columns in local regions Ω(x) and138

Ω(y), respectively. The similarity between the two regions is measured by the following kernel139

S (x, y) = τ exp

−
∥∥∥F(x) − F(y)

∥∥∥2
2

2σ2
x

 , (1)

where σx denotes a parameter related to region Ω(x), and τ the normalizing coefficient which is140

used to normalize the summation of S (x, y) in the non-local region to be 1 (namely,
∑

y∈Ω(x) S (x, y) =141

1). The similarity kernel S (x, y) measures the proportion of information when representing the re-142

gion Ω(x) by the region Ω(y). According to Eq. (1), we can get143

1. when the two regions are same, the distance between them is
∥∥∥F(x) − F(y)

∥∥∥ = 0, and the144

similarity is S (x, y) = τ,145

2. when the two regions are completely different, the distance between them is
∥∥∥F(x)−F(y)

∥∥∥ >146

3σx, and the similarity is S (x, y) ≈ 0,147

3. in other cases, 3σx ≥
∥∥∥F(x) − F(y)

∥∥∥ ≥ 0, the similarity is 0 < S (x, y) ≤ τ.148

According to the research on the HVS, the self-similarity of a pixel depends upon pixels near149

it more than farther ones. As shown in Fig. 2, to evaluate the redundancy of pixel x, we consider150

the similarity between its local region Ω(x) and other local regions with reference pixel in its sur-151

rounding regionR. Local regions outside the surrounding regionR are omitted for the convenience152

of computation. Given the surrounding region R, the self-similarity for location x is given by153

ϱ(x) =
∑
y∈R
y,x

ϕ
( ∥y − x∥ )S (x, y), (2)

where ϕ(·) is a radial basis function which weights the contribution of position y according to its154

distance to the reference position x. We take ϱ(x) as the redundancy coefficient of pixel x in this155

paper.156

2.2. Information Measurement for Saliency Estimation157

According to Shannon information theory, image information is always measured based on158

the intensity distribution of pixels [26, 34]. For a pixel x, the information is measured based on159
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RΩ(x)

Ω(y1)
Ω(y2)

Ω(z)

Figure 2: Illustration of image self-similarity computation. The shaded region R represents the

surrounding region, and the cross-hatched regions Ω(·) are local regions.

8



Shannon entropy of its local region Ω(x), i.e., H(x) = H(Ω(x)). To compute this entropy, we map160

the region Ω(x) to a histogram with K bins where pb(x) denotes the probability of pixels taking an161

intensity within the bth bin. The entropy of the pixel x is given by162

H(x) =
K∑

b=1

−pb(x) log pb(x). (3)

In addition, we need to consider the structural redundancy for image information measurement.163

Since Eq. (3) is based on the histogram of intensity, it is sensitive to luminance change. As Fig. 1164

shows, all of the three patches A, B, and C possess luminance changes and they will acquire165

large information values according to Eq. (3). However, based on the analysis in the previous166

subsection, patch B is very redundant to the HVS. This patch is located at a region with self-167

repeating glassing texture and shares a tiny part of glass information. Patch C contains a unique168

object and it represents a very different kind of structure from its surrounding. Therefore, patch169

C shares little information with its surrounding and possesses a large quantity of information. In170

summary, we need to remove the structural redundancy from normal entropy Eq. (3) to measure171

the informativeness or saliency of each pixel in an image. With the redundancy coefficient Eq. (2)172

and the normal entropy Eq. (3), the redundancy reduction based saliency is estimated as173

Ĥ(x) =
(
1 − ϱ(x)

)
H(x). (4)

A rough saliency map for a scalar image can be obtained directly with Eq. (4). As I(x) in174

Eq. (4) takes only one color channel and one scale into account, it is not applicable for general175

color images which are multichannel and contain objects with different sizes. In the subsection,176

we extend above formulation to general color images for estimating the bottom-up visual saliency177

map.178

2.3. Computational Saliency Model179

In respect that the quantity of information of a pixel is an appropriate measurement of how180

distinct the pixel is, we propose a novel bottom-up saliency estimation model based on redundancy181

reduction.182
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In order to make the saliency estimation procedure applicable for color images, the information183

of all color channels must be considered. One of the tricks is converting color images to a grayscale184

one, but it loses color information which has strong affection on visual saliency [48].185

