Chapter 7B Part B
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Simple Digital Filters s 1. Simple FIR Digital Filters :
| |
. . i e Later in the course we shall review various
¢ Simple FIR Digital Filters methods of designing frequency-selective
¢ Simple IIR Digital Filters filters satisfying prescribed specifications
¢ Comb Filters e We now describe several low-order FIR and

IIR digital filters with reasonable selective
frequency responses that often are satisfactory
in a number of applications



1. Simple FIR Digital Filters

e FIR digital filters considered here have
integer-valued impulse response coefficients
(quantified)

e These filters are employed in a number of
practical applications, primarily because of
their simplicity, which makes them amenable
to inexpensive hardware implementations

1.1 Lowpass FIR Digital Filters

® As o increases from 0
to 7, the magnitude of
the zero vector
decreases from a value

. Rez of 2, the diameter of the
7 unit circle, to 0

® \We can work out the
frequency response

H,(e')=e""" cos(w/2)
monotonically decreasing function 7

1.1 Lowpass FIR Digital Filters :
|
e The simplest lowpass FIR digital filter is the
2-point moving-average filter given by
1 1
Hy(2)=2 (2=
e The above transfer function has a zero at z= -
l andapoleatz=0
e Note that here the pole vector has a unity
magnitude for all values of @, thus
[H,y(e")|=0.5)e +1

1.1 Lowpass FIR Digital Filters

1 \1 rFirst-‘r.!wler FIR Lowpass Filter 1 . 1 Y |
5 J|Ho ™) :ﬁ\H()(e )\:ﬁ
TNCES o ' 1G(@,) = 20log,,|H,(e™)
806 l =20log,,(1/4/2)
g os | = 3dB
204 '
|

0.3fe— Ppassband—le— stopband —»

0.2 | ‘ @, 3-dB cutoff frequency
1
1

w
0.1 (e
5 N : ]
0 01 02 03 04 E: 06 0.7 08 09 1 G(0)=2010g10‘H0(€’/°)‘=0
{ DC gain

normalized digital angular frequency 8



1.1 Lowpass FIR Digital Filters

1.1 Lowpass FIR Digital Filters

First-order FIR Lowpass Filter
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To determine the value of @),
we set )

jo|? 2 1
|Hy(e")] = cos @./2)=2
which yields

w,=r/2
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A cascade of 3 sections—an improved scheme
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First-order FIR Lowpass Filter

Notice:

The cascade of first-
order sections yields
a sharper magnitude
response but at the
expense of a
decrease in the width
of the passband

1.1 Lowpass FIR Digital Filters

First-order FIR Lowpass Filter
e The 3-dB cutoff frequency

i can be considered as the
|/ﬁ\:: ___________ - passband edge frequency.
806 | .
£l | As aresult, for the filter
505 ! the passband width is
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1.1 Lowpass FIR Digital Filters

M-order FIR Lowpass (M-order moving-average) Filter

M-order FIR Lowpass Filter
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1.2 Highpass FIR Digital Filters s 1.2 Highpass FIR Digital Filters :
| |
e The simplest highpass FIR filter is obtained e Magnitude response of highpass FIR filter

from the simplest lowpass FIR filter by
replacing z with - z

e This results in H (z) = l(1 -z
e Corresponding frequency response is given by

First-order FIR highpass filler

-;/;/" * monotonically increasing function

; i .| canbe demonstrated by examining
i the pole-zero pattern of the transfer
S -1 function again
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1.2 Highpass FIR Digital Filters . 1.2 Highpass FIR Digital Filters H
\ |
e Improved highpass magnitude response can M-GpiSe I AN e

again be obtained by cascading several
sections of the first-order highpass filter

e Alternately, a higher-order highpass filter of
the form

1 ¥ "
HI(Z):WZO(—I) z

is obtained by replacing z with - 7 in the
transfer function of a moving average filter




2. Simple IIR Digital Filters

e IR filters allow the poles to move inside the
unit circle, permitting them to contribute more
heavily to the shape of their frequency
responses.

