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IR Digital Filter Design . 1. Bilinear Transform Method .
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Bilinear Transform Method Definition —
Impulse Invariance Method e To avoid aliasing, the mapping from s-plane
) to z-plane should be one-to-one, i.e., a single
Spectral Transformations of IR .
Filters point in th_e s-.plane should be ma'pped toa
Lowpass.-to-Lowpass Transformation unique point in the z-plane and vice versa
Other Transformation 1) The entirejQ—axis should be mapped onto
Spectrum Transformations of IIR Filters the unit circle
Computer-Aided Design of 1IR 2) The entire left-half s-plane should be

Digital Filters mapped inside the unit circle



1. Bilinear Transform Method s 1. Bilinear Transform Method H

! |
Derivation of the bilinear transform:
1) One-to-one mapping from s to s” which compresses
the entire S-plane into the strip
—/T<Im (s") <m/T
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1. Bilinear Transform Method H 1. Bilinear Transform Method .
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2) Employ impulse invariance method to s -plane with e One-to-one mapping from s to s’
z=es T
Q'zztan’1 ﬂj
T 2
JjQ Q'
_____________________ o z/T| _——
mapping
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s’-plane z-plane o /T




1. Bilinear Transform Method

\
e The normalized frequency w now corresponds

to QT
®=2tan"" (Ej
2

e Thus, the entire jQ-axis is compressed to the interval
(—m,7) for w in a one-to-one manner

e The mapping is highly nonlinear
e However, for small ©=C"7 it is approximately linear

1. Bilinear Transform Method

1. Bilinear Transform Method :

e Hence :
_ 2 w) 21-e’
JQ=j—tan| — |=———
T 2) Tl+e”
e Lets=jQ and z=¢“ ,we can arrive at
21-z"
§=——
Tl+z

The bilinear transform

|
e The desired transformation from s to z (via s’)

w=2tan""' Qr Q=£tan @
2 T 2

e As we know
sin x

jtan x = j
COS X
ejx_e—jx l_e—ij

e +e " l+e

-2 jx
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1. Bilinear Transform Method H

The bilinear transform:
e The s-plane transfer function /4 (s) gives a z-
plane transfer function

G(z) = H,(5)] 21"

. . Tl4z7!
e Solving z gives:

REIES
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1. Bilinear Transform Method N
|
e Inverse bilinear transformation for T =2
1+s
z=—
1-s
For s=0,+ jQ,
(I+0,)+ jQ, 2 (I+0,) +Q,°
Zz=—"——-— |::> Z| =—/—/m
(1-0y)-jQ, i (1-0,)" +Q,’
thus, oy =0z =1
o,<0-|z|<1
o,>0-z[>1 "
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1. Bilinear Transform Method N
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1. Bilinear Transform Method o
e Inverse bilinear transformation for T =2
0= l—e:’:’” _ e:’:“’:j(e’:”z —e:’:wij)
I+e” e’ (/" +e77)
:M:j%an(a)ﬂ)
2cos(w/?2)
T
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1. Bilinear Transform Method

@® jQ-axis, Re(s)=0; this gives |z]=1

The frequency axis from s-plane is mapped onto the
unit circle

or |z|<1

Left-half s-plane is mapped inside the unit circle
® Right-half s-plane, Re(s)>0; [1-+(7/2)s| > |1 —(7/2)s|

or |z[>1

@ Left-half s-plane, Re(s)<0; [1+(77/2)s| < |1 —(7/2)s]

Right-half s-plane is mapped outside the unit circle
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1. Bilinear Transform Method :

To design a digital filter meeting the desired (digital)
specifications we have to:

(D Prewarp the critical band edge frequencies (@,
and w,) to analog frequencies (€2, and )))

(2 Design an analog prototype filter // (s) using the
prewarped critical frequencies

