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Digital Filter Structures :o

1. Block Diagram Representation

Digital Filter Structures .

In the time domain, the input-output relations
of an LTI digital filter is given by the
convolution sum or, by the linear constant
coefficient difference equation

ynl= 2 Hlicldn -]
k=0
N M
Mnl==2 diyln—k]+ 3 piadn -]
k=1 pay
o0 For the implementation of an LTI digital filter, the

input-output relationship must be described by a valid
computational algorithm.
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1. Block Diagram Representation

Block Diagram Representation
Equivalent Structures

Basic FIR Digital Filter Structures
Basic IIR Digital Filter Structures

The convolution sum description of an LTI
discrete-time system can, in principle, be used
to implement the system.

For an [IR finite-dimensional system, this
approach is not practical as here the impulse
response is of infinite length.

However, a direct implementation of the IIR
finite-dimensional system is practical



1. Block Diagram Representation

e To illustrate what we mean by a computa-

tional algorithm, consider the causal first-
order LTI digital filter shown below

y(n)

y[nl=~d y[n-1]+ pyx{n]+ p;x[n—1]

1.1 Basic Building Blocks

1. Block Diagram Representation

\
The computational algorithm of an LTI digital
filter can be conveniently represented in block
diagram form using the basic building blocks
shown below

A
x(n) 4’%’ V) y(m) —»D—» ¥(n)

w(n) Multiplier
Adder

x(n) 4>—I—>X(n)
x(n) ’PEl—> »(n)

x(n)
Unit delay Pick-off node (Branching)

e Using the above equation we can compute y[#]
for n>0 knowing the initial condition y[ —1]
and the input x[#] for n>—1

0] =~d,y[-1]+ px[0]+ px{-1]
y[1]=~d, y[0]+ pyx{1]+ p,x[0]
y2]=~dy[1]+ px[2]+ px[1]

e We can continue this calculation for any value
of n we desire (by iterative computation)

1.1 Basic Building Blocks H

e The corresponding signal flow charts are
shown on the right-hand side

x(n) x(n—1)

x(n)»(?—» ax(n)
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1.1 Basic Building Blocks

1.1 Basic Building Blocks

e Advantages of block diagram/signal flow
chart representation
o Easy to write down the computational algorithm by
inspection.

o Easy to analyze the block diagram to determine the
explicit relation between the output and input.

o0 Easy to manipulate a block diagram to derive other
“equivalent” block diagrams yielding different
computational algorithms.

1.2 Analysis of Block Diagrams

e Advantages of block diagram/signal flow
chart representation (const.)
o0 Easy to determine the hardware requirements.

o Easier to develop block diagram representations from
the transfer function directly.

1.2 Analysis of Block Diagrams

\
e Steps of Analyzing Block Diagrams
o Carried out by writing down the expressions for the
output signals of each adder as a sum of its input
signals, and developing a set of equations relating the
filter input and output signals in terms of all internal
signals

o Eliminating the unwanted internal variables then
results in the expression for the output signal as a
function of the input signal and the filter parameters
that are the multiplier coefficients

Example:

e Consider the single-loop feedback structure
shown below

X0 D] 62 ¥(2)
A
G,(2) j

The output £(z) of the adder is
E(z)=X(2)+G,(2)Y(2)
But from the figure Y(z)= G,(2)E(z)




1.2 Analysis of Block Diagrams

1.3 Canonic and Noncanonic 000
Structures

e Eliminating £(z) from the previous two
equations we arrive at

[1-G,(2)G,(2)] ¥(2) = G, ()X (2)
which leads to

X(z) 1-G(2)G,(2)

1.3 Canonic and Noncanonic
Structures

e A digital filter structure is said to be canonic
if the number of delays in the block diagram
representation is equal to the order of the
transfer function

e Otherwise, it is a noncanonic structure

e The structure shown in the next slide is
noncanonic as it employs two delays to
realize a first-order difference equation

2. Equivalent Structures .

yin]=~d,y[n-1]+ pyx{n]+ p,x[n—1]

e Two digital filter structures are defined to be
equivalent if they have the same transfer
function

e There are a number of methods for the
generation of equivalent structures

e However, a fairly simple way to generate an
equivalent structure from a given realization
1s via the transpose operation



2. Equivalent Structures

e Transpose Operation
(1) Reverse all paths

(2) Replace pick-off nodes by adders, and vice
versa

(3) Interchange the input and output nodes

> All other methods for developing equivalent
structures are based on a specific algorithm
for each structure

