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Abstract
For various quasi-synchronous (QS) CDMA systems, to reduce or eliminate the multiple
access interference and multipath interference, it is required to design a set of spreading
sequences which are mutually orthogonal within a designed shift zone. In this article, we
demonstrate that a concept of irregular spatial assignment, with flexibility to assign different
number of users to different cells, can be used to provide the maximal number of orthogonal
sequences in any three adjacent cells in networks with a regular tessellation of hexagonal
cells. We first consider p-phase spreading sequences of length pm (thus nonbinary p-valued
sequences) suitable for synchronous (S)-CDMA applications, for p > 3, and give an effi-
cient design method for reaching the maximal cardinality achievable (being pm). A simple
solution for a flexible assignment of our orthogonal sets of spreading sequences to the cells
in hexagonal networks is given. To address QS-CDMA applications as well, an efficient
method to combine these orthogonal sequences with Zadeoff–Chu sequences is proposed
for the purpose of designing sets of zero correlation zone (ZCZ) sequences (within a certain
shift zone) with optimal parameters, thus reaching the Tang–Fan–Matsufuji bound. A similar
design framework, based on the use of some special classes of Boolean functions, is then
employed for the binary case to provide the maximum cardinality of pairwise orthogonal
sequences of length 2m through this irregular spatial assignment. This improves upon the
best known results achieved in Zhang et al. (IEEE Trans Inf Theory 62:3757–3767, 2016),
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which assigns 2m−2 orthogonal sequences (users) per cell, by doubling the number of users
in one third of the network.

Keywords CDMA systems · Orthogonal sequences · Semi-bent functions · Zero correlation
zone

Mathematics Subject Classification 05B20 · 94B99

1 Introduction

Orthogonal sequences are commonly employed in the construction of spreading codes for
synchronous code division multiple access (S-CDMA) satellite systems [2, 8, 14] and QS-
CDMA terrestrial systems [13, 16]. A traditional concept of orthogonal sequences employed
in S-CDMA systems, such as well-knownWalsh sequences, refers to achieving this property
only at the inphase point (called also zero point), but whenever there is a relative shift between
the sequences the result is commonly a loss of orthogonality [10, 12, 18]. To handle this
rather practical scenario of having non-synchronized transmitters and prevent from the loss
of orthogonality, diverse additional properties of orthogonal sequences are found to be useful.
One of the most prominent characterization, capturing these additional properties for QS-
CDMA systems, is so called generalized orthogonality introduced in [4] which essentially
coincides with the concept of zero correlation zone (ZCZ) sequences [5]. This notion simply
reflects the property of preserving orthogonality between the sequences provided that their
relative shift is restricted to a certain width (zone). A rather dated but excellent survey on
many other related concepts and a valuable resource of references in this context is the article
of Fan [3]. For more recent works related to ZCZ sequences and various variants of CDMA
systems (such as QS-CDMA communication in cognitive radio (CR) that uses CR ZCZ
sequences [7]) the reader is referred to e.g. [20, 21] and the references therein.

In general, these communication systems are based on multiple access and their design
aims at achieving resistance to interference while comforting as many users as possible. To
achieve these contradictory design requirements, there are inevitably certain trade-offs but
also someupper bounds related to the cross-correlation value and the cardinality of orthogonal
sequences. The simplest way to construct a set ofmutually orthogonal sequences of length pm

(for a prime p) of maximum cardinality pm is to consider the rows of a pm × pm Hadamard
matrix. Then adding any other sequence to this set, also called a set of Walsh sequences,
would imply a maximum inphase correlation being at least p

m
2 (this would correspond to

addition of a bent sequence). This limitation between the number of orthogonal sequences
(spreading codes) and the maximum inphase correlation can be overcome by careful spatial
assignment. However, to overcome the constraints imposed by the maximum cardinality of
mutually orthogonal sequences, being pm , for practical applications the same sequences can
be reused if their relative distance D in the network is sufficiently large. It is considered
to be enough to take the reuse distance D to be in the interval D ∈ [3, 4] to ensure that
the interference from the reused sequence is sufficiently small. At the same time, to prevent
interference from the users in neighbouring cells, a standard requirement for the assignment
of orthogonal sequences in the network is that the sequences within any cell should be
orthogonal to the sequences in the neighbouring cells.

Themain contribution this article is an efficientmethod to construct a large set of sequences
(much larger than pm), using (vectorial) semi-bent functions [1], where (large) subsets of this

123



Phase orthogonal sequence sets for (QS)CDMA communications 1141

set contain mutually orthogonal sequences. Furthermore, these (orthogonal) subsets can be
partitioned into several families which are mutually orthogonal to each other. More precisely,
for even m and sequences of length pm , we could specify p(m−1)/2+1 orthogonal sequence
sets, each of cardinality pm−1.We also propose practical solutions for allocating these orthog-
onal sets into hexagonal networks so that a lowcorrelation between non-orthogonal sequences
is achieved and at the same time the reuse of these subsets satisfy practical requirements gov-
erned by the so-called reuse distance (achieving D = √

21). These orthogonal sequences
suitable for S-CDMA systems are then combined with the so-called Zadeoff–Chu sequences
to provide several sets of ZCZ sequences with good inter-set correlation properties and opti-
mal parameters in terms of the Tang–Fan–Matsufuji bound.