If the channels are independent, we can process all channels separately and sum them up to186

produce the final saliency estimation. Here we choose the opponent color space whose channels187

have been proved to be independent [49]. Given an image in the RGB space, it can be transformed188

to Weijer’s [49] opponent color space by189

o1 =
βR − αG√
α2 + β2

o2 =
αγR + βγG − (α2 + β2)B√

(α2 + β2 + γ2)(α2 + β2)

o3 =
αR + βG + γB√
α2 + β2 + γ2

, (5)

where o1, o2 and o3 are the three independent channels, R, G, and B are the red, green, and190

blue components, respectively, and (α, β, γ) denotes the illuminant which generally takes a value191

(1, 1, 1).192

As the sizes of objects in an image are arbitrary, we employ the multiscale framework to handle193

this issue. For simplicity, the sizes of the local and surrounding regions are fixed while the image194

is resized to several levels of scales with the pyramid technique. According to the multiscale195

theory, a Gaussian pyramid with L scale levels is created. On each level, the saliency is computed196

according to the resized image. As shown in Fig. 3, images (c) to (g) are the saliency maps on five197

scales of image (a). With the reduction of size, the fire extinguisher is pop-out as a whole. The198

saliency map of each level is adjusted to the original size for fusion which is discussed later this199

subsection.200

The final saliency map is constructed by combining the scalar saliency maps under all channels201

and scales. As we focus on bottom-up visual saliency estimation, no prior information is available.202

So, all channels and scales are treated equally in the fusion. Let Ĥlc(x) denotes the scalar saliency203

map for channel c on the lth scale level, the visual saliency map is constructed with204

S(x) =
L∑

l=1

C∑
c=1

wlcĤlc(x), (6)
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(a) (b)

(c) (d) (e) (f) (g)

Figure 3: Multiscale processing for saliency estimation. (a) Original image. (b) The overall

saliency map. (c)-(g) Intermediate saliency maps for each scale.
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where L is the number of pyramid levels, C is the number of image channels, and wlc is the205

normalizing coefficients for each channel and scale. In this paper, we set wlc = 1/maxx Ĥlc(x) so206

that the normalized scalar saliency maps wlcĤlc(x) are with values in the range from 0 to 1.207

3. Experiments208

In this section, experiments are demonstrated to evaluate the performance of the proposed re-209

dundancy reduction based bottom-up visual saliency estimation model on general images. Firstly,210

we illustrate the surpass performance of the proposed model over the simple entropy model. Then,211

we compare the proposed model with the classical Itti et al.’s IT model [13] and three state-of-212

the-art models (i.e., the AIM model [39], Judd et al.’s LP model [18], and Cheng et al.’s HC213

model [27]) on three public databases (i.e., DB1 provided by Bruce and Tsotsos [50], DB2 by214

Achanta et al. [36], and DB3 by Judd et al. [18]). The implementation codes of the four com-215

parisonal models are available on the authors’ homepages (IT 1, AIM 2, LP 3, and HC 4). Finally,216

some concept images are chosen to illustrate the effectiveness of the proposed bottom-up model217

with the pure effect of low level factors.218

In the proposed model, the performance varies according to several parameters. In all experi-219

ments given in this section, we use a same set of parameters. The local regions Ω are 7× 7 blocks,220

the surrounding regions R are 21 × 21 rectangles, and the decay factor σx is set to 20. The weight-221

ing function ϕ(·) uses a Gaussian kernel with a fixed variance 7. The number of pyramid levels222

is given by L = 1 + ⌊log2
min{H,W}

21 ⌋ where H and W are the height and width of the input image,223

respectively.224

3.1. Redundancy Reduction225

As we stated, pixels provide information jointly, and redundancy reduction is the most im-226

portant issue in bottom-up saliency estimation. Here we show the effectiveness of the proposed227

