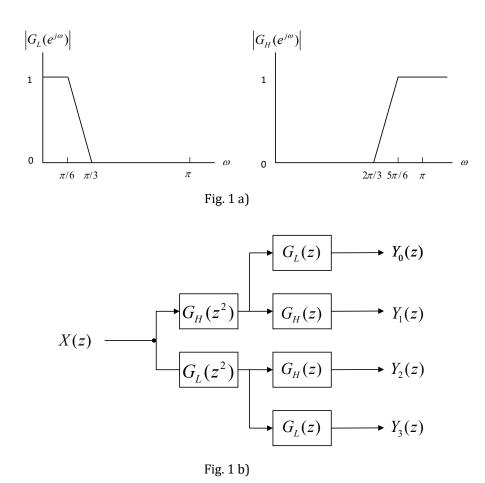
Ch7 LTI-Discrete-Time Systems in the Transform Domain

7.1 Let $G_L(z)$ and $G_H(z)$ represent ideal lowpass and highpass filters magnitude responses as sketched in Fig.1 a). Determine the transfer function $H_k(z) = Y_k(z)/X(z)$ of the discrete-time system of Fig.1 b), k = 0, 1, 2, 3, and sketch their magnitude response.



7.2 Let $H_{LP}(z)$ denote the transfer function of a real coefficient lowpass filter with a passband edge at ω_p , stopband edge at ω_s , passband ripple δ_p , and stopband ripple δ_s . Sketch the magnitude response of $G(z) = H_{LP}(-z)$, for $-\pi \le \omega \le \pi$. What type of filter is G(z)? Determine its frequency response g[n] in terms of the impulse response $h_{LP}[n]$ of $H_{LP}(z)$. Determine the band edges and ripples of G(z) in terms of the band edges and ripples of $H_{LP}(z)$.

7.3 Show that the structure shown in Fig.2 implements the filter G(z) of Problem 7.2.

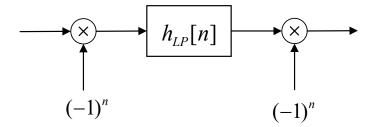


Fig. 2

- (Optional) Let $H_{LP}(z)$ denote the transfer function of an ideal real-coefficient lowpass filter having a cutoff frequency of ω_p , with $\omega_p < \pi/2$. Consider the complex coefficient transfer function $H_{LP}(e^{j\omega_0}z)$, where $\omega_p < \omega_0 < \pi \omega_p$.
 - a) Sketch its magnitude response for $-\pi < \omega < \pi$. What type of filter does it represent?
 - b) Now consider the transfer function $G(z)=H_{LP}(e^{j\omega_0}z)+H_{LP}(e^{-j\omega_0}z)$. Sketch its magnitude response for $-\pi<\omega<\pi$.
 - c) Show that G(z) is a real-coefficient bandpass filter with a passband centered at ω_0 .
 - d) Determine the width of its passband in terms of ω_p and its impulse response g[n] in terms of the impulse response $h_{LP}[n]$ of the parent lowpass filter.
- (Optional) Show that the structure shown in Fig.3 implements the bandpss filter of optional problem above.

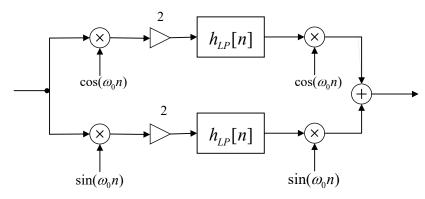
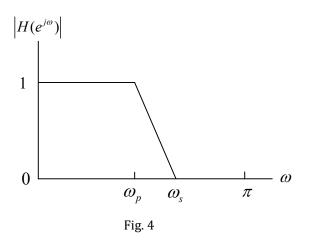


Fig. 3

7.4 Let H(z) be a lowpass filter with unity passband magnitude, a passband edge at ω_p , and a stopband edge at ω_s , as shown in Fig. 4.



- Sketch the magnitude response of the digital $G_1(z)=H(z^M)F_1(z)$, where $F_1(z)$ is a lowpass filter with unity passband magnitude, a passband edge at ω_p/M , and a stopband edge at $(2\pi-\omega_s)/M$. What are the band edges of $G_1(z)$?
- b) Sketch the magnitude response of the digital $G_2(z)=H(z^M)F_2(z)$, where $F_2(z)$ is a bandpass filter with unity passband magnitude, and with passband edges at $(2\pi-\omega_p)/M$ and $(2\pi+\omega_p)/M$, and stopband edges at $(2\pi-\omega_s)/M$ and $(2\pi+\omega_s)/M$, respectively. What are the band edges of $G_2(z)$?
- 7.5 Show analytically that the following causal FIR or IIR transfer functions are BR functions:

a)
$$H_1(z) = \frac{1}{5}(1+4z^{-1})$$

b)
$$H_2(z) = \frac{(1+\alpha z^{-1})(1-\beta z^{-1})}{(1+\alpha)(1+\beta)}$$
, $\alpha > 0$, $\beta > 0$

c)
$$H_3(z) = \frac{3.9 + 3.9z^{-1}}{3.4 + z^{-1}}$$

d)
$$H_4(z) = \frac{1.9 + 1.2z^{-1} + 1.9z^{-2}}{2 + 1.2z^{-1} + 1.8z^{-2}}$$

7.6 Consider the first-order causal and stable allpass transfer function given by

$$A_{1}(z) = \frac{1 - d_{1}^{*} z}{z - d_{1}}$$

 $\text{Determine the expression for } 1 - \left| A_1(z) \right|^2 \begin{cases} <0, & \text{for } |z|^2 < 1, \\ =0, & \text{for } |z|^2 = 1, \\ >0, & \text{for } |z|^2 > 1. \end{cases}$