A similar design framework is used in the construction of orthogonal binary sequences
which can be optimally assigned in the network in the above sense. Our method improves
upon the currently best design technique proposed in [19] (in terms of the number of users per
cell when p = 2), which allows for an efficient assignment of 2m−2 users per cell and achieves
the reuse distance D = 4. Notice that the method in [19] was a significant improvement over
other approaches, more precisely using the technique in [19] the number of users is doubled
compared to [14]. On the other hand, considering any three (mutually) adjacent cells in a
hexagonal network, the approach in [19] is still not optimal because 3 · 2m−2 < 2m , thus
not reaching the absolute upper bound 2m . We show that the technique in [19] can be further
optimized so that one third of the network can accommodate 2m−1 users per cell, implying
that the upper bound on orthogonality is achieved through 2 · 2m−2 + 2m−1 = 2m . There
is however a small trade-off for this improvement which is a decrease of the reuse distance
to D = √

12 compared to D = 4 in [19], though having D = √
12 is still sufficient for

practical applications.
This paper is organized as follows. Some basic notions and definitions related to sequences

are given in Sect. 2. In Sect. 3, two construction methods of p-phase sequences are proposed.
The first method treats traditional orthogonal sequences suitable for S-CDMA applications,
whereas the secondmethod combine these sequenceswith Zadeoff–Chu sequences to provide
several sets of ZCZ sequenceswith good inter-set correlation properties. In Sect. 4,we slightly
modify the method in [19] to accommodate 2m−1 orthogonal sequences per cell in one third
of network, thus achieving an optimal assignment in terms of orthogonality constraints. Some
concluding remarks are given in Sect. 5.

2 Preliminaries

In this section we present some important notions and tools related to sequences and Boolean
functions. Our main tool in the analysis is the Walsh–Hadamard transform.

Let Fpm denote the finite field GF(pm) and F
m
p be its corresponding vector space. The

set of all m-variable functions from F
m
p to Fp is denoted by B(m,p). For simplicity, we take

“+" and
∑

i to denote the addition operations over Fm
p and Fpm respectively. In general, a

function f ∈ B(m,p) can be represented by

f (x1, . . . , xm) =
∑

b∈Fmp
λb(

m∏

i=1

xbii ),
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where λb ∈ Fp, b = (b1, . . . , bm) ∈ F
m
p . For a = (a1, . . . , am) ∈ F

m
p , b = (b1, . . . , bm) ∈

F
m
p , define the inner product of a and b by

a�b =
m∑

i=1

aibi ,

where the sum is calculated mod p. Let Lm = {ω�x | ω ∈ F
m
p }. The Walsh–Hadamard (or

Fourier) transform of f ∈ B(m,p) at point ω, denoted by W f (ω), is defined as

W f (ω) =
∑

x∈Fmp
ξ f (x)−ω�x .

where where “-” denotes addition inverse and ξ = e
2π

√−1
p is a primitive p-th root of unity.

The corresponding sequence of f ∈ B(m,p) is a p-phase sequence of length N = pm

defined as
f =

(
ξ f (0,...,0,0), ξ f (0,...,0,1), . . . , ξ f (p−1,...,p−1,p−1)

)
.

For a linear function l(x) = ω�x ∈ Lm and arbitrary f ∈ B(m,p) we clearly have

W f (ω) = f �l
∗ = f − l,

where l
∗
denotes the element-wise complex conjugation of the sequence l.

In general, for any two complex sequences a = {a(t)}N−1
t=0 and b = {b(t)}N−1

t=0 of
length N , the periodic cross-correlation function at 0 ≤ τ < N is defined as Ra,b(τ ) =
∑N−1

t=0 a(t)b∗(t+τ), where t+τ is taken module N . If a = b, we use Ra in place of Ra,b(τ )

to denote the periodic autocorrelation function. Obviously, W f (ω) = f �l
∗
stands for the

in-phase cross-correlation of the sequences f and l, where l(x) = ω�x .

Definition 1 Let f1, f2 ∈ B(m,p). f1 and f2 are orthogonal, denoted by f1⊥ f2, if the in-phase
correlation between f1 and f2 is zero, i.e.,

f1� f2
∗ =

∑

x∈Fmp
ξ f1(x)− f2(x) = 0.

Let S = { fi | fi ∈ B(m,p), i = 1, 2, . . . , κ}. S is referred to as a orthogonal sequence set of
cardinality κ if the sequences in S are pairwise orthogonal. Let S1 and S2 be two orthogonal
sequence set. S1 and S2 are said to be mutual orthogonal, denoted by S1⊥S2, if f1� f2

∗ = 0
always holds for any f1 ∈ S1 and f2 ∈ S2.

The following simple characterization of orthogonal sequences was deduced in [19].

Lemma 1 [19] Let f1, f2 ∈ B(m,p). Then f1⊥ f2 if and only if W f1− f2(0m) = 0.

For any two different linear functions l, l ′ ∈ Lm , Wl−l ′(0m) = 0, which implies that l⊥l ′
always holds.