2. Equivalent Structures

2. Equivalent Structures .

e Under infinite precision arithmetic any given
realization of a digital filter behaves
identically to any other equivalent structure

e However, in practice, due to the finite
wordlength limitations, a specific realization
behaves totally differently from its other
equivalent realizations

e There are literally an infinite number of
equivalent structures realizing the same
transfer function

e It is thus impossible to develop all equivalent
realizations

e In this course we restrict our attention to a
discussion of some commonly used structures

2. Equivalent Structures .

e Hence, it is important to choose a structure
that has the least quantization effects when
implemented using finite precision arithmetic

e One way to arrive at such a structure is to
determine a large number of equivalent
structures, analyze the finite wordlength
effects in each case, and select the one
showing the least effects



2. Equivalent Structures

e In certain cases, it is possible to develop a
structure that by construction has the least
quantization effects

e Here, we review some simple realizations that
in many applications are quite adequate

3. FIR Digital Filter Structures

3. FIR Digital Filter Structures .

e A causal FIR filter of order N is characterized
by a transfer function H(z) given by

H(z)= kZN;)h[k]z'k

which is a polynomial in z'

e In the time-domain the input-output relation
of the above FIR filter is given by

olo]- S lkla ]

+ Direct Form

¢ Cascade Form

< Polyphase Realization
+ Linear-phase Structure
& Tapped Delay Line

3.1 Direct Form FIR Digital Filter eoo
Structures

e An FIR filter of order N is characterized by
N+1 coefficients and, in general, require N+1
multipliers and N two-input adders

e Structures in which the multiplier coefficients
are precisely the coefficients of the transfer
function are called direct form structures



3.1 Direct Form FIR Digital Filter
Structures

3.1 Direct Form FIR Digital Filter 0ce
Structures

e A direct form realization of an FIR filter can
be readily developed from the convolution
sum description as indicated below for N =4

h . Eﬁ"
N/
h(3) h(4)
y(n)

e An analysis of this structure yields

yln]= holn]+ Afthn —1]+ A2 }[n ~2]
+h[3]x[n 3]+ n[4]x[n - 4]

which is precisely of the form of the
convolution sum description

e The direct form structure shown on the
previous slide is also known as a tapped delay
line or a transversal (1% /1Y) filter.

3.2 Cascade Form FIR Digital Filter oo
Structures

[ X X ]
[ XX
3.1 Direct Form FIR Digital Filter et
Structures o
General Form |
x(n) > = x(n-1) - x(n—2) - x n_3)>z_| x(n—4)
Vh(o) Vh(l) Vh(Z) Vh(S) Vh(4)
» > » - - y(n)
<
x(n)—> Z Z I
Moy T T Tav-2) Tav-p)

e A higher-order FIR transfer function can also
be realized as a cascade of second order FIR
sections and possibly a first-order section

e To this end we express H(z) as
K

H(z) = HO[ [ (1+ B2 + Bz ™)
k=1
where K =N/2 if Niseven,and K =(N+1)/2
if Nis odd, with f,, =0



3.2 Cascade Form FIR Digital Filter
Structures

.. ] ‘
e A cascade realization for N = 6 is shown below
h(0)

3.3 Polyphase Realization

3.3 Polyphase Realization

e H(z) can be expressed as a sum of two terrﬁs,
with one term containing the even-indexed
coefficients and the other containing the odd-
indexed coefficients:

H(z)=(h[0]+h[2]z7 +h[4]z"* +h[6] =" + h[8] ")
#(R[1)z" +h[3)z7 +A[5)2" +A[7]27)

=(n[0]+h[2]z7 +h[4]z* +h(6)z° +h[8]z")
+z7 (h[1)+h[3]z7 +A[S]z +h[7] )

e The polyphase decomposition of H(z) leads to
a parallel form structure

e To illustrate this approach, consider a causal
FIR transfer function H(z) with N = 8:

H ( Z) =HO+H1z" +H2)z" +H3)z" +H4)z™
+H{5]z” +H6)z* + Tz +H8]z

3.3 Polyphase Realization

: : |
e By using the notation

E,(z)=h[0]+n[2]z" +h[4]z7 +h[6]z" + h[8]z™
E (z)=h[1]+h[3]z" +h[5]z7 +h[7]z"
we can express H(z) as

H(Z)= E, (zz)+ z'E, (zz)



3.3 Polyphase Realization

. : P
e In a similar manner, by grouping the terms in
the original expression for H(z), we can re-

express it in the form

H(z) =FE, (23 )+ ZflEl (23 )+ 272E2 (23)
where we have
E,(z)=h[0]+h[3]z" +h[6]z"
E,(z)=h[1]+h[4]z" +A[7]="
E,(z)=h[2]+h[5]z" +h[8]z"

