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Abstract
Semi-bent functions play an important role in symmetric ciphers and sequence designs. So far,
there are few studies related to the construction of vectorial semi-bent functions even though
lots of work has been done on single-output semi-bent functions. In this paper, three classes of
balanced vectorial semi-bent functions are presented with varying cryptographic properties.
The classes denoted DC and DS are constructed using disjoint codes and disjoint spectra
functions, respectively. The former class has a useful provable property that its component
functions do not admit linear structures. It is shown that the number of output bits of the
constructed n-variable DC and DS vectorial functions can respectively reach (n + 1)/2 and
n/3. In addition, a construction method of semi-bent functions from F

3n
2 → F

n
2 by using

almost bent (AB) functions on Fn
2 is given.

Keywords Boolean functions · Disjoint codes · Disjoint spectra functions · Vectorial
semi-bent functions · Fiestel ciphers

Mathematics Subject Classification 06E30 · 94A60

1 Introduction

Bent functions are one of the most interesting combinatorial objects since they achieve
maximum nonlinearity [24,47]. Since the eighties, they have been extensively studied not
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only for their interesting algebraic properties, but also for their multiple applications in
cryptography, combinational design, and coding theory, see [1,2,5,8,14,27,33,45] and the
references therein. However, bent functions are not balanced and exist only when the number
of variables is even, which makes them somewhat less applicable in the design of symmetric
encryption schemes.

Semi-bent functions were introduced in 1994 by Chee et al. [19]. These functions f :
F
n
2 → F2 are characterized by the property that their Walsh spectrum values belong to the

set {0,±2�n/2�+1}. Due to their almost optimal nonlinearity, semi-bent functions can resist
linear approximation attacks [25,36] and fast correlation attacks [37] (assuming they possess a
suitable resiliency order) when used in symmetric ciphers. Furthermore, semi-bent functions
can be used to construct orthogonal variable spreading factor codes which are suitable for
applications in synchronous CDMA communication systems [31,48,49].

The theory of semi-bent Boolean functions has been intensively studied in the literature.
Even before the notion of semi-bent functions was formally introduced by Chee et al. [19],
these objects had already been studied in 1960s by Gold [26] in sequence designs. In this
direction, from the sequence design point of view, themain contributions are due toNiho [43],
Helleseth [28,29], Boztaş and Kumar [3], Cusick and Dobbertin [21], Kumar and Helleseth
[30], Canteaut et al. [6],Khoo et al. [34], etc. In 1992,Carlet [15] introduced and characterized
a class of functions called partially-bent functions, which can be semi-bent and balanced.
However, all partially bent functions that are semi-bent have 1 or 3 nonzero linear structures,
which is regarded as a drawback from the cryptographic standpoint.Noticing that all quadratic
Boolean functions are bent or partially bent, semi-bent quadraticBoolean functions are always
partially bent. The quadratic case of semi-bent functions has been addressed in [18,35].
Furthermore, the most important contributions on theory and design of semi-bent functions
can be found in [4,7,13,16,20,22,23,38–41,46,52–55].

It is worth noticing that all the above results are about single-output semi-bent functions.
The notion of vectorial semi-bent functions is a natural generalization of single-output semi-
bent functions. Let F :Fn

2 → F
m
2 , with 1 < m ≤ n, be an (n,m) vectorial function defined by

F(x) = (
f1(x), . . . , fm(x)

)
, where fi : Fn

2 → F2 are Boolean mappings for i = 1, . . . ,m.
The algebraic degree of F is defined as the maximum among the algebraic degrees of all
non-zero linear combinations of the coordinate functions fi of F . We call F : Fn

2 → F
m
2 a

vectorial semi-bent function if all non-zero linear combinations of f1, . . . , fm are semi-bent
functions. Furthermore, F is said to be balanced if

∣∣{x ∈ F
n
2 | F(x) = y}∣∣ = 2n−m

for any y ∈ F
m
2 , where |S| is the cardinality of any set S.

However, to the best of our knowledge, there are few results related to the construction of
vectorial semi-bent functions.

• Almost bent (AB) functions, F : Fn
2 → F

n
2, constitute the well-known class of vectorial

semi-bent functions which exists only for odd n [17]. There are several generic classes
of AB functions, mostly stemming from suitable power polynomials F(x) = xd over
the finite field F2n (n is odd) for a suitably chosen exponent d , see e.g. [9,10,44].

• When m < n, more precisely, m ≤ �n/2� + 1, the other class of vectorial semi-bent
functions can be obtained by the Maiorana-McFarland (MM) construction technique.
Johansson and Pasalic [32] constructed the MM class of balanced correlation immune
plateaued functions, which can be vectorial semi-bent functions under certain conditions.
Zhang et al. [49] showed that (n, �n/2� + 1) vectorial semi-bent functions (stemming
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from the MM class) can be used to construct the orthogonal sequence sets suitable for
applications in CDMA systems.

The main motivation of this work is to provide a greater variety of construction methods
of vectorial semi-bent functions which do not necessarily stem from the MM class. In the
first place, such functions can be used in Feistel-like block ciphers for specifying substitution
boxes (S-boxes) as highly nonlinear mappings from F

n
2 → F

m
2 [42] (notice that S-boxes of

Data Encryption Standard (DES) employ different mappings from F
6
2 to F

4
2, though none

of the component functions used in S-boxes of DES is semi-bent), satisfying also other
cryptographic criteria such as low differential uniformity and high algebraic degree. This
approach has been recently employed in the design of certain block ciphers, which are more
flexible with respect to the choice of input/output space dimensions n and m.