Definition 2 f ∈ B(m,p) is called a bent function if |W f (α)| = pm/2, for any α ∈ F
m
p . Also,

f ∈ B(m,p) is called a semi-bent function if |W f (α)| ∈ {0, p�(m+2)/2	} for any α ∈ F
m
p . f is

called a semi-bent sequence if f is a semi-bent function.

Definition 3 Let F : F
m
p 
→ F

t
p with F(x) = ( f1, . . . , ft ), where f1, . . . , ft ∈ B(m,p).

F is called a vectorial semi-bent function if for any c ∈ F
t
p
∗ and α ∈ F

m
p , |W fc (α)| ∈

{0, p�(m+2)/2	}, where fc = c�F . F is called a vectorial bent function if |W fc (α)| = pm/2,
for any c ∈ F

t
p
∗.
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Phase orthogonal sequence sets for (QS)CDMA communications 1143

Let C = {c0, c1, . . . , cM−1} denote a set of sequences of length N of cardinality M . The
set C is said to be an (N , M, Zcz)-ZCZ sequence set of width Zcz if

Rci ,c j (τ ) =
⎧
⎨

⎩

N , i = j, τ = 0
0, i = j, 0 < τ ≤ Z − 1
0, i �= j, 0 ≤ τ ≤ Z − 1,

where Zcz is the maximum positive integer Z achieving this zero correlation.

Lemma 2 [15] (Tang–Fan–Matsufuji bound) Let C be a sequence set of cardinality M,
sequence period N, and ZCZ width Zcz, then

MZcz ≤ N . (1)

A ZCZ sequence set is referred to as optimal if the equality is achieved.

3 p-phase spreading codes for odd prime p

Wefirst notice that in hexagonal networks nomore than three cells can bemutually adjacent to
each other. Therefore, to provide a maximal cardinality (being pm) of orthogonal sequences
of length pm contained in any three adjacent cells (ensuring at the same time a sufficiently
large reuse distance D), we need to design a set of much larger cardinality than pm and to
distribute these sequences over the network so that the optimality is achieved in the above
sense. For this purpose,we use in the background vectorial bent functions overFm

p fromwhich
suitable vectorial semi-bent functions are derived. This way, we design pu+1 sequence sets
(where u = (m − 1)/2), each of cardinality pm−1, which are later allocated to different
cells with respect to their orthogonality relation. Clearly, the total number of the designed
sequences equals to pu+1 pm−1 = pu+m which is much larger than pm and this is the main
reason that we can achieve an optimal assignment of these sequences in hexagonal networks.

Construction 1 Let m ≥ 3 be odd and x ∈ F
m−1
p . Let G : Fm−1

p → F
(m−1)/2
p defined by

G(x) = (g1(x), g2(x), . . . , gu(x)),

be a vectorial bent function, where u = (m − 1)/2. For i = 1, . . . , u and y ∈ Fp, define

fi (y, x) = i · y (mod p) + gi (x),

where “ ·” denotes the multiplication in Fp. Let now F : Fm
p → F

u
p be defined by

F(y, x) = ( f1, . . . , fu).

For any c = (c1, . . . , cu) ∈ F
u
p, let fc(y, x) = c�F(y, x) = c1 f1 + · · · + cu fu, and for

β ∈ Fp

Lβ = {β�y + α�x | α ∈ F
m−1
p }.

We construct pu+1 sequence sets H fc
β (for different c ∈ F

u
p and β ∈ Fp), as follows:

H fc
β = { fc − l | l ∈ Lβ}, (2)

where �H fc
β = pm−1. Then, denoting ic = ∑u

i=1 ci · i (mod p), we have

(i) All the sequences in H fc
β are mutually orthogonal, for any fixed β ∈ Fp and c ∈ F

u
p;
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(ii) For c, c′ ∈ F
u
p and β, β ′ ∈ Fp, H

fc
β ⊥H

fc′
β ′ if and only if β ′ − β �≡ ic − ic′ (mod p);

(iii) Let s ∈ H fc
β and s′ ∈ H

fc′
β ′ with0 �= β ′−β ≡ ic−ic′ (mod p). Then, |s�s′∗| = p(m+1)/2.

Proof (i) Let fc − l, fc − l ′ ∈ H fc
β , where l = β�y + α�x and l ′ = β�y + α′�x . For any

α �= α′, we have

fc − l� fc − l ′∗

=
∑

(y,x)∈Fmp
ξ fc(y,x)−β·y−α·xξ− fc(y,x)+β�y+α′�x

=
∑

(y,x)∈Fmp
ξ (α′−α)�x

= 0.

(ii) For any s = fc − β�y − α�x ∈ H fc
β and s′ = fc′ − β ′�y − α′�x ∈ H

fc′
β ′ , the in-phase

correlation between s and s′ can be written as

s�s′∗ =
∑

(y,x)∈Fmp
ξ fc(y,x)−β·y−α�xξ− fc′ (y,x)+β ′·y+α′�x

=
∑

(y,x)∈Fmp
ξ fc(y,x)− fc′ (y,x)+(β ′−β)·y+(α′−α)�x

=
∑

y∈Fp

ξ ((ic−ic′ )−(β ′−β))·y × W(gc−gc′ )(α
′ − α).

Note that for different sequence sets H fc
β and H

fc′
β ′ , we always have β �= β ′ or fc �= fc′ .

