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1. Simple FIR Digital Filters

L t i th h ll i i Later in the course we shall review various 
methods of designing frequency-selective 
filters satisfying prescribed specifications

 We now describe several lowlow--orderorder FIR and 
IIR digital filters with reasonable selective 
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frequency responses that often are satisfactory 
in a number of applications
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1. Simple FIR Digital Filters

FIR di it l filt id d h h FIR digital filters considered here have 
integer-valued impulse response coefficients 
(quantifiedquantified)

 These filters are employed in a number of 
practical applications, primarily because of 
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their simplicitysimplicity, which makes them amenable 
to inexpensiveinexpensive hardwarehardware implementations

1.1 Lowpass FIR Digital Filters

 The simplest lowpass FIR digital filter is the p p g
2-point movingmoving--averageaverage filter given by

 The above transfer function has a zero at z=－
1 and a pole at z = 0

1
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p
 Note that here the pole vector has a unity 

magnitude for all values of     , thus

0 ( ) 0.5 1j jH e e  

1.1 Lowpass FIR Digital Filters
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 As      increases from 0 
to     , the magnitude of 
the zero vector 
decreases from a value 
of 2, the diameter of the 
unit circle, to 0



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-j

 We can work out the 
frequency response

/ 2
0 ( ) cos( / 2)j jH e e  

monotonically decreasing function 

1.1 Lowpass FIR Digital Filters
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1.1 Lowpass FIR Digital Filters

To determine the value of 

passbandpassband stopbandstopband

1/ 2

To determine the value of
we set     

which yields

c

2
1)2/(cos)( c
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0
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c

pp

normalized digital angular frequencynormalized digital angular frequency

1.1 Lowpass FIR Digital Filters

Th 3 dB t ff f

passbandpassband stopbandstopband

1/ 2

The 3-dB cutoff frequency  
can be considered as the 
passband edge frequency.

As a result, for the filter          
the passband width is 
approximately π/2,  the 
stopband is from π/2 to π.
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c

pp

normalized digital angular frequencynormalized digital angular frequency

zero at z= － 1 or ω = π
in stopband?

1.1 Lowpass FIR Digital Filters

A cascade of 3 sectionsA cascade of 3 sections——an improved schemean improved scheme

1/ 2

Notice:

The cascade of first-
order sections yields 
a sharper magnitude 
response but at the 
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expense of a 
decrease in the width 
of the passband

c

1.1 Lowpass FIR Digital Filters

MM--order FIR Lowpass (Morder FIR Lowpass (M--order movingorder moving--average) Filteraverage) Filter
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1.2 Highpass FIR Digital Filters

Th i l t hi h FIR filt i bt i d The simplest highpass FIR filter is obtained 
from the simplest lowpass FIR filter by 
replacing z with －z

 This results in
 Corresponding frequency response is given by

1
1

1( ) (1 )
2

H z z 
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p g q y p g y
/ 2

1( ) sin( / 2)j jH e je  

1.2 Highpass FIR Digital Filters

M it d f hi h FIR filt Magnitude response of highpass FIR filter

• monotonically increasing function
can be demonstrated by examining
the pole-zero pattern of the transfer
function again
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function again

• zero at z = 1 or ω = 0 in the stopband

1.2 Highpass FIR Digital Filters

 Improved highpass magnitude response can p g p g p
again be obtained by cascadingcascading several 
sections of the first-order highpass filter

 Alternately, a higherhigher--orderorder highpass filter of 
the form

 1( ) 1
M

n nH 
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is obtained by replacing z with －z in the 
transfer function of a moving average filter
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1.2 Highpass FIR Digital Filters
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2. Simple IIR Digital Filters

 IIR filters allow the poles to move inside the 
unit circle, permitting them to contribute more 
heavily to the shape of their frequency 
responses. 
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2. Simple IIR Digital Filters

 Lowpass IIR Digital FiltersLowpass IIR Digital Filters

 HighpassHighpass IIR Digital FiltersIIR Digital Filters

 BandpassBandpass IIR Digital FiltersIIR Digital Filters

 B d tB d t IIR Di it l FiltIIR Di it l Filt
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 BandstopBandstop IIR Digital FiltersIIR Digital Filters