(® Transform H (s) to G(z) using the bilinear
transformation
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1. Bilinear Transform Method H
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1. Bilinear Transform Method s
\
Frequency Warping
n Q=atan(w/2)
/ Distortion due to
a "~ nonlinearity of the mapping
& ” Q= ztan @
|1, () ‘ T 2
ey
00, oo, s 17
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1. Bilinear Transform Method s
\
Example 1:
e First Order Butterworth Filter Designed by the
Bilinear Transformation
1 1 1
H = — H(z)=— =
«(5) s+1 @ s+1| 21" 21-z"
§ Tl+z7! - ] +1
1+ Z*l : T 1+ z
> H(2)| = -
zero at z=—1 E‘ ™% )

pole at z=1/3

e Magnitude Response

First Order Butterworth Filter

o~

Magnituds Response (d8)
O O
S 8 S 8 5

3
-3

©1 02 03 04 05 06 07 08 08 1
Normalized Frquency

e The entire frequency axis from the s-plane is mapped onto the
unit circle in the z-plane one-to-one  NO ALIASING !
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1. Bilinear Transform Method H

|
Example 2:
e Design a lowpass Butterworth digital filter with
0,=0257 ;=055 @, <05dB a, 215 dB
Solution:
If | G(e’)| = limplies
~201g|G(e’**")[<0.5dB
~201gG(e”"*")|215dB
21
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1. Bilinear Transform Method
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1. Bilinear Transform Method H
[
Example 2:
e By prewarping we get
0 :tan(%J:0.4142136
r 2
Q, = tan(a;j =1.1708496
The inverse transition ratio is
L_Q, _LI708496 _, o) 6800
ko Q, 04142135
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1. Bilinear Transform Method H

Example 2:

e From the specified passband ripple of 0.5 dB, we
obtain g2 =0.1220185 , and from the minimum stopband
attenuation of 15 dB, we obtain

2 —
A* =31.622777 ki Rl 15.841979
e The filter order ! ¢
1
log;, ( %l)  log,(15.841979)

log,, (V) log,(2.8266814)

e Taking the nearest higher integer 3 as the filter order.

=2.6586997
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Example 2:

e There are two equations which can be used to determine the
3-dB cutoff frequency .
1 1

2
(0, = _ a
(92, 1@, /0)" 1+ (@)

2 1 1
- - b
1+(Q,/Q)"" 4 (b)

e Based on Eq. (a), we arrive at

H,(j€,)

Q.=1.419915(Q2,) =1.419915x0.4142135 = 0.588148
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1. Bilinear Transform Method :

(X X J
o000
[ X X
H
1. Bilinear Transform Method .
Example 2:
e The third-order normalized lowpass Butterworth transfer
function as
1
H,(p)=
(p+D(p*+p+1)
which has a 3-dB frequency at () =1
25
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1. Bilinear Transform Method

Example 2:

e The denormalized transfer function is given by

s 0.203451
", (s):Hu,,( ]
0.588148 (s + 0.588148)(S2 +0.588148s + 0.345918)

e Applying the bilinear transformation, we arrive at the desired
expression for the digital lowpass transfer function:

G(z)= H, (s%s_%;,lg

0.0662272 (1+ 27
(1-0.2593284 =" J1-0.6762858 =z +0.3917468 z*) 2

2. Impulse Invariance Method .

Example 2:

e Corresponding magnitude and gain responses

)
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Normalized frequency Normalized frequency
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Definition —

The impulse response of the digital filter is
identical to the impulse response of an analog
prototype filter at sampling instants

e Analog transfer function: /7 (s)
h(0)=L {H(5))
e The impulse response of the digital filter is:

hlnl=h,(nT), n=1, 2, 3,...

28



2. Impulse Invariance Method

The relation between ZT and ST
h,(t)="Y h,(nT)5(t—nT)
H (s)= j“’ h (t)edt = j“’ > b, (nT)8(t—nT)e " dt

=3 b, (D) S(t-nThe "t

n=—00
o0

= > h,nT)e™"

n=-—00 29

2. Impulse Invariance Method

i
The relation between ZT and ST

H,(jQ)=A,(s)
s=jQ
A 1 & . . 2r
Ha(JQ)—TZH(JQ k)  Q a

H,(s)=— ZH( @—J |
“r (w7
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2. Impulse Invariance Method e

1
The relation between ZT and ST

fuw—zhmnw“-».ma—Zh

n=

h[n)=h,(nT), n=1, 2, 3,...

e =HE)=H,(s)

sT
z=¢e"'

1
s=—Inz
T
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2. Impulse Invariance Method .

e The digital filter transfer function H(z) is:
H(z)=Z{h[n]}=Z{h,(nT)}

_1 H( _j27zk)
T & T

s=—Inz
e The frequency responses are obtained by
substituting z=e/“and s=7Q :