Furthermore, fc = fc′ ⇔ gc = gc′ ⇔ ic = ic′ . So, if ic = ic′ then necessarily β ′ �= β.
Thus,

H fc
β ⊥H

fc′
β ′ ⇔ s�s′∗ = 0

⇔
∑

y∈Fp

ξ ((ic−ic′ )−(β ′−β))·y = 0

⇔ β ′ − β �≡ ic − ic′ (mod p),

which proves the statement.
(iii) When 0 �= β ′ − β ≡ ic − ic′ (mod p), we have

|W(gc−gc′ )(α
′ − α)| = p(m−1)/2

and ∑

y∈Fp

ξ ((ic−ic′ )−(β ′−β))·y = p,

which implies |s�s′∗| = p(m+1)/2.

3.1 Allocating the sequence sets Hfc
ˇ

In this section we address the problem of allocations the sets of orthogonal sequences H fc
β

in a network of regular hexagon cells with respect to the basic assignment rules mentioned
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Phase orthogonal sequence sets for (QS)CDMA communications 1145

Fig. 1 An assignment of the sets H fc
β in regular hexagonal network for p = 5, m = 5

earlier. The flexibility of assignment is based on a simple partition of the underlying prime
field.

Let N1, N2 and N3 be three positive integers such that N1 + N2 + N3 = p. Let I =
{i1, . . . , iN1}, J = { j1, . . . , jN2}, and W = {w1, . . . , wN3} be any three disjoint sets such
that

I ∪ J ∪ W = Fp.

For fixed c ∈ F
u
p and the corresponding function fc(y, x) = c�F(y, x), where F is defined

in Construction 1, let

T c
I =

⋃

β∈I
H fc

β , T c
J =

⋃

β∈J

H fc
β , T c

W =
⋃

β∈W
H fc

β . (3)

Then, T c
I ,T

c
J , T

c
W are mutually orthogonal sequence sets with cardinality N1 pm−1, N2 pm−1

and N3 pm−1, respectively. Using the properties of Construction 1, namely the orthogonality
relation in (i i), we can determine whether two sequence sets T c

I and T c′
I ′ are orthogonal,

where I , I ′ ⊂ Fp . If these sets are orthogonal to each other, then they can be merged into a
set of cardinality which is twice as large compared to the constituent sets. This is an efficient
way to increase the size of certain cells in a regular hexagonal network and to achieve the
optimality as previously discussed.

To illustrate the assignment of the orthogonal sets in Construction 1, we give some brief
details of the design procedure for a particular case when p = 5, m = 5, see Fig. 1.
In this case, we first construct a vectorial bent function G : F

4
5 → F

2
5, represented as

G(x) = (g1(x), g2(x)), which can for instance be taken from the class of vectorialMariaona-
McFarland bent functions.

Then, for any c = (c1, c2) ∈ F
2
5, we define fc = (c1 + 2c2)y + gc(x) along with its

associated sequence f c. Using the orthogonality relation given in Construction 1 by item
(i i), the assignment scheme of the sets T c

I ,T
c
J , T

c
W is given as in Fig. 1. The reuse distance

is
√
21 and is computed as D = √

i2 + j2 + i j (thus D = √
21 is obtained for i = 4 and

j = 1), where the integers 0 ≤ i, j ≤ √
3 · 2k determine the distance between the same cells

in two-dimensional vector space.
The assignment given in Fig. 1 is obviously optimal in the sense of packing, thus any tree

neighbouring cells comprise 5m mutually orthogonal sequences which is the largest amount
possible.
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Remark 1 Note that u = (m−1)/2, and the number of the constructed sequence sets is pu+1,
thus different m may yield the same u. The reuse distance D depends on u and its value is
governed by the request that all the constructed sequence sets can be easily allocated to the
network of hexagonal cells (respecting the basic assignment rules). This also means, that for

sufficiently large p, the condition that β ′ − β �≡ ic − ic′ (mod p) (i.e., H fc
β ⊥ H

fc′
β ′ ) can

be easily satisfied. This way, one preserves the same reuse distance D = √
21 though in the

special case p = 3 this reuse distance is slightly reduced (but still practical). In general, the
reuse distance D gets larger when p increases.

The above assignment can can be generalized to deal with arbitrary prime p by splitting
Fp into three disjoint subsets I , J , W , so that �I + �J + �W = p. Let m = 7 so that u = 3
in Construction 1. Then, for any c = (c1, c2, c3) ∈ F

3
p and for any fixed e ∈ Fp , we define

S(e) = {c ∈ F
3
p | c1 + 2c2 + 3c3 = e (mod p)}.