 HigherHigher--order IIR Digital Filtersorder IIR Digital Filters

2.1 Lowpass IIR Digital Filters

 A first-order causal lowpass IIR digital filter A first-order causal lowpass IIR digital filter 
has a transfer function given by

where |a| < 1 for stability
Th b f f i h 1

1

1
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 The above transfer function has a zero at z=-1
i.e., at            which is in the stopband

 has a real pole at
 

( )LPH z z 

2.1 Lowpass IIR Digital Filters

 As w increases from 0 to p the magnitude As w increases from 0 to p, the magnitude 
of the zero vector decreases from a value of 2
to 0, whereas, for a positive value of  a , the 
magnitude of the pole vector increases from a
value of          to





1 1 
monotonically decreasing function of ω
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 The maximum value of the magnitude 
function is 1 at w = 0, and the minimum value 
is 0 at w = p

0 
 

monotonically decreasing function of ω
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First order IIR Lowpass Filter

2.1 Lowpass IIR Digital Filters

First-order IIR Lowpass Filter
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2.2 Highpass IIR Digital Filters

A fi t d l hi h IIR di it l filt A first-order causal highpass IIR digital filter 
has a transfer function given by 

where |a| < 1 for stability

1
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 The above transfer function has a zero at z=1
i.e., at w = 0 which is in the stopband0 

2.2 Highpass IIR Digital Filters

 Magnitude and gain responses of            are ( )LPH zg g p
shown below

( )LP
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2.3 Bandpass IIR Digital Filters

 A 2nd order bandpass digital transfer function A 2nd-order bandpass digital transfer function 
is given by

 Its squared magnitude function is

2

1 2
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2 1 (1 )BP

zH z
z z
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2.3 Bandpass IIR Digital Filters

 goes to zero at           and2
( )j

BPH e  0   
 It assumes a maximum value of 1 at            , 

called the center frequencycenter frequency of the bandpass
filter, where
 The frequencies      and      where the squared 

magnitude becomes 1/2 are called the 33--dB cutoff dB cutoff 
f if i

0 

1c 2c

25

frequenciesfrequencies
 The difference between the two cutoff frequencies, is 

called the 33--dB bandwidthdB bandwidth

2.3 Bandpass IIR Digital Filters

 The transfer function is a BR function if 1 The transfer function is a BR function if            
and
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2.4 Bandstop IIR Digital Filters

 A 2nd order bandstop digital filter has a A 2nd-order bandstop digital filter has a 
transfer function given by

 The transfer function is a BR function if            
d

1 2

1 2

1 1 2( )
2 1 (1 )BS

z zH z
z z
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1
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and
 Its magnitude response is plotted in the next 

slide

1 

2.4 Bandstop IIR Digital Filters

 Here the magnitude function takes the Here, the magnitude function takes the 
maximum value of 1 at w = 0 and w = p

 It goes to 0 at            , where     , called the 
notch frequencynotch frequency, is given by

 The bandstop transfer function is more 
l ll d h filh fil

0   
0  0

1
0 cos 
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commonly called a notch filternotch filter
 The difference between the two cutoff 

frequencies is called the 33--dB notch bandwidthdB notch bandwidth
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2.4 Bandstop IIR Digital Filters

S d d IIR B d t Filt ( 0 5) S d d IIR B d t Filt ( 0 5)
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2.5 Higher-Order IIR Digital Filters

 By cascading the simple digital filters By cascading the simple digital filters 
discussed so far, we can implement digital 
filters with sharper magnitude responses

 Consider a cascade of K first-order lowpass 
sections characterized by the transfer function

K
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2.5 Higher-Order IIR Digital Filters

 The corresponding squared magnitude The corresponding squared-magnitude 
function is given by

 To determine the relation between its 3-dB 
t ff f d th t t

22

2
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2(1 2 cos )

K
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cutoff frequency     and the parameter    ,we setc 
2

