

1. Preliminary Considerations

- > Digital Filter Specifications
- Selection of the Filter Type
- Basic Approaches to Digital Filter Design
- Estimation of the Filter Order
- > Scaling the Digital Filter

Objective :

- Determination of a realizable transfer function *G*(*z*) approximating a given frequency response specification is an important step in the development of a digital filter
 - Digital filter design is the process of deriving the transfer function *G*(*z*)
 - □ If an IIR filter is desired, G(z) should be a stable rational function

....

1.1 Digital Filter Specifications

• We restrict our attention in this chapter to the magnitude approximation problem only.

1.1 Digital Filter Specifications

Digital Filter Design Steps

- ① Convert the digital filter specifications into an analog prototype <u>lowpass filter</u> specifications
- ② Determine the analog lowpass filter transfer function $H_a(s)$ (Consider: IIR/FIR?)
- 3 Transform $H_{\alpha}(s)$ into the desired digital transfer function G(z)

6

1.1 Digital Filter Specifications

Normalized Specifications

1.2 Selection of the Filter Type

• FIR filters:

- \checkmark Linear phase response
- \checkmark Stability with quantized coefficients
- \times Higher order required than using IIR filters

1.1 Digital Filter Specifications

• Frequency specifications are normalized using the sampling rate:

$$\omega_p = \frac{\Omega_p}{F_T} = \frac{2\pi F_p}{F_T} = 2\pi F_p T$$
$$\omega_s = \frac{\Omega_s}{F_T} = \frac{2\pi F_s}{F_T} = 2\pi F_s T$$

• $\omega = \pi$ corresponds to half the sampling rate, $F_T/2$

Q: What is the condition for non-overlapping?

10

....

....

....

 $\bullet \bullet \bullet$

1.2 Selection of the Filter Type

- IIR filters:
- \checkmark Better attenuation properties
- \checkmark Closed form approximation formulas
- \times Nonlinear phase response
- \times Instability with finite wordlength computation
- \checkmark Lower order
 - $N_{\rm FIR}/N_{\rm IIR}$ is typically of the order of tens (or more)

1.3 Basic Approaches to Digital Filter Design

••••

13

IIR Filter Design

- An analog filter transfer function $H_a(s)$ is transformed into the desired digital filter transfer function G(z)
 - Analog approximation techniques are highly advanced
 - **Usually yield closed-form solutions**

1.3 Basic Approaches to Digital Filter Design

IIR Filter Design

- Extensive tables are available for analog filter design or the methods are easy to program
- Digital filters often replace (or simulate) analog filters

$$H_a(s) = \frac{P_a(s)}{D_a(s)} \implies G(z) = \frac{P(z)}{D(z)}$$

14

1.3 Basic Approaches to Digital Filter Design	
--	--

IIR Filter Design

- Requirements for the transform are:
- > The imaginary axis $(j\Omega)$ of the *s*-plane is mapped onto the unit circle in the *z*-plane
- > Stable $H_a(s)$ must be transformed into a stable G(z)

1.3 Basic Approaches to Digital Filter Design

IIR Filter Design

- The basic idea behind the conversion of an analog prototype transfer function $H_a(s)$ to a digital filter transfer function G(z) is to apply a mapping from the s-domain to the z-domain so that the *essential properties of the analog frequency response* are preserved.
- Bilinear transformation—most widely used transformation

1.3 Basic Approaches to Digital Filter Design

FIR Filter Design

- No analog prototype filters are available
- FIR filter design is based on a direct approximation of the specified magnitude response
- A linear phase response is usually required

1.4 Estimation of the Filter Order

approximation formulas

• IIR Design -- Filter order is solved from the

1.3 Basic Approaches to Digital Filter Design

FIR Filter Design

• FIR transfer function:

$$H(z) = \sum^{n} h[n] z^{-n}$$

• The corresponding frequency response:

$$H(e^{j\omega}) = \sum_{n=0}^{N} h[n]e^{-j\omega n}$$

 $h[n] = \pm h[N-n]$

• Linear phase requirement:

18

1.4 Estimation of the Filter Order

20

$$N \cong \frac{-20\log_{10}\left(\sqrt{\delta_p \delta_s}\right) - 13}{14.6(\omega_s - \omega_p)/2\pi}$$

- N is inversely proportional to the normalized transition width and does not depend on the location of the transition band
- N depends also on the product of δ_{n} and δ_{n}

17

Kaiser:

response

$$N \cong \frac{-20 \log_{10} \left(\sqrt{\delta_p} \delta_s \right) - 1}{14.6(\omega_s - \omega_p)/2\pi}$$

1.5 Scaling the Digital Filter

• *G*(*z*) has to be scaled in magnitude so that the maximum gain in the passband is unity

$$G_t(z) = kG(z)$$

• Notice that the scaling coefficient *K* does not affect the shape of the magnitude response, i.e., it does not affect the locations of poles and zeros in the *z*-plane

1.5 Scaling the Digital Filter

Lowpass filter: Unity gain at zero frequency
ω = 0 (or z=1)

$$KG(e^{j\omega})\Big|_{\omega=0} = KG(z)\Big|_{z=1} \longrightarrow K = 1/G(1)$$

• **Highpass filter:** Unity gain at $\omega = \pi$ (or z=-1)

$$KG(e^{j\omega})\Big|_{\omega=\pi} = KG(z)\Big|_{z=-1} \implies K = 1/G(-1)$$

21

••••

....