1http://www.saliencytoolbox.net/
2http://www-sop.inria.fr/members/Neil.Bruce/#SOURCECODE
3http://people.csail.mit.edu/tjudd/WherePeopleLook/index.html
4http://cg.cs.tsinghua.edu.cn/people/ cmm/Saliency/Index.htm
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(a) (b) (c)

Figure 4: The effectiveness of the proposed model with spatial redundancy reduction. (a) The

original image. (b) The entropy map without redundancy reduction. (c) The proposed saliency

map with redundancy reduction.

saliency estimation approach on spatial redundancy reduction for images. We build saliency maps228

for some simple grayscale images with conceptually salient objects based on the general entropy229

with redundancy and the proposed procedure, respectively. As depicted by Fig. 4, (a) is the origi-230

nal grayscale image, (b) is the entropy map with redundancy, and (c) is the proposed saliency map231

with redundancy reduction. According to the HVS, the background parts in Fig. 4 (a), such as the232

road, the grassland, and the bush, provide little information. In the entropy map Fig. 4 (b), the233

response is very sensitive to the small changes of intensity in these background which contradicts234

that of the HVS. With the proposed approach, the response is insensitive to such changes and the235

object regions are effectively highlighted, as shown by Fig. 4 (c).236

In the meanwhile, the proposed approach is very robust to noise, as shown by Fig. 5. The237

original image (a) contains a cucurbit polluted by heavy noise, however the shape of the cucurbit238

can be deduced out by human perception easily while challenging for machines. As given in239

Fig. 5 (b), the entropy map without redundancy reduction is very similar to an image of random240

noise, which means this model completely fails to detect the salient cucurbit. With redundancy241

reduction, the proposed model successfully locates the salient parts of the image, as shown by242

Fig. 5 (c).243
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(a) (b) (c)

Figure 5: The robustness of proposed model with spatial redundancy reduction. (a) The original

image with heavy noise. (b) The entropy map without redundancy reduction. (c) The proposed

saliency map with redundancy reduction.

3.2. Saliency Estimation on General Images244

We apply the proposed model on three public databases, DB1 [50], DB2 [36], and DB3 [18].245

Then we compare the proposed model with the classical IT [13] and three state-of-the-art mod-246

els (i.e., AIM [39], LP [18], and HC [27]). To make a fair comparison among the four bottom-up247

based computational models (except LP, since it is a bottom-up and top-down combining model,248

and all information channels are combined with learning weights), we equally add up all informa-249

tion channels and no special combination procedure is adopted.250

3.2.1. Saliency Objects Detection251

Some results of saliency estimation on DB1 [50] are illustrated in Fig. 6. In this figure, the252

rows are the original images, the ground truth images (eye fixation density maps), the saliency253

maps produced by IT [13], AIM [39], HC [27], and the proposed model, respectively, from top to254

bottom.255

As shown in the first original image in Fig. 6, this scene is with one salient object and simple256

background. All these tested approaches produce very good saliency maps that accurately high-257

light the doorknob and are highly coincided with the corresponding eye fixation density map. The258

backgrounds of the second and third original images are much complex, as they are composed of259

14



Figure 6: Results of saliency estimation on natural images. From the top to the bottom rows,

they are the original images, the ground truth, the saliency maps produced by IT [13], AIM [39],

