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IIR Digital Filter Design
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Part B

IIR Digital Filter Design

3

IIR Digital Filter Design

 Bilinear Transform Method
 Impulse Invariance Method
 Spectral Transformations of IIR 

Filters
 Lowpass-to-Lowpass Transformation
 Other Transformation

 Spectrum Transformations of IIR Filters
 Computer-Aided Design of IIR 

Digital Filters
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1. Bilinear Transform Method

Definition –
 To avoid aliasing, the mapping from s-plane 

to z-plane should be one-to-one, i.e., a single 
point in the s-plane should be mapped to a 
unique point in the z-plane and vice versa
1) The entire jΩ-axis should be mapped onto 
the unit circle
2) The entire left-half s-plane should be 
mapped inside the unit circle
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1. Bilinear Transform Method



j

0

Imj z

1 Re z

s-plane z-plane

mapping

6

1. Bilinear Transform Method

Derivation of the bilinear transform:
1) One-to-one mapping from s to s’ which compresses 

the entire s-plane into the strip
－π/T < Im (s’) < π/T
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1. Bilinear Transform Method

2) Employ impulse invariance method to s’-plane with 
z=es’T

s’-plane
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1. Bilinear Transform Method
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1. Bilinear Transform Method

 The normalized frequency ω now corresponds 
to Ω’T

 Thus, the entire jΩ-axis is compressed to the interval 
(－π,π) for ω in a one-to-one manner

 The mapping is highly nonlinear
 However, for small ω=Ω’T it is approximately linear
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1. Bilinear Transform Method

 The desired transformation from s to z (via s’)

 As we know
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1. Bilinear Transform Method

 Hence

 Let s=jΩ and z=ejω ,we can arrive at
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1. Bilinear Transform Method

The bilinear transform:
 The s-plane transfer function Ha(s) gives a z-

plane transfer function

 Solving z gives:
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1. Bilinear Transform Method

 Inverse bilinear transformation for T = 2

For 
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1. Bilinear Transform Method

 Inverse bilinear transformation for T = 2
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1. Bilinear Transform Method
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1. Bilinear Transform Method

① jΩ-axis, Re(s)=0; this gives |z|=1
The frequency axis from s-plane is mapped onto the 
unit circle

② Left-half s-plane, Re(s)<0; |1+(T/2)s| < |1－(T/2)s|
or |z|<1
Left-half s-plane is mapped inside the unit circle

③ Right-half s-plane, Re(s)>0; |1+(T/2)s| > |1－(T/2)s|
or |z|>1

Right-half s-plane is mapped outside the unit circle
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1. Bilinear Transform Method

Frequency Warping
tan( / 2)  

( )aH j 1
2

3
4

( )jH e 

1 2 3 4

Distortion due to 
nonlinearity of the mapping

2 tan
2T
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1. Bilinear Transform Method

To design a digital filter meeting the desired (digital) 
specifications we have to：

① Prewarp the critical band edge frequencies (ωp
and ωs) to analog frequencies (Ωp and Ωs)

② Design an analog prototype filter Ha(s) using the 
prewarped critical frequencies

③ Transform Ha(s) to G(z) using the bilinear 
transformation
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1. Bilinear Transform Method

Example 1:
 First Order Butterworth Filter Designed by the 

Bilinear Transformation

zero at z=－1
pole at z=1/3
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1. Bilinear Transform Method

 Magnitude Response

 The entire frequency axis from the s-plane is mapped onto the 
unit circle in the z-plane one-to-one   NO ALIASING !
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1. Bilinear Transform Method

Example 2:
 Design a lowpass Butterworth digital filter with

Solution：
If implies 1)( 0 jeG

dB 5.0)(lg20 25.0  jeG

 25.0p  55.0s max 0.5  dB  min 15  dB 

dB 15)(lg20 55.0  jeG
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1. Bilinear Transform Method

Example 2:
 By prewarping we get

The inverse transition ratio is
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1. Bilinear Transform Method

Example 2:
 From the specified passband ripple of 0.5 dB, we 

obtain                             , and from the minimum stopband
attenuation of 15 dB, we obtain          

 The filter order

 Taking the nearest higher integer 3 as the filter order.
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1. Bilinear Transform Method

Example 2:
 There are two equations which can be used to determine the 

3-dB cutoff frequency .

(a)

(b)

 Based on Eq. (a), we arrive at
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1. Bilinear Transform Method

Example 2:
 The third-order normalized lowpass Butterworth transfer 

function as  

which has a 3-dB frequency at 
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1. Bilinear Transform Method

Example 2:
 The denormalized transfer function is given by

 Applying the bilinear transformation, we arrive at the desired 
expression for the digital lowpass transfer function:
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1. Bilinear Transform Method

Example 2:
 Corresponding magnitude and gain responses
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2. Impulse Invariance Method

Definition –

The impulse response of the digital filter is 
identical to the impulse response of an analog 
prototype filter at sampling instants

 Analog transfer function: Ha(s)

 The impulse response of the digital filter is:
 1( ) ( )a ah t H s

,3  ,2  ,1   ),(][  nnThnh a
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2. Impulse Invariance Method

The relation between ZT and ST
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2. Impulse Invariance Method

The relation between ZT and ST
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2. Impulse Invariance Method

The relation between ZT and ST
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2. Impulse Invariance Method

 The digital filter transfer function H(z) is:

 The frequency responses are obtained by 
substituting z=e jωand s=jΩ :
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2. Impulse Invariance Method

 According to the sampling theorem H(ejω) is a 
periodic version of Ha( jΩ)

 Transformation from s-plane to z-plane:
 For s=σ0+jΩ0 :
 Mapping relations

I
II
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2. Impulse Invariance Method