Now, using the above approach, show the Property 2 given by:

$$|A_{M}(z)| \begin{cases} <1, & \text{for } |z| > 1, \\ =1, & \text{for } |z| = 1, \\ >1, & \text{for } |z| < 1. \end{cases}$$

holds for any arbitrary causal stable allpass transfer function.

7.7 Consider the transfer function given by

$$H(z) = \frac{1}{M} \sum_{k=0}^{M-1} A_k(z)$$

where $\{\mathcal{A}_k(z)\}$ are stable real-coefficient allpass function. Show that H(z) is a BR function.

- 7.8 Consider the cascade of two causal LTI discrete-time systems $h_1[n] = \alpha \delta[n] + \beta \delta[n-1]$ and $h_2[n] = \gamma^n \mu[n]$, $\beta < 1$. Determine the frequency response $H(e^{j\omega})$ of the overall system. For what value of α , β and γ will $|H(e^{j\omega})| = K$, where K is a **real constant**?
- 7.9 A noncausal LTI FIR discrete-time system is characterized by an impulse response

$$h[n] = a_1 \delta[n-2] - a_2 \delta[n-1] - a_3 \delta[n] + a_4 \delta[n+1] - a_5 \delta[n+2]$$

For what values of the impulse response samples will its frequency response $H(e^{j\omega})$ have a zero phase.

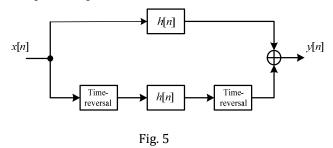
• (Optional) A causal FIR discrete-time system is characterized by the difference function

$$y[n] = a_1x[n+k+1] + a_2x[n+k] + a_2x[n+k-1] + a_1x[n+k-2]$$

where y[n] and x[n] denote, respectively, the output and the input sequences. Determine the expression for its frequency response $H(e^{j\omega})$. For what value of the constant k will the

system have a frequency response $H(e^{j\omega})$ that is a **real function of** ω ?

7.10 Let a causal LTI discrete-time system be characterized by a real impulse response h[n] with a DTFT $H(e^{j\omega})$. Consider the system of Fig.5, where x[n] is a finite-length sequence. Determine the frequency response of the overall system $G(e^{j\omega})$ in terms of $H(e^{j\omega})$ and show that it has a zero-phase response.



7.11 Given causal IIR transfer functions:

$$H_1(z) = \frac{z^3 + 3z^2 + 2z + 7}{(3z - 4)(z^2 - 0.25)}$$

- a) Check the stability of the transfer functions.
- b) If it is not stable, find a stable transfer function with an identical magnitude function.
- c) Are there any other transfer functions having the same magnitude response as those shown above?
- 7.12 Determine all possible causal stable transfer function H(z) with a squared-magnitude function given by

$$\left| H(e^{j\omega}) \right|^2 = \frac{4(1.25 + \cos \omega)(1.36 - 1.2\cos \omega)}{(1.36 + 1.2\cos \omega)(1.64 + 1.6\cos \omega)}$$

• (Optional) Consider the following FIR transfer functions:

a)
$$H_1(z) = 1 - 0.52z^{-1} + 0.92z^{-2} + 0.87z^{-3} + 0.92z^{-4} - 0.52z^{-5} + z^{-6}$$

b)
$$H_2(z) = 0.6 + 0.652z^{-2} + 0.6928z^{-3} + 0.4032z^{-4} - 0.2z^{-5} - 0.12z^{-6}$$

c)
$$H_3(z) = 3.12 - 2.5z^{-1} + 0.6z^{-2} + 0.5z^{-3} + 0.06z^{-4} + z^{-5}$$

Using the M-file *zplane*, determine the zero locations of each, and then answer the following questions:

- ① Is there any FIR filters having a linear-phase response?
- ② Is there any FIR filters having a minimum-phase response?