For instance, if p = 5 one can easily verify that �S(e) = 25 for any e ∈ F5.
Then assigning ic = c1 +2c2 +3c3 (mod p) we take ic = 0, and consider c ∈ S(0). The

following orthogonal sets of sequences are then assigned into the network (see Fig. 2):

T c
I , c ∈ S(0) Marked by red color in Fig. 2

T c
J , c ∈ S(0) Marked by yellow color in Fig. 2

T c
W , c ∈ S(0) Marked by green color in Fig. 2

In general, the cardinality of T c
I ,T

c
J , T

c
W are �I · pm−1, �J · pm−1 and �W · pm−1, respec-

tively. In the particular case when p = 5 and m = 7, there are 3 × 52 = 75 (in general
the number is 3 × pu−1) sets of orthogonal sequences T c

I , T c
J , T c

W when c goes through
S(0), which are not necessarily mutually orthogonal sets. To ensure mutual orthogonality
between the sets so that T c

S⊥T c′
S′ , where S, S′ ∈ {I , J ,W }, it is sufficient that S �= S′ and

that c, c′ ∈ S(0). This is an easy consequence of Eq. (3) and the orthogonality condition (i i)
in Construction 1. Therefore, the adjacent cells are in different colors (thus having different
indices taken from the set {I , J ,W }). Out of these 75 different orthogonal sets of sequences,
we employ 12 × 6 = 72 sets corresponding to 12 rows and 6 column in Fig. 2. The reuse
distance is obviously D = √

62 + 32 + 6 · 3 = 3
√
7, see also Fig. 2.

In general, for any p, there are 3 · pu−1 orthogonal sets (T c
I , T

c
J , T

c
W , c ∈ S(e), e ∈ Fp

fixed) which can be easily assigned to a network of hexagonal cells using the above approach.

3.2 Sequences for QS-CDMA systems

The orthogonal sequence sets H fc
β , c ∈ F

u
p , β ∈ Fp , are suitable for applications in S-CDMA

satellite systems. However, to design spreading codes forQS-CDMAsystemswemust ensure
that the ZCZproperty of certainwidth is also embedded in design. Inwhat follows,we employ
the sets H fc

β defined by (2) and combine these with Zadoff-Chu sequences to construct
multiple ZCZ sequence sets with optimal parameters. The following design approach is
relevant in our context.

Lemma 3 [11] A generalized chirp-like (GCL) sequence {c(t)} of length N is defined as

c(t) = a(t)b(t mod v), t = 0, 1, . . . , N − 1

where N, u, v are positive integer with N = uv, the term b(t mod v) is a “modulation”

sequence of v arbitrary complex numbers (for instance b(t) = e
t2π

√−1
v ), and {a(t)} is a
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Fig. 2 An assignment of the sets

H fc
β in regular hexagonal

network for p = 5, m = 7

Zadoff-Chu sequence defined as

a(t) = ξ
t(t+(N mod 2))/2+qt
N , t = 0, 1, . . . , N − 1, (4)

where ξN = e−2π ir/N , gcd(r , N ) = 1 and q is any integer. Then, any two GCL sequences
that use the same {a(t)} but different {bx (t)} and {by(t)} have a ZCZ of width u − 1.

A set of GCL-ZCZ sequences can be generated by selecting {b(t)} from the set of Hadamard
sequences [11]. Instead of using an orthogonal (Hadamard)matrix as in [11], wewill consider
a set of correlation constrained Hadamard matrices. More precisely, for a set H fc

β defined as

in (2) we denote H fc = ∪β∈Fp H
fc

β , for any c ∈ F
u
p . Then, since �H fc = pm , we associate to

each H fc a Hadamard matrix of order pm × pm (called correlation constrained), and denote
its j-th row by h fc

j .

Theorem 1 Let a(t) be a Zadeoff–Chu sequence of length N defined by (4), where N = dpm

and d > 1. For any c ∈ F
u
p, define the set C

fc of cardinality pm as:

C fc = {c(t) �= a(t)h fc
j (t mod pm), t = 0, 1, . . . , N − 1} j=1,...,pm ,

where h fc
j ∈ H fc is defined as above. Then,

(i) For any c(t) ∈ C fc and c′(t) ∈ C fc′ , with c �= c′, we have |Rc,c′(0)| ∈ {0, dp(m+1)/2}.
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1148 W. Zhang et al.

(ii) If H fc⊥H fc′ , then the sequences c(t) ∈ C fc and c′(t) ∈ C fc′ , c �= c′, have zero
correlation zone d.

(iii) Each C fc , c ∈ F
u
p, is an (N , pm, d)-ZCZ sequence set satisfying the bound of Tang–

Fan–Matsufuji with equality.

Proof For h fc
j ∈ H fc and h

fc′
j ∈ H fc′ , let

c(t) = a(t)h fc
j (t mod pm); c′(t) = a(t)h

fc′
j ′ (t mod pm).

The cross-correlation between c(t) and c′(t) can be written as:

Rc,c′(τ ) =
N−1∑

t=0

c(t)c′(t + τ)∗

=
N−1∑

t=0

a(t)h fc
j (t mod pm)a(t + τ)∗h fc′ ∗

j ′ ((t + τ) mod pm).

By (4), we have a(t)a(t + τ)∗ = e(τ )ξ−tτ
N , where e(τ ) = ξ

− 1
2 τ 2− 1

2 τ(N mod 2)−qτ

N . Let
t = t1 pm + t2, where 0 ≤ t1 < d and 0 ≤ t2 < pm . We obtain

Rc,c′(τ ) = e(τ )

N−1∑

t=0

ξ−tτ
N h fc

j (t mod pm)h
fc′ ∗
j ′ ((t + τ) mod pm)

= e(τ )

d−1∑

t1=0

pm−1∑

t2=0

ξ
−(t1 pm+t2)τ
N h fc

j (t2 mod pm)h
fc′ ∗
j ′ ((t2 + τ) mod pm)

= e(τ )

d−1∑

t1=0

ξ
−t1τ
d

pm−1∑

t2=0

ξ
−t2τ
N h fc

j (t2 mod pm)h
fc′ ∗
j ′ ((t2 + τ) mod pm).