HC [27], and the proposed model, respectively.
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several regions, such as grass, bush, wall and building. It is easy for the HVS to find out the salient260

objects in the two images since all of these backgrounds are with self-similar textures and are less261

informative than the saliency objects. While it is challenging for the computational models. As262

can be seen, the IT, AIM and HC models are seriously disturbed by the complex backgrounds and263

highlight some background regions. Since the background regions of the two images are with self-264

similar textures, according to the analysis in Section 2, these regions are very redundant and each265

pixel in them provides very little information. With redundancy reduction, the proposed model266

effectively estimates the saliency of the two images and returns saliency maps which are highly267

identical to the eye fixation density maps.268

Furthermore, the last two original images contain multiple saliency objects. Since the back-269

ground of the fourth image is very simple, all of the models can accurately highlight the multiple270

saliency regions. However, the content of the last original image is very complex, which consists271

of people, road sign, cars, building, trees and grass. From the eye fixation density map we can272

see that the human attention is mainly focused on the people, the road sign and the cars. The IT273

model is totally failed in this image, which highlights most of the place especially the trees located274

at the right side. The AIM model plays no better than the IT model, which also highlights almost275

all of the image. The HC model mainly highlights the trees located at the right side which is not276

salient. Since the trees, the grass and the ground have highly self-similar structures, the proposed277

model can effectively filter out these backgrounds and accurately highlight the child, the car and278

the road sign. The computational result on the last original image from the proposed model is279

highly coincided with the eye fixation density map.280

Therefore, with the non-local self-similar procedure, the redundancy from the image can be281

effectively removed. The proposed model can accurately find out saliency objects from both simple282

and complex backgrounds.283

3.2.2. Overall Performance284

In order to make a comprehensive analysis, we verify the proposed model on three publicly285

available databases. These databases consist of a variety of indoor and outdoor scenes. The286

characteristics of the three databases are summarized in Table 1.287
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Table 1: Three publicly available databases for saliency estimation

Character DB1 [39] DB2 [36] DB3 [18]

Image Number 120 1000 1003

Data Achieve Eye Track Human Marked Eye Track

Ground Truth Gray Map Binary Mask Gray Map
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Figure 7: The ROC curves of performance for these saliency models on the three public databases,

(a) DB1 [39], (b) DB2 [36], and (c) DB3 [18].

We compare the proposed model with four saliency estimation models and adopt the receiver288

operating characteristic (ROC) metric to assess their performances. The ROC metric measures the289

area under the ROC curve [18]. To calculate this measurement, the saliency map is treated as a290

binary classifier, where a pixel with a greater saliency value than a threshold is classified as fixation291

and the rest of the pixels as nonfixated pixels. By varying the threshold, the ROC curve is acquired.292

The larger the area under the curve is, the better the saliency estimation method performs.293

The ROC curves of these saliency models on the three public databases are shown in Fig. 7,294

and their corresponding ROC areas (A) are listed in Table 2. As can be seen, the proposed295

model (with A=0.876) performs better than the other three bottom-up based computational mod-296

els (IT with A=0.713, AIM with A=0.823, and HC with A=0.767) on DB1. On DB2, as shown297

in Fig. 7 (b), the proposed model (with A=0.903) outperforms IT model (with A=0.814) and298

AIM model (with A=0.840), and approximates to HC (with A=0.919, the state-of-the-art per-299

formance on this database). And on DB3, the proposed model (with A=0.874) also outperforms300
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Table 2: The ROC areas of the saliency models on the three public databases

Algorithm DB1 [39] DB2 [36] DB3 [18]

IT [13] 0.713 0.814 0.714

AIM [39] 0.823 0.840 0.780

HC [27] 0.767 0.919 0.600

LP [18] – – 0.890

Proposed 0.876 0.903 0.874

the three bottom-up based computational models (IT withA=0.714, AIM withA=0.780, and HC301

with A=0.600). In LP, a large sets of low-level features (such as intensity, orientation and color),302

mid-level features (such as horizon) and high-level features (such as people, face and car) are ex-303

tracted and combined with a top-down learning procedure [18]. As a result, LP returns highly304

consistent saliency maps with the ground truth (with A=0.890). Though the proposed model is305

purely bottom-up based, its performance on DB3 is approximate to LP. In summary, the proposed306

model is comparable with the state-of-the-art models and is highly consistent with the subjective307

visual attention.308

3.3. Visual Saliency of Concept Images309

To further validate the effectiveness of the proposed model, we demonstrate our procedure on310

some concept images, whose saliency regions are merely determined by low level features.311