- ③ Is there any FIR filters having a maximum-phase response?
- 7.13 The transfer function of a type 2 linear-phase FIR filter is given by

$$H(z) = 2.5 + 0.5z^{-1} + 0.35z^{-2} + 5.47z^{-3} + 5.47z^{-4} + 0.35z^{-5} + 0.5z^{-6} + 2.5z^{-7}$$

- a) Determine the transfer function of $H_1(z)$ of a minimum-phase FIR filter having the same magnitude as that of H(z).
- b) Determine the transfer function of $H_2(z)$ of a maximum-phase FIR filter having the same magnitude as that of H(z).
- c) Determine the transfer function of $H_3(z)$ of a mixed-phase FIR filter having the same magnitude as that of H(z).
- d) How many other length-8 FIR filters exist that have the same magnitude responses as that of H(z).
- 7.14 Consider the following IIR transfer function of a causal digital filter:

i.
$$H_1(z) = \frac{6 - 5z^{-1} + z^{-2}}{1 + 0.1z^{-1} - 0.56z^{-2}}$$

ii.
$$H_2(z) = \frac{3 - 7z^{-1} + 2z^{-2}}{1 + 0.1z^{-1} - 0.56z^{-2}}$$

iii.
$$H_3(z) = \frac{2 - 7z^{-1} + 3z^{-2}}{1 + 0.1z^{-1} - 0.56z^{-2}}$$

iv.
$$H_4(z) = \frac{1 - 5z^{-1} + 6z^{-2}}{1 + 0.1z^{-1} - 0.56z^{-2}}$$

- a) Are the transfer function BIBO stable?
- b) What is the relation between their magnitude functions?
- c) What is the relation between their phase functions?
- 7.15 Is the transfer function

$$H(z) = \frac{(3z+4)(z-5)}{(z-0.5)(z+0.8)}$$

Minimum-phase? If it is not minimum-phase, the construct a minimum-phase transfer function G(z) such that $\left|G(e^{j\omega})\right| = \left|H(e^{j\omega})\right|$. Determine their corresponding unit sample responses, g[n] and h[n], for n = 0, 1, 2, 3, 4. For what values of m is $\sum_{n=1}^{m} \left|g[n]\right|^2$ bigger than $\sum_{n=1}^{m} \left|h[n]\right|^2$.

ullet (Optional) Consider a causal minimum-phase transfer function $H_{\mathrm{m}}(z)$ and a causal

non-minimum-phase transfer function H(z), with identical magnitude response function $\left|H(e^{j\omega})\right| = s \left|H_m(e^{j\omega})\right|$. Let $h_m[n]$ and h[n] denote the impulse responses of $H_m(z)$ and H(z). Prove:

$$a) \quad \left| h_m[0] \right| \ge s \left| h[0] \right|$$

b)
$$\sum_{l=1}^{n} |h_m[l]|^2 \ge \sum_{l=1}^{n} |h[l]|^2$$

(Property of causal minimum-phase transfer function)

7.16 A causal LTI FIR discrete-time system is characterized by an impulse response

$$h[n] = a_1 \delta[n] + a_2 \delta[n-1] + a_3 x[n-2] + a_4 x[n-3] + a_5 x[n-4] + a_6 x[n-5]$$

For what values of the impulse response samples will its frequency response $H(e^{j\omega})$ have a **constant group delay**?

- 7.17 Show that the amplitude response $\check{H}(\omega)$ of Type 1 and Type 3 linear-phase FIR transfer functions is a periodic function of ω with a period 2π and the amplitude response $\check{H}(\omega)$ of Type 2 and Type 4 linear-phase FIR transfer functions is a periodic function of ω with a period 4π .
- 7.18 A type 2 real-coefficient FIR filter with a transfer function H(z) has the following zeros: $z_1=1$, $z_2=-1$, $z_3=0.5$, $z_4=0.8+j$.
 - a) Determine the locations of the remaining zeros of H(z) having the lowest order.
 - b) Determine the transfer function H(z) of the filter.
- (Optional) We have shown that a real-coefficient FIR transfer function H(z) with a symmetric impulse response has linear-phase response. As a result, the all-pole IIR transfer function G(z) = 1/H(z) will also have a linear-phase response. What are the practical difficulties in implementing G(z)? Justify your answer.
- 7.19 The first 5 samples of the impulse response of an FIR filter H(z) are given by h[0] = 2, h[1] = 1.5, h[2] = -3.2, h[3] = -5.2, h[4] = 6.4.
 - a) Determine the remaining impulse response samples of H(z) of lowest order for each type of linear-phase filter;
 - b) Using *zplane*, determine the zero locations for H(z) for each type of linear-phase filter;

- c) Does H(z) have a zero at z = 1 and/or z = -1;
- d) Do the zeros on the unit circle appear in complex conjugate pairs? Justify your answer.
- e) Do the zeros *not* on the unit circle appear in mirror-image symmetry? Justify your answer.
- 7.20 The phase response $\theta(\omega)$ of a linear-phase FIR filter is given by

$$\theta(\omega) = \begin{cases} -2\omega - \pi, & -\pi < \omega \le 0, \\ \pi - 2\omega, & 0 < \omega \le \pi. \end{cases}$$

What is the length of the impulse response of the filter and is it symmetric or anti-symmetric? What are the values of the magnitude response of the filter at dc and at $\omega = \pi$? Justify your answer.

- 7.21 Design a first-order lowpass IIR filter for each of the following normalized 3-dB cutoff frequencies:
 - a) 0.42 rad/samples
 - b) 0.65π
- 7.22 Design a first-order highpass IIR filter for each of the following normalized 3-dB cutoff frequencies:
 - a) 0.5 rad/samples
 - b) 0.45π