In this paper, we present three classes of balanced vectorial semi-bent functions, for odd
n, with varying output space and algebraic degree. More precisely, using a suitable set of
mutually disjoint codes (intersecting only at the all-zero vector), we specify the class DC of
vectorial semi-bent functions (see Construction 1). Compared to the method of Johansson
and Pasalic [32], which employs the concatenation of suitable linear functions on a small
variable space (therefore apparently generating functions inMM), our design employs a set
of disjoint codes in a different manner. Namely, our construction technique implies that the
component functions (non-zero linear combinations of the coordinate functions) are constant
on these k-dimensional subspaces (deprived of the all-zero vector) corresponding to these
disjoint codes. Therefore, our method rather resembles the partial spread construction of bent
functions introduced by Dillon [24]. Thereafter, by employing disjoint spectra functions (see
Definition 1), we propose the second class (namedDS) of vectorial semi-bent functions, see
Construction 2. In this case, the component functions can be viewed as a concatenation of
suitable disjoint spectra functions which in difference to the method in [32] are not linear.
These methods are generic and can provide vectorial semi-bent functions of maximal alge-
braic degree. Furthermore, the members of classDC provably do not possess linear structures
whereas there is no guarantee that vectorial semi-bent functions derived from theMM class
(such as those proposed in [32]) share the same feature.

In Sect. 4, other cryptographic properties of the two classes are investigated. It is shown that
these functions can achieve the maximum algebraic degree and posses quite good differential
properties. An important problem of extending the output space of the proposed (n,m) semi-
bent functions, thus building (n,m + k) semi-bent functions for 1 ≤ k ≤ n − m, is left
open.

Finally, a third method of using the so-called block functions of known AB functions is
presented. This method employs a decomposition of the ambient space Fn

2 as F
n/3
2 × F

n/3
2 ×

F
n/3
2 , for odd n divisible by 3. In this setup, any AB function F : Fn

2 → F
n
2 can be viewed as

F = (F1, F2, F3), where Fi : Fn
2 → F

n/3
2 and each Fi is necessarily a vectorial semi-bent

function.We propose an efficientway of using the knownABpermutations F1 : Fn/3
2 → F

n/3
2

to define vectorial semi-bent functions F : F
n
2 → F

n/3
2 , which have different algebraic

degree compared to F1, see Proposition 2. For instance, using a Gold-like AB permutation
F1(x) = x2

k+1 on F2n/3 , with gcd(k, n/3) = 1, one can define F : F2n → F2n/3 as

F(x, y, z) = xy2
k+1 + yz2

k+1 which is shown to be vectorial semi-bent. This approach
actually leaves an important open problem of specifying suitable block functions F1, F2, F3 :
F
n
2 → F

n/3
2 so that F = (F1, F2, F3) is an AB function, where each Fi is a vectorial

semi-bent function. More precisely, given the possibility of specifying a vectorial semi-bent
function F1 as in Proposition 2, the question (which is intrinsically hard) of defining (using
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for instance suitable modifications of F1, F2 and F3 (thus extendability on a block level) so
that F = (F1, F2, F3) is an AB function, is of great significance.

The rest of the paper is organized as follows. Section 2 provides the necessary notations and
definitions related to vectorial semi-bent functions. Two constructions of balanced vectorial
semi-bent functions are given in Sect. 3. In Sect. 5, we present an efficient technique of
specifying vectorial semi-bent functions from F

n
2 to F

n/3
2 , for odd n divisible by 3, based on

the use of known AB functions on Fn/3
2 . Some concluding remarks are given in Sect. 6.

2 Preliminaries

Let Fn
2 be the cartesian product of n copies of F2, the prime field of characteristic 2. Any

function from F
n
2 to F2 is said to be a Boolean function in n variables. The set of all n-

variable Boolean functions is denoted by Bn . For any x ∈ F
n
2, we write x = (x1, . . . , xn)

where xi ∈ F2. Any Boolean function f ∈ Bn has a unique representation as a multivariate
polynomial over F2, called algebraic normal form (ANF),

f (x) =
∑

I⊆{1,··· ,n}
λI

∏

i∈I
xi , λI ∈ F2.

The algebraic degree of f is the maximal value of |I | such that λI = 1. The truth table of a
Boolean function f ∈ Bn is a (0, 1)-sequence defined by

f = (
f (0, . . . , 0, 0), f (0, . . . , 0, 1), · · · , f (1, . . . , 1, 1)

)
.

The support of f is defined as supp( f ) = {x ∈ F
n
2 | f (x) = 1}. f is said to be balanced if

|supp( f )| = 2n−1 which is equivalent to the condition W f (0n) = 0, where 0n denotes the
zero vector of Fn

2. Any linear function on F
n
2 is denoted by α · x = α1x1 +· · ·+αnxn , where

α = (α1, . . . , αn), x = (x1, . . . , xn) ∈ F
n
2. The Walsh transform of f ∈ Bn at the point α is

an integer valued function over Fn
2 defined by

W f (α) =
∑

x∈Fn2
(−1) f (x)+α·x .

The Walsh spectrum of f ∈ Bn , as a multi-set of values W f (α) when α ∈ F
n
2, is given as

W̃ f = (
W f (0, . . . , 0, 0),W f (0, . . . , 0, 1), . . . ,W f (1, . . . , 1, 1)

)
.

The Walsh support of f ∈ Bn is defined as S f = {ω ∈ F
n
2 | W f (ω) �= 0}.

Definition 1 [51]Aset ofBoolean functions { f1, f2, . . . , fN } ⊂ Bn such that for anyα ∈ F
n
2,

W fi (α) · W f j (α) = 0, 1 ≤ i < j ≤ N

is called a set of disjoint spectra functions of cardinality N .

Lemma 1 An (n,m) vectorial Boolean function F = ( f1, . . . , fm) is balanced if and only
if all nonzero linear combinations of f1, . . . , fm are balanced functions, i.e. Wc·F (0n) = 0
for any c ∈ F

m
2

∗, where Fm
2

∗ = F
m
2 \ {0m}.

The notion of semi-bent functions was introduced by Chee et al. [19], and it can be
naturally extended to vectorial Boolean functions.
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Definition 2 The function F : F
n
2 → F

m
2 is called an (n,m) vectorial semi-bent function

if Wc·F (α) ∈ {0,±2�n/2�+1} for any c ∈ F
m
2

∗ and α ∈ F
n
2. An (n, n) vectorial semi-bent

function is called an almost bent (AB) function.