2.1 Lowpass IIR Digital Filters

e A first-order causal lowpass IIR digital filter

has a transfer function given by
-1

where |o| <1 for stability

e The above transfer function has a zero at z=-1
1.e., at @ = 7 which is in the stopband

® A, ,(z) hasareal pole atz = o

2. Simple IIR Digital Filters HE
|

¢ Lowpass IIR Digital Filters

¢ Highpass IIR Digital Filters

¢ Bandpass IIR Digital Filters

¢ Bandstop IIR Digital Filters

¢ Higher-order IIR Digital Filters

2.1 Lowpass IIR Digital Filters

e As o increases from 0 to 7 , the magnitude
of the zero vector decreases from a value of 2
to 0, whereas, for a positive value of «, the
magnitude of the pole vector increases from
valueof |-ato 1+«

monotonically decreasing function of o

e The maximum value of the magnitude
function is 1 at 4 — (), and the minimum value

isQatw=r
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2.1 Lowpass IIR Digital Filters

First-order IIR Lowpass Filter First-order IIR Lowpass Filter
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2.2 Highpass IIR Digital Filters

e Magnitude and gain responses of /, ,(z)are
shown below

First-order IIR Highpass Filter First-order IIR Highpass Filter

Magnitude
Gain,dB

2.2 Highpass IIR Digital Filters :
|
e A first-order causal highpass IIR digital filter
has a transfer function given by
l+a 1-z"
H, (z)=———
HP( ) 2 1 . aZ_l
where |o| <1 for stability
e The above transfer function has a zero at z=1
1.e., at @ =0 which is in the stopband

2.3 Bandpass IIR Digital Filters

|
e A 2nd-order bandpass digital transfer function
is given by

-« 1-z7
HBP(Z):

2 1-Bl+a)z +az”
e [ts squared magnitude function is

‘HBP(ejw) =

(1-a)*(1-cos2w)

A1+ (+a) +a’ -2p(1+a)’ cosw+2a cos2a)]
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2.3 Bandpass IIR Digital Filters

\
° ‘HBP(ef“’) 2goes tozeroat p=0and w=r
e It assumes a maximum value of 1 at @ = @,
called the center frequency of the bandpass
filter, where
o The frequencies o, andw,, where the squared

magnitude becomes 1/2 are called the 3-dB cutoff
frequencies

o The difference between the two cutoff frequencies, is
called the 3-dB bandwidth
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2.4 Bandstop IIR Digital Filters

e A 2nd-order bandstop digital filter has a
transfer function given by

l+a 1-2B8z"'+z7
2 1-Bl+a)z" +az”

e The transfer function is a BR function if ‘a‘ <1
and || <1

e Its magnitude response is plotted in the next
slide

Hyi(2) =

27

2.3 Bandpass IIR Digital Filters

e The transfer function is a BR function if |a| <1
and || <1

Second-order IIR Bandpass Filter (=0.34) Second-order IIR Bandpass Filter (¢=0.6)

""" =02
s q=0,5|_
T 0=0.8

2.4 Bandstop IIR Digital Filters

e Here, the magnitude function takes the
maximum value of 1 at p=0and w=1r

e It goes to 0 at w = @, where o, called the
notch frequency, is given by «, =cos™

e The bandstop transfer function is more
commonly called a notch filter

e The difference between the two cutoff
frequencies is called the 3-dB notch bandwidth
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2.4 Bandstop IIR Digital Filters

Magnitude

Second-order IIR Bandstop Filter (3=0.5) Second-order IIR Bandstop Filter (a=0.5)
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2.5 Higher-Order IIR Digital Filters

2.5 Higher-Order IIR Digital Filters

e The corresponding squared-magnitude
function is given by

(I-a)’*(1+cos w)

2(1+a” —2a cos w)
e To determine the relation between its 3-dB
cutoff frequency @ and the parameter o ,we set

