

3

1

• The linear-phase FIR filter obtained by minimizing the peak absolute value of

 $\varepsilon = \max_{\omega \in \mathbf{R}} \left| E(\omega) \right|$

which is usually called the equiripple FIR filter

• After ε is minimized, the weighted error function $|E(\omega)|$ exhibits an equiripple behavior in the frequency range *R*

2

4

1. Design of Equiripple Linear-Phase FIR Filters

• The general form of frequency response of a causal linear-phase FIR filter of length 2*M*+1:

 $H(e^{j\omega}) = e^{-jN\omega/2} e^{j\beta} \breve{H}(\omega)$

where the amplitude response $\breve{H}(\omega)$ is a real function of ω

• Weighted error function is given by $E(\omega) = W(\omega) \left[\vec{H}(\omega) - D(\omega) \right]$

where $D(\omega)$ is the desired amplitude response and $W(\omega)$ is a positive weighting function

1. Design of Equiripple Linear-Phase FIR Filters

5

7

Parks-McClellan Algorithm

- Based on iteratively adjusting the coefficients of $\breve{H}(\omega)$ until the peak absolute value of $E(\omega)$ is minimized
- If peak absolute value of $E(\omega)$ in a band $\omega_a \le \omega \le \omega_b$ is ε_0 , then the absolute error satisfies

$$\left| \breve{H}(\omega) - D(\omega) \right| \leq \frac{\varepsilon_0}{\left| W(\omega) \right|}, \ \omega_a \leq \omega \leq \omega_b$$

1. Design of Equiripple Linear-Phase FIR Filters

• Thus, weighting function can be chosen either as $W(\omega) = \begin{cases} 1, & \text{in the passband} \\ \delta_p / \delta_s, & \text{in the stopband} \end{cases}$ or $W(\omega) = \begin{cases} \delta_s / \delta_p, & \text{in the passband} \\ 1, & \text{in the stopband} \end{cases}$

1. Design of Equiripple Linear-Phase FIR Filters

- For filter design,
 D(ω) = {1, in the passband 0, in the stopband
 H(ω) is required to satisfy the above desired
- $H(\omega)$ is required to satisfy the above desired response with a ripple of $\pm \delta_p$ in the passband and a ripple of δ_s in the stopband

6