Definition 3 The autocorrelation function of a Boolean function f ∈ Bn at the point α ∈ F
n
2

is defined by

C f (α) =
∑

x∈Fn2
(−1) f (x)+ f (x+α). (1)

α ∈ F
n
2 is called a linear structure of f if |C f (α)| = 2n .

3 DC andDS class vectorial semi-bent functions

In this section, we present two constructions of balanced (n,m) vectorial semi-bent functions
based on, respectively, a set of disjoint codes and a set of disjoint spectra functions. It is shown
that the number of output bitsm of the functions obtained in Construction 1 and Construction
2 can respectively reach (n + 1)/2 and n/3. Before we describe the two constructions, we
first introduce a construction method of a large set of disjoint codes.

Definition 4 A k-dimensional subspaceC of Fn
2 is called an [n, k] linear code. The dual code

of C is defined as C⊥ = {α ∈ F
n
2 | α · x = 0, for any x ∈ C}.

Definition 5 [32] A set of [n, k] linear codes {C1,C2, . . . ,CN } such that
Ci ∩ C j = {0n}, 1 ≤ i < j ≤ N

is called a set of (n, k) disjoint codes of cardinality N .

In what follows, a construction method of a set of (n, k) disjoint codes with cardinality
2s is described, where 2 ≤ k ≤ n/2.

Proposition 1 [50] Let n = s + k with s ≥ k ≥ 2. Let γ be a primitive element in F2s , and
{γ, γ 2, . . . , γ s} be a basis of F2s . Define a bijection π : F2s �→ F

s
2 by

π(c1γ + c2γ
2 + · · · + csγ

s) = (c1, c2, . . . , cs). (2)

For z ∈ F
s
2, let Gz = (Ik, Mz) be the generator matrix of an (n, k) linear code Cz, where

Mz is a zero matrix of size k × (n − k) if z = 0s , or otherwise

Mz =

⎛

⎜⎜⎜
⎝

π(γ [z])
π(γ [z]+1)

...

π(γ [z]+k−1)

⎞

⎟⎟⎟
⎠

k×s,

where [z] denotes the integer representation of z. Then, {Cz | z ∈ F
s
2} is a set of (n, k) disjoint

codes of cardinality 2s .

Let E be an [n, s] (canonical) linear code defined by
E = {0k} × F

s
2.
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For the disjoint codes Cz in Proposition 1, one can easily verify that

E ∩ Cz = {0n}, for z ∈ F
s
2. (3)

Noticing |E | + ∑
z∈Fs2 |C∗

z | = 2n , where C∗
z = Cz \ {0n}, we then have

( ⋃

z∈Fs2
C∗
z

)
∪ E = F

n
2 . (4)

F
n
2 is now divided up into 2s + 1 disjoint sets: E , C∗

z , z ∈ F
s
2. We remark that the specific

[n, s] linear code E will also play a role in Construction 1.

Example 1 Let n = 5 and k = 2. Let γ be a root of the prime polynomial z3 + z + 1. By (2),
we have π(γ ) = (100), π(γ 2) = (010), π(γ 3) = (001), π(γ 4) = (110), π(γ 5) = (011),
π(γ 6) = (111), π(γ 7) = π(1) = (101). We have

C000 = {00000, 10000, 01000, 11000}, C001 = {00000, 10100, 01010, 11110},
C010 = {00000, 10010, 01001, 11011}, C011 = {00000, 10001, 01110, 11111},
C100 = {00000, 10110, 01011, 11101}, C101 = {00000, 10011, 01111, 11100},
C110 = {00000, 10111, 01101, 11010}, C111 = {00000, 10101, 01100, 11001},
and E = {00000, 00100, 00010, 00001, 00110, 00101, 00011, 00111}.

Then {Cz | z ∈ F
3
2} is a set of (5, 2) disjoint codes. Moreover, (3) and (4) hold, that is

{E, C∗
000, . . . , C∗

111} partitions F5
2.

Remark 1 Notice that when k = s = n/2 this method essentially provides a (well-known
approach of designing) full spread of Fn

2, for even n, as a collection of disjoint (n/2)-
dimensional subspaces of Fn

2 of cardinality 2n/2+1.

Let s = k+1 in Proposition 1, which consequently gives 2k+1 many (n, k) disjoint codes
Cz , z ∈ F

k+1
2 . Note thatC⊥

z andC⊥
z′ are two [n, k+1] linear codes. Now, suppose thatC⊥

z and

C⊥
z′ can be generated by the bases {e1, e2, . . . , ek+1} and {w1, w2, . . . , wk+1}, respectively.

Then e1, e2, . . . , ek+1, w1, w2, . . . , wk+1 must be linearly dependent (since 2k + 2 > n),
which implies

C⊥∗
z ∩ C⊥∗

z′ �= ∅,

for any z �= z′. The following lemma shows a relationship between C⊥
z and C⊥

z′ , which will
be useful in proving the main result of Construction 1.

Lemma 2 Let n = s + k with s = k + 1. Let {Cz | z ∈ F
k+1
2 } be a set of (n, k) disjoint codes

as in Proposition 1. Then, we have |C⊥∗
z ∩ C⊥∗

z′ | = 1 for any z �= z′.

Proof Noticing (Cz + Cz′)⊥ ⊆ C⊥
z and (Cz + Cz′)⊥ ⊆ C⊥

z′ , we have

(Cz + Cz′)
⊥ ⊆ C⊥

z ∩ C⊥
z′ . (5)

On the other hand, for any α ∈ C⊥
z ∩ C⊥

z′ , we have α · x = 0 and α · x ′ = 0, where x ∈ Cz

and x ′ ∈ Cz′ . It then follows that α · (x + x ′) = 0, for any x ∈ Cz and x ′ ∈ Cz′ . This means
α ∈ (Cz + Cz′)⊥. Since α is arbitrary, we obtain

C⊥
z ∩ C⊥

z′ ⊆ (Cz + Cz′)
⊥. (6)

Combining (5) and (6), we have

C⊥
z ∩ C⊥

z′ = (Cz + Cz′)
⊥. (7)
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Since Cz and Cz′ are (n, k) disjoint codes, we obtain

dim(Cz + Cz′) = 2k.