{ (1-a)’(1+cosm,) T 1

2(1+a’ —2acosw,) | 2

‘GLP (ejw)‘2 =
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e By cascading the simple digital filters
discussed so far, we can implement digital
filters with sharper magnitude responses

e Consider a cascade of K first-order lowpass
sections characterized by the transfer function

GLP<Z>=[1—_04£}

2 1-qz’
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2.5 Higher-Order IIR Digital Filters

which when solved for ¢, yields for a
stable G, ,(2):

= H(1=C)coso, —sinw N2C—C?)
1-C+cosw,
where ¢ =& V'K

e It should be noted that the expression for
given earlier reduces to

_ l-smmo, for K=1
COS @, 32
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3. Comb Filters

e If H(z) is a filter with a single passband and/or
a single stopband, a comb filter can be easily
generated from it by replacing each delay in its

S ) realization with L delays resulting in a

e There are applications where filters with structure with a transfer function given by
multiple passbands and stopbands are required Gl V=H( 2L

e Comb filter : has a frequency response that is @=HE)
a periodic function of w with a period 27/L,
where L is a positive integer.

3. Comb Filters

e The simple filters discussed so far are
characterized either by a single passband
and/or a single stopband

33 34

3.1 FIR Comb Filters 3 3.1 FIR Comb Filters 3
| |
o If \H(ef'w) exhibits a peak at @_, then ‘ G(e’) e For example, the comb filter generated from
. . P’ . -
will exhibit L peaks atw k/L, 0<k<L-1in the prototype lowpass FIR filter /7,(z) = (1/2)(1+27)
o Likewise, if|H (¢"*)| has a notch at @, then | H (/") o [Gy(e™)|has Lnotchesat T AT L
will have L notches at @k /L, 0<k < L—1in o= Qk+1)r/Land L os—|- =4 -
the frequency range 0 < w <27 peaks at @ =2kx /L, soe
) 0<k<L-1,inthe i
e A comb filter can be generated from either an frequency range % 04-
FIR or an IIR prototype filter 0<w<2r 02-
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3.1 FIR Comb Filters

e For example, the comb filter generated from
the prototype highpass FIR filter 7 (z) = (1/2)(1-z")
has a transfer function G (z)=(1/2)(1-z")

Comb Filter from Highpass Prototype (L=5)
1

o ‘Gl(e/‘”) has L peaks at
w=(2k+1)/L and L
notches at @ =2k7z/L
0<k<L-1,inthe
frequency range
0<w<2r

3.1 FIR Comb Filters

e This filter has a peak magnitude at o = (), and
M - 1notches at @ =271/M, 1</ <M -1

e The corresponding comb filter has a transfer
function 1— ;M
G(z)=——
M(A-z7")
whose magnitude has L peaks at o =2kx/ L,
0<k<L-land L(M - 1) notches at @ =2k /LM
1<k<L(M-1)
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3.1 FIR Comb Filters N

e Depending on applications, comb filters with
other types of periodic magnitude responses
can be easily generated by appropriately
choosing the prototype filter

e For example, the M-point moving average
filter |-z M
H(z)=———7+
M(1-z7)
has been used as a prototype
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3.1 FIR Comb Filters N

Comb Filter from M-point moving avarage Prototype

Magnitude
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3. Comb Filters .
!

e Comb filters find applications in the cancellation
of periodic interference.

e Comb filters can be applied in digital color
television receivers for separating the luminance
component and the chrominance components
from the composite video signal.
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3.2 IIR Comb Filters

Comb fliter from lowpass prototype Comb fliter from highpass prototype

Magnitude
Magnitude
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3.2 IIR Comb Filters

e The transfer functions of the simplest forms of
the prototype IIR filter are given by

-1 1

1+z
-1

1-z

H,(2)=K

H =K
l-az™ wr(2) l-az

e The transfer functions of the comb filters of
order L generated are

1+z7*

1-z* _ Ly _
GLP(Z)=HLP(ZL)=K1_0627L Gup(2) = H yp(z )—Kl_aZ,L
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