R 2rk
H(e-’):?ZH(]Q ]T]
k=—o0

32



2. Impulse Invariance Method

|
e According to the sampling theorem H(¢/®) is a
periodic version of / ( jC2)

e Transformation from s-plane to z-plane: z=e
ool jQoT

— : . j T
o Fors=o,1jQ,: z=re/” =™ , |Z|:r:eao

e Mapping relations
[ r= eO'OT = Q()T +2krx

L i = :T{QO+—2];”}
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2. Impulse Invariance Method

2. Impulse Invariance Method e

sT

e Thus, the impulse invariance mapping has the
desired properties:
e Frequency axis jQ corresponds to unit circle
e Stability is preserved

35

e Mapping I: r = " means
e A point on the frequency axis in the s-plane (0,=0) is
mapped to a point on the unit circle in the z-plane

e A point on the left-half s-plane with ,<0 is mapped
to z-plane with |z|<1, i.e., the left-half s-plane is
mapped inside the unit circle

e Similarly, A point on the right-half s-plane with ¢,>0
is mapped to z-plane with |z|>1, i.e., the right-half s-
plane is mapped outside the unit circle

34

2. Impulse Invariance Method .

2
e Mapping II: a):QT+2k7r:T{Q +¥}

JjQ

%//////%:4; mg,;"g

Rez

36



2. Impulse Invariance Method

\
e Due to sampling the mapping is many-to-one

e The strips of length 27/T are all mapped onto
the unit circle

e Only if /,(7) 1s a band-limited signal, no alias
will occur

e Hence, this method is not suitable for
highpass and bandstop filters design
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2. Impulse Invariance Method

2. Impulse Invariance Method e

e H(z) converges if |¢™*"
that / (s) is stable

e Generalizing to higher order (V) analog transfer

<lor g >0, indicating

functions Ny
H (s)= k
.(5) N; -
h ()= A “u(t)
k?]l Ak
) [1(z) = a7 1

iol—-e "z 39

e Assume that /4 (s) has the form of
H,(s)=—-+
e The corresponding signal in time-domain is
() =L [ H ()} = Ae (e
e By sampling 7 (7)
H{nl=h,(nT)= A€ u(nT)

o0 o0 A
H(z)= Zh[n]z_" :ZAe_a"Tz_” =
Nn=—a0 n=0 l-e“z %
2. Impulse Invariance Method e

Example

e First Order Butterworth Filter Designed Using the
Impulse Invariant Method (T=1)

1 1
H §)= h t - - { H e ———
)= T = ) H(D) =
zero at z=0 ol
pole at z=1/e :

£ @—x
£

05!

= Real Part 40



2. Impulse Invariance Method

3. 1 Spectral Transformations of §§:
IR Filters .

e Magnitude Response

First Order Butterworth Filter

W

]

Magnitude Responze (dB)
-

B

sz

rS

[V} o1 0z 03 04 05 0B 07 os 09 1
Mormalized Frquency
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3. 1 Spectral Transformations of
IR Filters

e To transform a rational G,(z) into a rational
G,(2) , F(2)must be a rational function in 2

e The inside of the z-plane should be mapped
into the inside of Z -plane

e In order to map a lowpass magnitude response
to one of the four basic types of magnitude
responses, points on the unit circle in z-plane
should be mapped onto the unit circle in Z -
plane

43

e Transformation of a given digital IIR lowpass
transfer function G,(z) to another digital
transfer function G(z)

e Prototype lowpass G,(z) : variable z-!

Transformed filter G,(2) : variable '

e Transformation from z-domain to Z -domain:

z=F (2)
e Now, G,(z) is transformed to G,(2) through
G,(2)=G,{F(2)}

42

3. 1 Spectral Transformations of §§:
IR Filters .

e The requirements

>1, if]z] > 1 <1, if]z]>1
IF@E)1=1  ifl=1  |4@@)|i=1  if|7=1
<1, if]f]<1 >1,  if|f<1

e 1/F(2) mustbe a stable allpass function

e The most general form of F~'(z) with real
coefficients is given by

r (I ren (I

=1 Z— 0 l:ll_alz
44




3.2 Lowpass-to-Lowpass
Transformation

e (G,(z) with cutoff frequency w,. is transformed
to another lowpass filterG, (2) with &,

N -z
S =r()-1
. zZ—a
with o real b
e € —«a
e =———0r
l—ae™
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3.2 Lowpass-to-Lowpass
Transformation