By (7), we have

dim(C⊥
z ∩ C⊥

z′ ) = 1.

This proves |C⊥∗
z ∩ C⊥∗

z′ | = 1. ��

3.1 DC class of vectorial semi-bent functions

The Partial Spread (PS) class of bent functions was introduced in [24] byDillon. The support
of an n-variable bent function in PS is the union of 2n/2−1 or 2n/2−1 + 1 disjoint (n/2)-
dimensional subspaces ofFn

2, whichmeans that the intersection of any two of these subspaces
is {0n}. Obviously, the expression of “disjoint (n/2)-dimensional subspaces" are equivalent
to that of “(n, n/2) disjoint codes”.

However, the regular PS construction technique cannot be applied when n is an odd
number. To provide a method similar to the PS-type construction in general, for odd n, we
face the following problems:

(1) Sincewe cannot get bent functionswhenn is odd, the question iswhetherwe can construct
a class of semi-bent functions through (n, k) disjoint codes?

(2) Can this generalized PS construction be adopted for the purpose of designing vectorial
semi-bent functions? How to guarantee that the constructed vectorial semi-bent functions
are balanced?

We now give a construction method for balanced vectorial semi-bent functions, thus
answering affirmatively the above raised questions. For n = 2k + 1, we first design an
(n, k+1) unbalanced vectorial semi-bent function H , where the support of c · F , c ∈ F

k+1
2

∗
,

is a union of (n, k) disjoint codes of cardinality 2k . Then H is transformed to a balanced
vectorial semi-bent function F by adding a carefully selected linear (n, k + 1) vectorial
function L . We call this class of functions disjoint codes (DC) class of vectorial semi-bent
functions.

Construction 1 (DC class) Let n = s + k with s = k + 1. Let {Cz | z ∈ F
s
2} be a set of (n, k)

disjoint codes constructed as in Proposition 1. Let E = {0k}×F
s
2 and x = (x1, x2, . . . , xn) ∈

F
n
2 . An (n, s) vectorial Boolean function H is defined as

H(x) =
{
z if x ∈ C∗

z , z ∈ F
s
2

0s if x ∈ E .
(8)

For c ∈ F
s
2
∗, let hc = c · H and

Uc = {ω | Whc (ω) = 0, ω ∈ F
n
2}. (9)

For i = 1, . . . , s, assume there exist θi ∈ F
n
2 such that θc = ∑s

i=1 ciθi ∈ Uc for any c ∈ F
s
2
∗,

and define

L(x) = (θ1 · x, θ2 · x, . . . , θs · x).
An (n, s) vectorial Boolean function F is then specified as F(x) = H(x) + L(x).

Theorem 1 Let F(x) be an (n, s) function specified as in Construction 1. Then, F(x) is an
(n, s) balanced vectorial semi-bent function without nonzero linear structures.
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Proof Note that {C∗
z | z ∈ F

s
2} is a set of (n, k) disjoint codes, and E , C∗

z , z ∈ F
s
2, is a

partition of Fn
2. For any c ∈ F

s
2
∗, we have

Whc (α) =
∑

x∈Fn2
(−1)hc(x)+α·x = S1(α) + S2(α),

where

S1(α) =
∑

z∈Fs2

∑

x∈C∗
z

(−1)c·z+α·x

and

S2(α) =
∑

x∈E
(−1)α·x .

Notice that extending the sum
∑

x∈Cz
(−1)c·z+α·x in S1(α) to include x = 0s does not change

its value since for x = 0s we have S
x=0s
1 (α) = ∑

z∈Fs2(−1)c·z = 0. Therefore,

S1(α) =
∑

z∈Fs2
(−1)c·z

∑

x∈Cz

(−1)α·x .

We now consider two cases with respect to whether α belongs to E⊥ or not.
Case 1: α /∈ E⊥. By Lemma 2, there exists exactly two different vectors z and z′ in Fs

2 such
that α ∈ C⊥∗

z and α ∈ C⊥∗
z′ . So, when α /∈ E⊥, we have

S1(α) = (−1)c·z
∑

x∈Cz

(−1)α·x + (−1)c·z′
∑

x∈Cz′
(−1)α·x

=
(
(−1)c·z + (−1)c·z′

)
2k

=
{
0 if c · z �= c · z′
±2s if c · z = c · z′.

For any α /∈ E⊥, noticing
∑

x∈E (−1)α·x = 0, we have S2(α) = 0. So,

Whc (α) ∈ {0,±2s}, for α /∈ E⊥. (10)

Case 2: α ∈ E⊥. In this case, when α �= 0, we have
∑

x∈Cz

(−1)α·x = 0

for any z ∈ F
s
2, which implies S1(α) = 0. When α �= 0, one obtains

S1(α) =
∑

z∈Fs2
(−1)c·z

∑

x∈Cz

(−1)0 = 2k
∑

z∈Fs2
(−1)c·z = 0.

On the other hand,

S2(α) =
∑

x∈E
(−1)α·x = 2s, for α ∈ E⊥.

Therefore,

Whc (α) = 2s, for α ∈ E⊥. (11)
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Combining (10) and (11), we conclude that

Whc (α) ∈ {0,±2s}, for α ∈ F
n
2,

which implies H is an (n, s) vectorial semi-bent function. By (11),

Whc (0n) = 2s, for any c ∈ F
s
2
∗
.

According to Lemma 1, H is not balanced. In what follows, we show that H can be trans-
formed to a balanced vectorial semi-bent function by applying an affine transformation to
it.