2

(1 ) (1 cos ) 1
2(1 2 cos ) 2

K

c
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2.5 Higher-Order IIR Digital Filters

which when solved for a, yields for a  , y
stable            :

where

21 (1 )cos sin 2 )
1 cos

c c

c

C C C
C
 


   


 
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 It should be noted that the expression for a
given earlier reduces to
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3. Comb Filters

 The simple filters discussed so far are The simple filters discussed so far are 
characterized either by a single single passbandpassband
and/or a single single stopbandstopband

 There are applications where filters with 
multiplemultiple passbands and stopbands are required
C b filtC b filt h f th t ih f th t i

33

 Comb filterComb filter：： has a frequency response that is has a frequency response that is 
a a periodicperiodic functionfunction of of ωω with a with a period 2period 2ππ//LL, , 
where where LL is a positive integer. is a positive integer. 

3. Comb Filters

 If H(z) is a filter with a single passband and/or 
a single stopband, a comb filter can be easily 
generated from it by replacing each delay in its 
realization with L delays resulting in a 
structure with a transfer function given by 

G(z)=H(zL)

34

( ) ( )

3.1 FIR Comb Filters

 If exhibits a peak at then( )jH e   ( )jG e 
 If               exhibits a peak at       , then             

will exhibit L peaks at            ,                      in 
the frequency range

 Likewise, if              has a notch at     ,then           
will have L notches at            ,                     in 
the frequency range

( )H e p ( )jG e
/pk L 0 1k L  

0 2  
( )jH e 

0 ( )jH e 

0 /k L 0 1k L  
0 2 
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the frequency range
 A comb filter can be generated from either an 

FIR or an IIR prototype filter

0 2  

3.1 FIR Comb Filters

 For example, the comb filter generated from

 has L notches at
and L

peaks at

 For example, the comb filter generated from 
the prototype lowpass FIR filter                                
has a transfer function            

1
0 ( ) (1/ 2)(1 )H z z 

0 ( )jG e 

(2 1) /k L  
2 /k L 

0 ( ) (1/ 2)(1 )LG z z 
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3.1 FIR Comb Filters

 For example the comb filter generated from

 has L peaks at
and L

notches at

 For example, the comb filter generated from 
the prototype highpass FIR filter                               
has a transfer function            

1
1( ) (1/ 2)(1 )H z z 

1( )jG e 

(2 1) /k L  
2 /k L

1( ) (1/ 2)(1 )LG z z 
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1
Comb Filter from Highpass Prototype (L=5)
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3.1 FIR Comb Filters

 Depending on applications comb filters with Depending on applications, comb filters with 
other types of periodic magnitude responses 
can be easily generated by appropriately 
choosing the prototype filter

 For example, the M-point moving average 
filter M

38

filter

has been used as a prototype

1
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3.1 FIR Comb Filters

 This filter has a peak magnitude at w = 0 and0 This filter has a peak magnitude at w = 0, and     
M－1 notches at                     ,

 The corresponding comb filter has a transfer 
function 1( )

(1 )

LM

L

zG z
M








0 
1 1l M  2 /l M 

39

whose magnitude has L peaks at                   ,
and L(M－1 ) notches at  

(1 )LM z

0 1k L  
2 /k L 

2 /k LM 
1 ( 1)k L M  

3.1 FIR Comb Filters

Comb Filter from M-point moving avarage Prototype
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C b filt fi d li ti i th ll ti

3. Comb Filters

 Comb filters find applications in the cancellation 
of periodic interference. 

 Comb filters  can be applied in digital color 
television receivers for separating the luminance 
component and the chrominance components

Autumn 2008 41 2017/12/12

component and the chrominance components 
from the composite video signal. 

3.2 IIR Comb Filters

 The transfer functions of the simplest forms of The transfer functions of the simplest forms of 
the prototype IIR filter are given by 

 The transfer functions of the comb filters of 
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order L generated are 
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3.2 IIR Comb Filters

Comb fliter from lowpass prototype Comb fliter from highpass prototype
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