3.2 Lowpass-to-Lowpass et

Transformation N

o If G,(z) isapiecewise constant lowpass
magnitude response, then the transformed
filter G,(2) will likewise have a similar
piecewise constant lowpass magnitude
response due to the monotonicity of the
transformation.
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New Normalized Cuteff Frequency

a: — 0.4
. [0
sin| —¢ £ 02
2 .
% 04 DI.S 0.8
Ol Mermalized Cutoff Frequency
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3.2 Lowpass-to-Lowpass ecet
Transformation N

e The relation between the cutoff frequency w,
of G,(z) with the cutoff frequency @, of G,(2)

o 1+« .
tan| —< |= tan| —
(ZJ (Fa} (ZJ

follows :

By solving we get

_an(o,/2)-tan(5,/2) _ Si“[m“ 5@]
tan (@, /2)+ tan (&, /2) Sin(a)c+c?)cj )




(X X J
o000
3.2 Lowpass-to-Lowpass 3T
Transformation .
!
Example
e Consider the lowpass digital filter
(z)— 0.0662(1+z")’
t (1-0.2593z7")(1-0.0.6763z"" +0.3917z%)
which has a passband from DC to 0.257 with a 0.5 dB ripple.
Redesign the above filter to move the passband edge to 0.35n
49
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3.2 Lowpass-to-Lowpass 3T
Transformation .
!
Example

Gain,dB

Normalized frequency
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[ XX L]
3.2 Lowpass-to-Lowpass ecet
Transformation .
[
Example
i 02570357
o Here 2 _ sin(0.057)

a= =—— =-0.1933636
: (0.257z+0.357r) sin(0.37)
sin| ==

12 110.1933636
1+0.19336362™

50
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3.3 Other Transformations :
Filter type Spectral transform Design parameters
Al sin AN
Highpass =z +f’l “s [a) 3(,; ]
e [ 225)
220 a0 p-l cos[a}“ ;lﬁuj
= . pFl  l+p O o by
Bandpass lp—l s 72;.,1271 " cos[ 3 )
+ + 5
L L p:cot[a}‘l;w']tan[%j
2,2_ 2a 2,1+1*p cos[é)"+a3“j
s p+1 I1+p a:c(‘s[‘f’cz”f’u]
Bandstop 1-p 52 _ 2a 141 2
I+p p+l p:cot(a) 7”"](211[%}
52




4. Computer-Aided Design of IIR | s::

4. Computer-Aided Design of IIR

Digital Filters Digital Filters .
\ |
e The IIR and FIR filter design techniques e Basic idea behind the computer-based is
discussed so far can be easily implemented on iterative technique
a computer e Let H(e’”) denote the frequency response of
e In addition, there are a number of filter design the digital filter H(z) to be designed
algorithms that rely on some type of approximating the desired frequency
optimization techniques that are used to response D(e’”), given as a piecewise linear
minimize the error between the desired function of  , in some sense

frequency response and that of the computer
generated filter

53 54

4. Computer-Aided Design of IIR | 33
Digital Filters .

4. Computer-Aided Design of IIR
Digital Filters

Objective -- Determine iteratively the Chebyshev or minimax criterion
coefficients of H(z) so that the difference

: , e Minimizes the peak absolute value of the
between D(e/”)and H (e’”) over closed

weighted error:

subintervals of (0 < @ < 7 1s minimized £ = max | E(a))|
weR
e This difference usually specified as a where R is the set of disjoint frequency bands
weighted error function in the range 0 < @ < 7 , on which D(e’”)is
E(w)= W(ejw)[H(ejw) _ D(e.iw)} defined
where J¥/ (¢/”)is some user-specified e For example, for a lowpass filter design, R is

weighting function the disjoint union of (0, ,)and (w,,7)
55 56



4. Computer-Aided Design of IIR
Digital Filters

4. Computer-Aided Design of IIR | s3::
Digital Filters .

Least-p Criterion
e Minimizes

g:J‘wER

over the specified frequency range R with p a
positive integer

W (&) H(e™) - D(e"”)]‘P do

e p=2 yields the least-squares criterion

e As p—o, the least p-th solution approaches
the minimax solution

57

: 1
e In practice, the p-th power error measure is

approximated as

K 4 . . P
&= W[ H(e™)- D™}
where a)ll:,l 1<i<K ,1s asuitably chosen
dense grid of digital angular frequencies

e For linear-phase FIR filter design, //(e/”)and
D(e’”) are zero-phase frequency responses

e For IIR filter design, H (e’”)and D(e’”)are

magnitude functions N

Vel