Note that θi ∈ Ui , i = 1, 2, . . . , s, which implies fi (x) = hi (x) + θi · x is balanced. For
c ∈ F

s
2
∗, let fc(x) = ∑s

i=1 ci fi (x). Obviously,

fc(x) = hc(x) + θc · x,
where hc = c · H and θc = ∑s

i=1 ciθi . Note that θc ∈ Uc always holds, where Uc = {θ |
Whc (θ) = 0}. This means that fc is balanced, for any c ∈ F

s
2
∗. By Lemma 1,

(
f1(x), . . . , fs(x)

) = H(x) + L(x) = F(x)

is balanced. Note that

W fc (α) ∈ {0,±2s}, for α ∈ F
n
2

still holds. This proves that F(x) is a balanced (n, s) semi-bent function.
Next we show F(x) has no nonzero linear structures. Let c ∈ F

s
2
∗ and α ∈ Cz

∗. When
x ∈ Cz

∗, we have x + α ∈ Cz
∗. By (8), hc(x) = hc(x + α). When x ∈ Cz′ ∗, z′ �= z, α +Cz′

is a coset of Cz′ and have no common vectors with Cz′ . Notice that two different elements x ′
and x ′′ in α + Cz′ must lie in two different disjoint codes. Then, the 2s distinct elements of
α + Cz′ are evenly distributed in the 2s disjoint codes. So, hc(x + α) is not a constant when
x ∈ Cz

∗. Noticing that, by (8), hc(α) is a constant function onC∗
z , we have hc(α)+hc(x+α)

is not a constant. This proves that F has no nonzero linear structures. ��
Example 2 Let {Cz | z ∈ F

3
2} be a set of (5, 3) disjoint codes constructed as in Example 1.

Let E = {02} × F
3
2. We first construct an unbalanced (5, 3) vectorial semi-bent function

H(x) = (
h1(x), h2(x), h3(x)

)
,

where, by (8),

h1(x) =
{
1 if x ∈ C∗

z , z ∈ {100, 101, 110, 111}
0 if x ∈ C∗

z , z ∈ {000, 001, 010, 011}, or x ∈ E

h2(x) =
{
1 if x ∈ C∗

z , z ∈ {010, 011, 110, 111}
0 if x ∈ C∗

z , z ∈ {000, 001, 100, 101}, or x ∈ E

and

h3(x) =
{
1 if x ∈ C∗

z , z ∈ {001, 011, 101, 111}
0 if x ∈ C∗

z , z ∈ {000, 010, 100, 110}, or x ∈ E .

We then get the truth tables of h1, h2 and h3 as follows:
h1=(0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0),
h2=(0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1), and
h3=(0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 0 1 1).

Select θ1 = (01101), θ2 = (00010) and θ3 = (00001).
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It can be checked that for any c ∈ F
3
2
∗
, we always have θc ∈ Uc, where θc = c1θ1 +

c2θ2 + c3θ3 and Uc is defined as in (9). Let

L(x) = (
l1(x), l2(x), l3(x)

)

where l1(x) = θ1 · x = x2 + x3 + x5, l2(x) = θ2 · x = x4 and l3(x) = θ3 · x = x5. The truth
tables of l1, l2 and l3 are as follows:

l1=(0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1),
l2=(0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1), and
l3=(0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1).

Let fi (x) = hi (x) + li (x), i = 1, 2, 3. Then the truth tables of f1, f2 and f3 are as follows:
f1=(0 1 0 1 1 0 1 0 1 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1),
f2=(0 0 1 1 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0 0 0 1 0), and
f3=(0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0).

The Walsh spectra of fc, c ∈ F
3
2
∗
, are as follows:

W̃ f100=(0 0 −8 −8 0 8 0 8 0 8 0 8 8 8 0 0 0 −8 8 0 −8 8 8 −8 0 0 0 0 0 8 −8 0),
W̃ f010=(0 8 8 8 0 8 0 0 0 0 8 0 0 0 0 −8 −8 0 8 −8 0 −8 8 8 8 −8 8 0 0 0 −8 0),
W̃ f001=(0 8 0 0 8 8 8 0 8 8 0 −8 0 −8 −8 8 −8 8 0 8 −8 0 0 0 0 8 0 0 0 0 0 −8),
W̃ f110=(0 0 0 −8 8 0 −8 8 0 0 8 0 0 8 8 8 0 8 −8 8 −8 −8 0 8 0 −8 0 0 0 0 0 8),
W̃ f101=(0 8 −8 8 8 0 −8 −8 8 0 0 0 8 0 8 8 0 −8 0 0 8 0 0 0 −8 0 8 −8 8 0 0 0),
W̃ f011=(0 8 0 8 8 8 0 0 −8 0 0 8 0 0 0 0 8 −8 8 8 0 −8 −8 0 0 0 −8 8 −8 0 8 0),
W̃ f111=(0 0 8 −8 0 0 8 −8 8 0 0 8 0 8 8 0 −8 −8 0 0 0 0 8 8 0 8 −8 0 0 −8 8 0).

Note that W fc (05) = 0 for any c ∈ F
3
2
∗
. We have

(
f1(x), f2(x), f3(x)

) = F(x) + L(x) is a
DC type balanced (5, 3) vectorial semi-bent function.

Remark 2 There seem to be many different choices (verified by computer simulations) to
specify the elements θ1, . . . , θs that satisfy the condition in Construction 1 so that θc =∑s

i=1 ciθi ∈ Uc, for any c ∈ F
s
2
∗. However, specifying these selections precisely appears to

be quite hard. We leave this interesting question as an open problem.

3.2 DS class vectorial semi-bent functions

Wenow present our second constructionmethodwhich uses a set of disjoint spectra functions
obtained from anAB permutation and a set of disjoint codes. The resulting balanced vectorial
semi-bent functions are then derived by using a suitable concatenation of these disjoint spectra
functions.We refer to this class as to disjoint spectra (DS) class vectorial semi-bent functions.