It can be easily verified that
∑d−1

t1=0 ξ
−t1τ
d = 0, if τ is not a multiple of d . If c = c′, we have

pm−1∑

t2=0

h fc
j (t2 mod pm)h

fc′ ∗
j ′ ((t2 + τ) mod pm) = 0,

for τ = 0. If c �= c′,

Rc,c′(0) = d ×
pm−1∑

t2=0

h fc
j (t2)h

fc′ ∗
j ′ (t2). (5)

Let h fc
j = fc − β�y − α�x , h

fc′
j ′ = fc′ − β ′�y − α′�x . Then

pm−1∑

t2=0

h fc
j (t2)h

fc′ ∗
j ′ (t2)

= fc − β�y − α�x� fc′ − β ′�y − α′�x∗

= fc − fc′ − (β − β ′)�y − (α − α′)�x
= W fc− fc′ (β − β ′, α − α′)
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Thus, for an element (β − β ′, α − α′) we have

W fc− fc′ (α) =
pm−1∑

t2=0

h fc
j (t2)h

fc′ ∗
j ′ (t2).

Note that fc − fc′ is a semi-bent function and consequently |W fc− fc′ (β − β ′, α − α′)| takes
values in {0, p(m+1)/2} which gives

|c(t)�c′(t)∗| = |Rc,c′(0)| = d|W fc− fc′ (β − β ′, α − α′)
= dp(m+1)/2.

This proves (i).

(i i) Note that Rc,c′(τ ) = 0 for 0 < |τ | < d . When H fc⊥H fc′ , we have h fc
j ⊥h

fc′
j . By (5),

Rc,c′(0) = 0. Thus, Rc,c′(τ ) = 0 for |τ | < d .
(i i i) By (1), and noticing �C fc = �H fc = pm , the statement follows trivially due to the
relation N = dpm .

Remark 2 A convenient assignment of ZCZ sets to a network of hexagonal cells is as follows.

• Let S = {C fc | c ∈ F
u
p}. Obviously, �S = pu .

• Each C fc can be divided into three parts:

Cc
I = {a(t)h fc

j (t mod pm) | h fc
j ∈ T c

I }
Cc

J = {a(t)h fc
j (t mod pm)| h fc

j ∈ T c
J }

Cc
W = {a(t)h fc

j (t mod pm)| h fc
j ∈ T c

W }
The assignment for QS-CDMA systems is then obtained by substituting T c

I , T
c
J , T

c
W in

Figs. 1 and 2 by Cc
I , C

c
J , C

c
W , respectively.

3.2.1 A comparison to other design methods

In Table 1, we compare the most relevant parameters for various design methods. Notice
that the choice of our main parameters d and m is governed by the sequence length being
N = dpm = uv, where the parameters u and v are used in the definition of a GCL sequence
by means of Lemma 3. Notice that in a recent article [6] the parameter k can be taken in
the range 1 ≤ k < m. This approach appears to be the best known method in terms of the
trade-offs induced on the main parameters. More precisely, when k = 1 the cross-correlation
between the sequences becomes optimal in the sense of the Welch bound, thus the maximum
correlation is approximately

√
N . On the other hand, it is not clear whether these sequences

have a certain ZCZ width (which is at most one since in this case N = M = pm − 1 and we
have MZCZ ≤ N ).

4 Construction of binary spreading codes

The construction 1 is not suitable for constructing orthogonal binary sequences. We will
present a method to construct orthogonal binary sequences for m = 2k + 2. In this section,
we give a construction to demonstrate that a portion of cells, corresponding to one third of
the cells assigned to a network, can have increased number of users namely 2m−1 instead of
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2m−2 as in the original construction given in [19]. Thus, we keep the same level of cross-
correlation 2m/2+1 between non-orthogonal sequences as in [19] while at the same doubling
the number of users in one third of the network.

Construction 2 Let m, and k be two positive integers with m = 2k + 2 and k ≥ 2. Let γ be a
primitive element of F2k , and {1, γ, . . . , γ k−1} be a polynomial basis of F2k over F2. Define
the isomorphism π: F2k 
→ F

k
2 by

π(b1 + b2γ + · · · + bkγ
k−1) = (b1, b2, . . . , bk).

For i = 1, . . . , k, let φi : Fk
2 → F

k
2 be a bijective mapping defined by

φi (y) =
{
0k, y = 0k
π(γ [y]+i ), y ∈ F

k
2
∗

where [y] denotes the integer representation of y. Let y, x ∈ F
k
2, z ∈ F

2
2. For i = 1, . . . , k,

define a collection of Boolean functions fi : Fm
2 → F2 by

fi (y, x, z) = (φi (y), 00)�(x, z).

We define a vectorial semi-bent function F : Fm
2 
→ F

k
2 by

F(y, x, z) = ( f1, . . . , fk).