 Mapping I:             means
 A point on the frequency axis in the s-plane (σ0=0) is 

mapped to a point on the unit circle in the z-plane
 A point on the left-half s-plane with σ0<0 is mapped 

to z-plane with |z|<1, i.e., the left-half s-plane is 
mapped inside the unit circle

 Similarly, A point on the right-half s-plane with σ0>0
is mapped to z-plane with |z|>1, i.e., the right-half s-
plane is mapped outside the unit circle

0Tr e
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2. Impulse Invariance Method

 Thus, the impulse invariance mapping has the 
desired properties:
 Frequency axis jΩ corresponds to unit circle
 Stability is preserved
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2. Impulse Invariance Method
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2. Impulse Invariance Method

 Due to sampling the mapping is many-to-one
 The strips of length 2π/T are all mapped onto 

the unit circle
 Only if ha(t) is a band-limited signal, no alias 

will occur
 Hence, this method is not suitable for 

highpass and bandstop filters design
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2. Impulse Invariance Method

 Assume that Ha(s) has the form of

 The corresponding signal in time-domain is 

 By sampling ha(t)
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2. Impulse Invariance Method

 H(z) converges if                or α>0 , indicating 
that Ha(s) is stable

 Generalizing to higher order (N) analog transfer 
functions
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2. Impulse Invariance Method

Example
 First Order Butterworth Filter Designed Using the 

Impulse Invariant Method (T=1)

zero at z=0
pole at z=1/e
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2. Impulse Invariance Method

 Magnitude Response
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3. 1 Spectral Transformations of
IIR Filters

 Transformation of a given digital IIR lowpass
transfer function GL(z) to another digital 
transfer function GD(z)

 Prototype lowpass GL(z) : variable z－1

Transformed filter : variable
 Transformation from z-domain to     -domain:

 Now, GL(z) is transformed to            through

 zGD ˆ 1ˆz

 ẑFz 

ẑ

 ẑDG
    ẑFGẑG LD 
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3. 1 Spectral Transformations of
IIR Filters

 To transform a rational GL(z) into a rational 
, must be a rational function in

 The inside of the z-plane should be mapped 
into the inside of -plane

 In order to map a lowpass magnitude response 
to one of the four basic types of magnitude 
responses, points on the unit circle in z-plane 
should be mapped onto the unit circle in -
plane

 ẑDG  zF ˆ ẑ

ẑ

ẑ
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3. 1 Spectral Transformations of
IIR Filters

 The requirements

 must be a stable allpass function

 The most general form of              with real 
coefficients is given by
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3.2 Lowpass-to-Lowpass 
Transformation

 GL(z) with cutoff frequency ωc is transformed 
to another lowpass filter with

with     real

ĉ ẑLG
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3.2 Lowpass-to-Lowpass 
Transformation
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3.2 Lowpass-to-Lowpass 
Transformation

 If              is a piecewise constant lowpass 
magnitude response, then the transformed 
filter           will likewise have a similar 
piecewise constant lowpass magnitude 
response due to the monotonicity of the 
transformation. 

 zGL

 ẑGD

48

3.2 Lowpass-to-Lowpass 
Transformation

 The relation between the cutoff frequency    
of  with the cutoff frequency       of 
follows : 

By solving we get
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3.2 Lowpass-to-Lowpass 
Transformation

Example
 Consider the lowpass digital filter

which has a passband from DC to 0.25π with a 0.5 dB ripple. 
Redesign the above filter to move the passband edge to 0.35π
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3.2 Lowpass-to-Lowpass 
Transformation

Example
 Here

Hence
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3.2 Lowpass-to-Lowpass 
Transformation

Example
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3.3 Other Transformations 

Filter type Spectral transform Design parameters

Highpass

Bandpass

Bandstop
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4. Computer-Aided Design of IIR 
Digital Filters

 The IIR and FIR filter design techniques 
discussed so far can be easily implemented on 
a computer

 In addition, there are a number of filter design 
algorithms that rely on some type of 
optimization techniques that are used to 
minimize the error between the desired 
frequency response and that of the computer 
generated filter
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4. Computer-Aided Design of IIR
Digital Filters

 Basic idea behind the computer-based is 
iterative technique

 Let             denote the frequency response of 
the digital filter H(z) to be designed 
approximating the desired frequency 
response            , given as a piecewise linear 
function of     , in some sense

( )jH e 

( )jD e 
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4. Computer-Aided Design of IIR
Digital Filters

Objective -- Determine iteratively the 
coefficients of H(z) so that the difference 
between            and              over closed 
subintervals of                  is minimized

 This difference usually specified as a 
weighted error function 

where             is some user-specified 
weighting function

( )jH e ( )jD e 

0   

( ) ( ) ( ) ( )j j jE W e H e D e      
( )jW e 
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4. Computer-Aided Design of IIR
Digital Filters

Chebyshev or minimax criterion
 Minimizes the peak absolute value of the 

weighted error:

where R is the set of disjoint frequency bands 
in the range                  , on which            is 
defined

 For example, for a lowpass filter design, R is 
the disjoint union of             and

max ( )E
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4. Computer-Aided Design of IIR 
Digital Filters

Least-p Criterion
 Minimizes

over the specified frequency range R with p a 
positive integer

 p=2 yields the least-squares criterion
 As p→∞, the least p-th solution approaches 

the minimax solution

( ) ( ) ( )
Pj j jW e H e D e d  

      R
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4. Computer-Aided Design of IIR
Digital Filters

 In practice, the p-th power error measure is 
approximated as

where      ,                , is a suitably chosen 
dense grid of digital angular frequencies

 For linear-phase FIR filter design,             and
are zero-phase frequency responses

 For IIR filter design,             and            are 
magnitude functions
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