Construction 2 (DS class) Let n = 2s + k, where s ≥ k and k is odd. Let x ∈ F
k
2 and

y, z ∈ F
s
2. Let

G(x) = (
g1(x), . . . , gk(x)

)

be an AB permutation on Fk
2. Let H be an (s + k, k) vectorial function defined as

H(x, y) = (
h1(x, y), . . . , hk(x, y)

)
,

where hi (x, y) = gi (x), i = 1, 2, . . . , k. For z ∈ F
s
2, let

Az =
(
Ik Mz

0 Rz

)
(12)
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where Mz is defined as in Proposition 1 and Rz is any s × s invertible binary matrix. We
construct an (n, k) vectorial function as follows:

F(x, y, z) = H
(
(x, y) · (AT

z )−1). (13)

Notice that the function F defined by (13) can be viewed as a concatenation of different linear
transforms of H(x, y) performed on the variable space (x, y) through the invertible matrices

AT
z

−1
. The main design rationale, which ensures the semi-bentness of the components of F ,

is that any component function c ·H(
(x, y) ·(AT

z )−1
)
builds a set of disjoint spectra functions

when z ranges through Fs
2.

Theorem 2 Let F be an (n, k) function defined by means of Construction 2. Then, F is a
balanced (n, k) vectorial semi-bent function.

Proof For any c ∈ F
k
2
∗
, let hc = c · H and gc = c · G. Let α ∈ F

k
2 and β ∈ F

s
2. We have

Whc (α, β) =
∑

y∈Fs2
(−1)β·y ∑

x∈Fk2
(−1)gc(x)+α·x

=
{
2s · Wgc (α), β = 0s
0, β �= 0s .

(14)

Noticing that G is an AB function, we have

Wgc (α) ∈ {0,±2(k+1)/2}.
By (14),

Whc (α, β) ∈ {0,±2(n+1)/2}.
Let {Cz | z ∈ F

s
2} be a set of (s + k, k) disjoint codes as in Proposition 1. Noticing G is a

permutation, we have Wgc (0k) = 0. Thus,

Shc = Sgc × {0s} ⊂ C∗
0s . (15)

From (12), the upper section of Az is just the generator matrix Gz of Cz . This implies

Cz = C0s · Az . (16)

For a fixed z ∈ F
s
2
∗, let

H (z)(x, y) = H
(
(x, y) · (AT

z )−1). (17)

Obviously, H (0s )(x, y) = H
(
(x, y) · A−1

0s

) = H(x, y). For c ∈ F
k
2
∗
, let h(z)

c = c · H (z). By
(17),

h(z)
c (x, y) = hc

(
(x, y) · (AT

z )−1).

We have

W
h(z)
c

(α, β) = Whc

(
(α, β) · Az

)
.

By (16),

S
h(z)
c

⊂ C∗
z .
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Let fc = c · F , c ∈ F
k
2
∗
. By (13), fc is a concatenation of the 2s functions h(z)

c , z ∈ F
s
2. For

α ∈ F
k
2, β ∈ F

s
2, and γ ∈ F

s
2, we have

W fc (α, β, γ ) =
∑

(x,y,z)∈Fn2
(−1) fc(x,y,z)+(α,β,γ )·(x,y,z)

=
∑

z∈Fs2
(−1)γ ·z ∑

(x,y)∈Fk+s
2

(−1)h
(z)
c (x,y)+(α,β)·(x,y)

=
∑

z∈Fs2
(−1)γ ·zW

h(z)
c

(α, β).

Note that {Cz | z ∈ F
s
2} is a set of disjoint codes. By Definition 1,

{h(z)
c (x, y) | z ∈ F

s
2} ⊂ Bs+k

is a set of disjoint spectra functions. We then have

W
h(z)
c

(α, β) · W
h(z′)
c

(α, β) = 0, for z �= z′.

We then have W fc (α, β, γ ) ∈ {0,±2(n+1)/2}. This proves that f is semi-bent. By (15),
W

h(z)
c

(0k+s) = 0 for any z ∈ F
s
2. So, W fc (0n) = 0, which implies that fc is balanced. By

Lemma 1, we have that F is balanced. ��

Example 3 Let n = 9 with s = k = 3. Let x , y, z ∈ F
3
2. Let G(x) = (g1(x), g2(x), g3(x))

be an AB permutation on F3
2 with

g1 = (01010110), g2 = (00110101), g2 = (01111000).

Then H(x, y) = (
h1(x, y), h2(x, y), h2(x, y)

) = (
g1(x), g2(x), g3(x)

)
is a balanced (6, 3)

vectorial function. Let {Cz | z ∈ F
3
2} be a set of (6, 3) disjoint codes obtained by means of

Proposition 1. Set Rz = Mz for z ∈ F
3
2
∗
. Then, we have

A000 =

⎛

⎜
⎜⎜
⎜
⎜
⎝

100 100
010 010
001 001
000 100
000 010
000 001

⎞

⎟
⎟⎟
⎟
⎟
⎠
, A001 =

⎛

⎜
⎜⎜
⎜
⎜
⎝

100 100
010 010
001 001
000 100
000 010
000 001

⎞

⎟
⎟⎟
⎟
⎟
⎠
, A010 =

⎛

⎜
⎜⎜
⎜
⎜
⎝

100 010
010 001
001 110
000 010
000 001
000 110

⎞

⎟
⎟⎟
⎟
⎟
⎠
, A011 =

⎛

⎜
⎜⎜
⎜
⎜
⎝

100 001
010 110
001 011
000 001
000 110
000 011

⎞

⎟
⎟⎟
⎟
⎟
⎠
,

A100 =

⎛

⎜
⎜⎜
⎜
⎜
⎝

100 110
010 011
001 111
000 110
000 011
000 111

⎞

⎟
⎟⎟
⎟
⎟
⎠
, A101 =

⎛

⎜
⎜⎜
⎜
⎜
⎝

100 011
010 111
001 101
000 011
000 111
000 101

⎞

⎟
⎟⎟
⎟
⎟
⎠
, A110 =

⎛

⎜
⎜⎜
⎜
⎜
⎝

100 111
010 101
001 100
000 111
000 101
000 100

⎞

⎟
⎟⎟
⎟
⎟
⎠
, A111 =

⎛

⎜
⎜⎜
⎜
⎜
⎝

100 101
010 100
001 010
000 101
000 100
000 010

⎞

⎟
⎟⎟
⎟
⎟
⎠
.