For any c ∈ F
k
2, let fc(y, x, z) = c�F(y, x, z) = c1 f1 + . . . + ck fk . For any fixed δ ∈ F

2
2,

we define
Lδ = {(β, α, δ)�(y, x, z) | β, α ∈ F

k
2)}.

Let T0 = L00 ∪ L11, T1 = L01 and T2 = L10. We construct 3 · 2k disjoint sets of sequences
as follows:

Sc,i = { fc + l | l ∈ Ti }, for c ∈ F
k
2, i ∈ {0, 1, 2}. (6)

Theorem 2 Let m = 2k+2. For c ∈ F
k
2, i ∈ {0, 1, 2}, let the sets of sequences Sc,i be defined

by (6) as in Construction 2. Then, we always have

(i) For c ∈ F
k
2, �Sc,0 = 2m−1, �Sc,1 = �Sc,2 = 2m−2;

(ii) For c ∈ F
k
2
∗
, i ∈ {0, 1, 2}, Sc,i is a set of orthogonal semi-bent sequences;

(iii) For c, c′ ∈ F
k
2, i, i

′ ∈ {0, 1, 2}, Sc,i⊥Sc′,i ′ if and only if i �= i ′.

Proof Note that �Lδ = 22k = 2m−2, which implies that (i) holds.
(ii) For c = (c1, . . . , ck) ∈ F

k
2
∗
and y, x ∈ F

k
2, z ∈ F

2
2, we have

fc(y, x, z) =
k∑

i=1

ci fi (y, x, z) =
k∑

i=1

ci (φi (y), 00)�(x, z)

= π
( k∑

i=1

ciγ
[y]+i

)
�x

= π(γ ic+[y])�x, (7)

where the last equality is due to the fact that there exists a unique 0 ≤ ic ≤ 2k − 2 such that
γ ic = c�(1, . . . , γ k−1) if γ is primitive in F2k . For any (β, α, δ) ∈ F

k
2 × F

k
2 × F

2
2, we have

W fc (β, α, δ) =
∑

(y,x,z)∈Fm2
(−1) fc(y,x,z)+β�y+α�x+δ�z
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Table 2 The operations between
Ti , i = 1, 2, 3

⊕ T0 T1 T2

T0 L00 ∪ L11 L01 ∪ L10 L01 ∪ L10
T1 L01 ∪ L10 L00 L11
T2 L01 ∪ L10 L11 L00

=
∑

z∈F22
(−1)δ�z

∑

y∈Fk2
(−1)β�y

∑

x∈Fk2
(−1)π(γ [y]+ic )�x+α�x .

Note that π is bijective and there exists a unique y ∈ F
s
2 such that π(γ [y]+ic ) = α, which

implies

∑

x∈Fk2
(−1)π(γ [y]+ic )�x+α�x =

{±2k, if π−1(α) = γ [y]+ic

0, otherwise.

Furthermore, for any β, α ∈ F
k
2, we always have

∑

y∈Fk2
(−1)β·y ∑

x∈Fk2
(−1)π(γ [y]+ic )�x+α�x = ±2k .

Noticing that

∑

z∈F22
(−1)δ�z =

{
4, if δ = 0
0, otherwise,

we have that for any c ∈ F
k
2
∗
,

W fc (β, α, δ) =
{
0, if δ �= 0
±2k+2, otherwise.

(8)

By Definition 3, when k = (m − 2)/2, F is a vectorial semi-bent function.
(iii) Let fc + l ∈ Sc,i and fc′ + l ′ ∈ Sc′,i ′ , where l ∈ Ti and l ′ ∈ Ti ′ . To analyze the
orthogonality between fc + l and fc′ + l ′ we consider

h = ( fc + l) + ( fc′ + l ′) = fc+c′ + (l + l ′),

where l + l ′ ∈ Ti ⊕ Ti ′ and T ⊕ T ′ = {t + t ′ | t ∈ T , t ′ ∈ T ′}. The equality fc + fc′ = fc+c′
comes easily from (7) by noting that

fc(y, x, z) + fc′(y, x, z) =
k∑

i=1

(ci + c′
i )φ(y)�x = fc+c′(y, x, z).

By (8), Wh(0m) = 0 if and only if l + l ′ /∈ L00. Thanks to Table 2, L00 ∩ (Ti ⊕ Ti ′) = ∅ if
and only if i �= i ′. This means Sc,i⊥Sc′,i ′ if and only if i �= i ′.

We notice that the fact that fi are semi-bent functions is easily deduced form the fact that
f ′
i (y, x) = φ(y) · x are bent functions when φ is a permutation and therefore fi (y, x, z) =

φ(y) · x can be viewed as concatenation of four identical functions fi (y, x) when z ∈ F
2
2.

The following example illustrates the assignment of orthogonal sets of sequences Sc,i when
m = 8, where Sc,0 corresponds to the cells having larger number of users 2m−1.
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Fig. 3 Assignment of orthogonal
cells for m = 8

Example 1 Let m = 8 so that k = 3. Using Construction 2, we can generate 3 × 23 = 24
disjoint sets of orthogonal semi-bent sequences

Sc,i = { fc + l | l ∈ Ti }, for c ∈ F
3
2, i ∈ {0, 1, 2},

where the sets Sc,0 have 2m−1 = 128 users and the remaining sets have 64 users. The re-use
distance is D = √

21 according to the arrangement given in Fig. 3.