Fig. 8 shows three concept images with salience objects due to single factor. The left column312

shows an image with some colored points, and they are differ in intensity. The light point is unique313

and informative. While the other points are homogeneous, they are much more redundant than the314

lighted one. Therefore, the lighted colored point is with the highest saliency on the estimated map.315

The middle column shows salience objects under different shapes. Since the sign “-” is distinct316

among signs “+”, the sign “-” is less redundant than that “+” in this image, and this is also well317

located in its corresponding saliency map. The right column shows a salient case caused by the318

change of object orientation. There are three orientations of the objects, two orientations are with319

multiple objects, and the third orientation is with a single object. As the unique object contains320
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Figure 8: Visual saliency estimation on single factor. From left to right, the factors considered are

color, shape, and orientation, respectively. The top row is the original images and the bottom row

is their corresponding saliency maps.

much information, it is the most salient as shown by its saliency map. Other objects are with nearly321

same saliency, that is because the first two orientations are with 6 objects.322

This experiment (Fig. 8) indicates that the proposed algorithm is adaptive to the saliency caused323

by different features. Since our approach does NOT have a special feature extraction step, the324

adaptive capability originates from our redundancy reduction based image information metric.325

Besides these decoupled factor cases, we further test our approach with coupled factors. As326

Fig. 9 shows, the objects are with two colors and two orientations, and these coupled factors affect327

the saliency of the image. In addition, in the original image, ignore the color, the two orientations328

have the same number of objects. The saliency map performs well, in which the green object is329

with the highest saliency, following are the red objects with the orientation same to the green one,330

and the lowest ones are other red objects. The output is in accord with the logic that multiple331
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Figure 9: Visual saliency estimation with two independent factors, which are color and orientation.

The left is the original image, and the right is saliency maps.

instances with same configuration are redundant, and they provide little additional information332

than only one instance.333

Fig. 10 shows a complex case whose saliency is affected by some coupled factors. It is chal-334

lenging for most existing bottom-up saliency models. Objects in the original images are with335

different color, size, orientation, and even an mirrored object. Applying the proposed approach,336

all these factors are successfully detected. As the saliency map shows, the most salient object is337

the one with different orientation, and the objects with saliency on size, color, and mirrored, also338

pop out. Though the orange object is distinct in color, this one has the same shape to most of the339

objects in the image. Since these objects provide shape information jointly, the redundant coef-340

ficient is large and each one share a very little part of shape information. Therefore, the orange341

one is not so salient. Meanwhile, the differences in orientation and size bring new information,342

and these objects gain high saliency values. As the mirrored object share the same color and three343

horizontal lines to most objects, it is hard to be detected at the early stage of the visual perception.344

Furthermore, most existing bottom-up saliency algorithms fail in this case.345

4. Conclusions and Future Works346

In this paper, we propose a redundancy reduction based visual saliency estimation model. The347

model focuses on the reduction of spatial structural redundancy in images. Modeling redundancy348

coefficient is the foundation of the proposed model. For images, we introduce the spatial structural349
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Figure 10: Visual saliency estimation on multiple factors, which are color, size, orientation, and

even a mirrored object. (Left) The original image. (Right) The saliency map.

self-similarity as an approximation to the redundancy coefficient for pixels. Following that, we350

obtain the informativeness of pixels for scalar images at a particular scale. Taking color and scale351

spaces into account, we construct the novel model for visual saliency estimation. Experiments352

on the three publicly available databases show that the proposed model is comparable with the353

state-of-the-art saliency models.354

Though the proposed model succeed on the three publicly available databases, it has limitations355

in some aspects and needs to be improved. As the current model applies to still images only,356

we expect to extend it to dynamic sequences which requires a temporal or joint spatial-temporal357

saliency model. The similarity measurement is based on pixel-by-pixel block comparison, we358

plan to find a more versatile function for general textures. As the proposed approach is fit for359

implementation on massively parallel architectures, we expect to build a neural network model to360

explain the topology and working mechanism of the visual cortex.361
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