For z ∈ F
3
2, let H

(z)(x, y) = H
(
(x, y)·(AT

z )−1
)
. The eight balanced (6, 3)vectorial functions

H (z), z ∈ F
3
2, have the property that {c · H (z) | z ∈ F

3
2} is a set of disjoint spectra functions

for any c ∈ F
3
2
∗
. Then we can get the DS type balanced (9, 3) vectorial semi-bent function

F(x, y, z) = (
f1(x, y, z), f2(x, y, z), f3(x, y, z)

) = H
(
(x, y) · (AT

z )−1).
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Note that fc = c · F can be regarded as the concatenation of H (z), z ∈ F
3
2. We get the

truth tables of F in a hexadecimal format as follows:

f1 : 0000007F7F7F7F0074335A620B4C251D174B654668341A39ADB6F195D2C98EEA

D9EC9ED4A693E1ABCEBCA7AAB1C3D8D5BAD38F99C5ACF0E6634D78291C320756

f2 : 00007F00007F7F7F635632784D071C29CED5C3A7BCD8B1AA173934654B1A6846

741D4C5A33250B62BAE6AC8FD3F0C599D9AB939EECE1A6D4ADEAC9F1B68ED295

f3 : 007F7F007F007F00D9A6D4ABE19E93ECADD295EA8EF1C9B6631C29560778324D

BAC599E6F08FACD3176846391A65344BCEB1AAD5D8A7C3BC740B621D255A4C33.

4 Other cryptographic properties of theDC andDS class

We have already mentioned that the method of Johansson-Pasalic [32] may admit linear
structures depending on the selection of disjoint codes, whereas the members of our DC
class provably cannot possess linear structures. We recall that the component functions of
an (n,m) function are actually a concatenation of 2d linear t-resilient functions in n − d
variables which are derived from an (several) [n − d,m, t + 1] linear code(s). Therefore, the
(n,m) functions in [32] strictly belong to the MM class of functions. In difference to this
approach (of concatenating linear functions), our method has similarities to the PS class of
Boolean bent functions. Indeed, Construction 1 specifies both the coordinate and component
functions to be constant on disjoint k-dimensional subspaces of Fn

2 corresponding to the
codes Cz in Construction 1. This is structurally different approach compared to the method
in [32], but nevertheless proving the EA-inequivalence between the classes is quite difficult.
We also notice that the disjoint codes employed in [32] are found using a computer search,
whereas the set of codes in Proposition 1 is specified in an exact manner. As mentioned in the
introduction, the component functions in Construction 2 can be viewed as a concatenation
of suitable disjoint spectra functions which in difference to the method in [32] are not linear.

In what follows, we discuss other cryptographic properties of the two classes.

4.1 Algebraic degree

In general, for the same n, the dimension of the output space of DC functions is larger
compared to the classDS. The upper bounds on the algebraic degrees ofDC andDS balanced
vectorial semi-bent functions are both (n + 1)/2. The bounds are tight, which have been
confirmed by simulations (the algebraic degrees of the constructed functions in Example 2
and Example 3 are 3 and 5, respectively), and essentially this is the maximum degree of AB
functions as proved by Carlet et al. [11].

In difference to theDC class, whose algebraic degree is harder to analyse theoretically, for
functions that belong toDS (generated by Construction 2) we deduce the following. Noticing
that G(x) is an AB function on F

k
2 and H(x, y) = G(x), where H : Fs+k

2 → F
k
2, we have

deg(H) = deg(G) ≤ (k + 1)/2. For any c ∈ F
k
2
∗
, the component function fc = c · F in

Construction 2 is in nature the concatenation of h(u)
c = c · H (u), when u goes through Fs

2. It
implies that

deg(F) = max
c∈Fk2

∗ deg( fc) ≤ s + (k + 1)/2 = (n + 1)/2.
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Table 1 Differential properties of
the (5,3) function F in Example 2

c 0 2 4 6 8
∣
∣{(a, b) | δF (a, b) = c}∣∣ 744 84 108 28 28

Table 2 Differential properties of
the (9,3) function F in Example 3

c 0 48 64 80 112
∣
∣{(a, b) | δF (a, b) = c}∣∣ 257572 84 3836 112 28

4.2 Differential properties

Let F be an (n,m) function. For any a ∈ F
n
2
∗ and b ∈ F

m
2 , we denote by

δF (a, b) = ∣
∣{x ∈ F

n
2 | F(x + a) + F(x) = b}∣∣.

A mapping F : Fn
2 → F

m
2 has a uniform differential distribution if any differential F(x +

a)+F(x) = b has exactly 2n−m solutions, which is only achieved by vectorial bent functions
for suitable n andm. In this context, an element a ∈ F

n
2
∗ is called a linear structure of F if for

some b ∈ F
m
2 we have δF (a, b) = 2n . Hence, for non-bent (n,m) functions good differential

properties are achieved by those functions whose

max
(a,b)∈Fn2∗×F

m
2

δF (a, b) ≤ 2n−m+1.

We now provide simulation results related to the functions specified in Example 2 and
Example 3. For the sake of brevity, we present the tables below in a compact form by counting
all the pairs (a, b) that have the same value δF (a, b).

In both cases, max(a,b)∈Fn2∗×F
m
2

δF (a, b) ≤ 2n−m+1 which is especially true for the func-
tion F in Example 3, which seems to be “closer” to a uniform distribution than the one in
Example 2. An exact theoretical analysis of the differential properties appears to be difficult.

4.3 Extendability problem

It is an interesting problem to investigate the concept of extendability for both the proposed
classes. In otherwords, given the existence of vectorial semi-bent functions of a certain output
dimension m the question is whether these (n,m) functions can be extended to (n,m + k)
semi-bent functions for some 1 ≤ k ≤ n − m. Nevertheless, there is no known technique
of verifying whether these classes are non-extendable in the sense that there do not exist
suitable Boolean semi-bent functions (of cardinality k) so that (n,m+ k) semi-bent function
can be built. This problem is intrinsically hard and in our opinion of utmost importance for
gaining a better understanding of these objects. A related question in this context is whether
the coordinates of (n,m) functions (either in DC or DS) belong to the set of component
functions of some known AB functions, which also appears to be difficult.