Remark 3 In Fig. 3 the cells containing 2m−1 users are depicted using larger fonts than the
smaller ones. Notice that each large cell is surrounded by 6 small cells, whereas each small
cell has exactly 3 small cells and 3 large cells as its neighbors. This also implies that one
third of the cells in the network are large cells with 2m−1 users.

4.1 Allocation problem for arbitrary evenm

Our design method can be employed for any even m ≥ 6 though an efficient allocation is
considered for m = 8 which resulted in the re-use distance D = √

21. For practical appli-
cations, there are many indications that the re-use distance D = 4 is quite sufficient. The
main problem related to our method is that for m > 8 the number of orthogonal cells Sc,i
becomes larger and therefore the assignment in hexagonal networks is more complicated.
Moreover, the re-use distance of these orthogonal cells becomes unnecessarily large as illus-
trated in Table 3 and the array size to allocate these cells efficiently varies. Recall that the
reuse distance D is computed as D = √

i2 + j2 + i j , as mentioned previously.
To avoid large re-use distances and the problem of efficient packing of orthogonal cells in

hexagonal networks, we suggest the use of method proposed in [19]. The main idea of this
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Table 3 The re-use distance D
and array size for different m m 3 · 2k D2 Array size i j

6 12 12 6 × 2 2 2

8 24 21 6 × 4 4 1

10 48 48 12 × 4 4 4

12 96 93 24 × 4 7 4

14 192 192 24 × 4 8 8

16 384 381 384 × 1 19 1

18 768 768 48 × 16 16 16

approach is to keep an efficient cell assignment specified for a fixed m (in our case m = 8
and the assignment is given in Fig. 3) and for larger m one employs vectorial bent functions
of suitable dimension. The details of this method are given in [19] but for self-completeness
we briefly discuss the main idea. In order to keep the cell assignment given for m = 8 and at
the same time to increase the number of users (which form = 8 equals to 128 and 64 in large
and small cells, respectively) we proceed as follows. To assign sets of orthogonal sequences
to different cells in the network form > 8, we utilize a vectorial bent function H : Fu

2 → F
k
2,

where u ≥ 2k and u is even, as follows.
Let us define G : Fm+u

2 → F
k
2 as a direct sum of F(y, x, z) defined as in Construction 2

(thus F : Fm
2 → F

k
2) and H(v), so that G = F(x, y, z) + H(v). It can be easily verified,

due to the fact that H is vectorial bent, that the linear combinations gc = fc + hc, where
fc = c · F and hc = c ·H , are semi-bent functions for c ∈ F

k
2
∗
. Then, for c ∈ F

k
2, i = 0, 1, 2,

let Sc,i = { fc + l | l ∈ Ti } be constructed by using F as defined in Construction 2, thus
�Sc,0 = 2m−1, �Sc,1 = �Sc,2 = 2m−2. Then, defining S′

c,i = {gc + l | l ∈ T ′
i }, where the

set of linear functions T ′
i = Ti + γ · v for γ ∈ F

u
2, we have �T ′

i = 2u�Ti . It is easy to
verify that the sets S′

c,i and S′
c, j are orthogonal to each other when i �= j , and apparently

�S′
c,0 = 2u+m−1, �S′

c,1 = �S′
c,2 = 2u+m−2.

Thus, the same cell allocation as given in Fig. 3 can be employed for assigning 28+u−1

users to large cells and 28+u−2 many users to small cells, using the codewords of length
28+u for any even u ≥ 6. This way we preserve the original re-use distance D = √

21 and
avoid complicated cell assignments when larger codewords are used. To cover the remaining
even values of m (notice that the above approach provides a general solution for m ≥ 14) it
would be of interest to consider the case m = 6 and the assignment of 3 · 4 = 12 orthogonal
sets in hexagonal network. One such assignment is given in Fig. 4, where the re-use distance
D = √

12. This efficiently resolves the casesm ∈ {6, 10, 12} though giving a slightly smaller
re-use distance D = √

12.

Remark 4 One can show that this particular approach cannot be improved further in terms of
achieving even larger number of users per cell.

5 Conclusions

In this paper, we have provided an efficient design method of constructing multiple sets of
orthogonal sequences for S-CDMA and QS-CDMA applications. Most notably, our design
ensures that the number of orthogonal sequences in any three adjacent cells (referring to
regular hexagonal networks) is equal to pm for the sequences of length pm . This is the
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Fig. 4 Assignment of orthogonal
cells for m = 6

maximal cardinality that can be achieved and therefore our method is optimized and cannot
be improved further in this aspect. To address QS-CDMA applications as well, an efficient
method to combine these orthogonal sequences with Zadeoff–Chu sequences is proposed for
the purpose of designing sets of zero correlation zone (ZCZ) sequences (within a certain shift
zone) with optimal parameters, thus reaching the Tang–Fan–Matsufuji bound. Finally, using
vectorial semi-bent functions, we provide an efficient design of binary orthogonal sequences
of length 2m so that one third of the network contains cells that comprise 2m−1 users whereas
two thirds of the network have cells that accommodate 2m−2 users. This is an improvement
over [19] where 2m−2 users were assigned to each cell in a hexagonal network.
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