5 Vectorial semi-bent functions from AB permutations

When n is even, Carlet [12] proposed a method of using two suitable vectorial bent functions
(which we call block components) F1, F2 : F2m ×F2m → F2m , to define vectorial semi-bent
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functions onF2m ×F2m in theMM class (using the finite field representation). The semi-bent
property of

F(x, y) = (
F1(x, y), F2(x, y)

) = (
xπ(y) + φ(y), xπ2i (y) + ψ(y)

)
,

whereφ,ψ : F2m → F2m are arbitrary,π is a permutation onF2m andgcd(i,m) = 1, relies on
the fact that the absolute values of theWalsh spectra of the component functions u ·F1+v ·F2
are at most 2m+1, using the vector space representation so that F : F2m

2 → F
2m
2 , see Carlet

[12]. This property is a consequence of the fact that the equation uπ(y) + vπ2i (y) = a has
at most two solutions for u, v, a ∈ F2m .

For odd n ≡ 0 (mod 3) one can consider

F(x, y, z) = (F1(x, y, z), F2(x, y, z), F3(x, y, z)),

where Fi : F2n → F
2
n
3
and clearly n ≡ 0 (mod 3). Then, F is an AB function if and only

if

WF (a, b, c) =
∑

x∈F
2
n
3

∑

y∈F
2
n
3

∑

z∈F
2
n
3

(−1)Tr
n
3
1

(
uF1(x,y,z)+vF2(x,y,z)+wF3(x,y,z)+ax+by+cz

)

∈ {0,±2
n+1
2 },

for all (a, b, c) ∈ (F
2
n
3
)3, where Tr

n
3
1 (uF1 + vF2 +wF3) specifies the component functions

of F . Here, Tr
n
3
1 (·) denotes the absolute trace function defined as

Tr
n
3
1 (x) =

n/3−1∑

i=0

x2
i
, for any x ∈ F

2
n
3
.

Nevertheless, in difference to the even n case described above, the specification of AB
functions using the block components F1, F2 and F3 appears to be a difficult task, see also
Remark 4 below. Instead, we demonstrate the possibility of specifying vectorial (n, n/3)
semi-bent functions. The following result gives us a possibility to lift up the semi-bent
property from a subfield to extension fields, thus specifying vectorial semi-bent functions
F : (F2k )

3 → F2k .

Proposition 2 Let n = 3k, where k is odd. Define F1 : (F2k )
3 → F2k as

F1(x, y, z) = xπ(y) + yπ(z),

where π is an AB permutation on F2k . Then, the function F1 is a vectorial (n, k) semi-bent
function.

Proof We compute the extended Walsh spectra of uF1, u �= 0 as follows :

WuF1(a, b, c) =
∑

y∈F2k

∑

z∈F2k

∑

x∈F2k
(−1)Tr

k
1

(
u(xπ(y)+yπ(z))+ax+by+cz

)
=

=
∑

y∈F2k
(−1)Tr

k
1 (by)

∑

z∈F2k
(−1)Tr

k
1

(
uyπ(z)+cz

) ∑

x∈F2k
(−1)Tr

k
1

(
(uπ(y)+a)x

)
.

Since for any other y the function (uπ(y) + a)x is balanced so that
∑

x∈F2k
(−1)Tr

k
1

(
(uπ(y)+a)x

)
= 0,
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unless uπ(y) = a in which case
∑

x∈F2k
(−1)Tr

k
1

(
(uπ(y)+a)x

)
= 2k,

we have

WuF1(a, b, c) = 2k
∑

y∈F2k :y=π−1(a/u)

(−1)Tr
k
1 (by)

∑

z∈F2k
(−1)Tr

k
1

(
uyπ(z)+cz

)
.

Since by assumption π is an AB function
∑

z∈F2k
(−1)Tr

k
1

(
uyπ(z)+cz

)
∈ {0,±2

k+1
2 },

we have

WuF1(a, b, c) ∈ {0,±2k2
k+1
2 } = {0,±2

n+1
2 },

that is F1 is an (n, k) vectorial semi-bent function. ��
Remark 3 The algebraic degree of F1 defined in Proposition 2 is obviously deg(F1) =
deg(π) + 1. Notice that any AB function F : F

3k
2 → F

3k
2 can be represented as F =

(F1, F2, F3), where Fi : F3k
2 → F

k
2, which naturally gives rise to Fi which are vectorial

semi-bent functions. However, if degree of an AB function π is the same on F2k and on F23k

then Proposition 2 generates EA-inequivalent functions.

Remark 4 Due to symmetry, it is clear that one can for instance define F2(x, y, z) = yπ(x)+
xπ(z) and F3(x, y, z) = zπ(y) + yπ(x), which are also semi-bent vectorial functions.
However, the analysis of the Walsh coefficients of uF1 + vF2 + wF3 becomes complicated
and non-exhaustive attempts to specify an AB function F = (F1, F2, F3) using Fi derived
from the same AB function π on Fk

2 have failed.

Clearly, the above approach in general does not yield vectorial semi-bent functions of
maximal algebraic degree but is very efficient from the implementation point of view since
most of the knownAB functions are powermonomials implying that F1(x, y, z) = zyd+yxd

for a suitably chosen d . Nevertheless, the main interest of the proposed method is a further
investigation of the structure F = (F1, F2, F3) for the knownAB functions and the possibility
of extending functions F : (F2n/3)3 → F2n/3 in Proposition 2 on a block/coordinate level.

6 Concluding remarks

In this paper, using different design rationales, three constructions of vectorial semi-bent
functions are presented. These classes of functions can be potentially used for implementing
S-boxes in Feistel-like block ciphers. Moreover, these functions (depending on the choice of
input parameters) can possess good cryptographic properties such as high algebraic degree,
the absenceof linear structures andquite satisfactorydifferential properties. The extendability
problem, related to the increase of the output space, is left as an interesting research challenge.
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