3.3 Polyphase Realization

3.3 Polyphase Realization

e In the general case, an L-branch polyphase‘
decomposition of an FIR transfer function of
order N is of the form

H(z)=Y"" z"E,(z")

where [(N+1)/L |
E(z2)= >, hLn+m]z™"
n=0

with p[n]=0 forn>N

e The decomposition of H(z) in the form

H(z) =K, (zz )+ Z_IE1 (22)
H(Z) =K, (23)+ ZflEl (23)+ 272E2 (23)

is more commonly known as the polyphase
decomposition

3.3 Polyphase Realization

e Figures below show the 4-branch, 3-branch|,
and 2-branch polyphase realization of a
transfer function H(z)




3.3 Polyphase Realization 3.3 Polyphase Realization .

e The subfilters E,(z") in the polyphase | e Figure below shows a canonic realization ofa
realization of an FIR transfer function are also length-9 FIR transfer function obtained using
FIR filters and can be realized using any delay sharing
methods described so far —>

e However, to obtain a canonic realization of ] =
the overall structure, the delays in all
subfilters must be shared |

H>h[0]
3.4 Linear-Phase FIR Digital Filter EE:' 3.4 Linear-Phase FIR Digital Filter EE:'
Structures . Structures .

e Linear-phase FIR filter of length N is |
characterized by the symmetric impulse e Length N+1 is odd ( N=6)
response Ml = KN —n] H(z)=h[0]+A[1]z" +h[2] 2 +h[3]z" +h[2] z* + A[1] 2> + 0] =

e An antisymmetric impulse response condition =H[0J1+z )+ A}z + 2 )+ A2z + 2 )+ A[3)

h[n]=—-h[N —n]

results in a constant group delay and “linear-
phase” property

N
! H
L i

e Symmetry of the impulse response R
coefficients can be used to reduce the number o
of multiplications




3.4 Linear-Phase FIR Digital Filter
Structures

e The Type 1 linear-phase structure for a length-
7 FIR filter requires 4 multipliers, whereas a
direct form realization requires 6 multipliers

3.4 Linear-Phase FIR Digital Filter
Structures

h(0) Yh(1) Yh(2) Yh(3)

e The Type 2 linear-phase structure for a length-
8 FIR filter requires 4 multipliers, whereas a
direct form realization requires 7 multipliers

3.4 Linear-Phase FIR Digital Filter oct
Structures

e Length N+1 is even ( N=7)
H(z)=h[0]+ A1l + A[2]7% + n[3)z7

+ h[3]zf4 + h[2]275 + h[l]z*7 + h[O]z”

U RN e e T S

e 1
b ﬁ; b
=]

N
?(l) h(2) ?(3)

]
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3.4 Linear-Phase FIR Digital Filter 0ce
Structures H
[
_ General Form
oven TyPe2and |
x(n)
(N+1) /2
multipliers
A0 AOY Ry ¢y h( ]v
Yin) o= b - < Direct Form
N:;dis Type 1and 3 needs N
x(n) e - - AN multipliers
| Y
= <1 <+1 <E ‘ N/2
= hES 3 multiplier
0) Y W) \ h(ﬁ—l ultiphers
() o—a—t - - -2

11



3.5 Tapped Delay Line

e The structure consists of a chain of M, +M,
+M, unit delays with taps at the input, at the
end of first M1 delays, at the end of next M2
delays, and at the output, respectively.

Anl ,M z’”‘|
Q a, a, a;
n
+ A D3

4. lIR Digital Filter Structures

3.5 Tapped Delay Line

¢ Direct Form
¢ Cascade Form
¢ Parallel Form

e The direct form FIR structure of the figure
can be seen to be a special case of a tapped
delay line, where there is a tap after each unit

delay.
x(n) Fy y(n)
2! 2!
Pl _d]

[ X X J

esos
4.1 Direct Form IIR Digital Filter eoe

Structures .

e The causal IIR digital filters we are concerned
with in this course are characterized by a real
rational transfer function of z 'or,
equivalently by a constant coefficient
difference equation.

e From the difference equation representation, it
can be seen that the realization of the causal
IIR digital filters requires some form of
feedback.

12



4.1 Direct Form IIR Digital Filter
Structures

\
e Direct forms -- Coefficients are directly the
transfer function coefficients

e Consider for simplicity a 3rd-order IIR filter
with a transfer function (assuming ¢, =1)
Hz=L@ _pt plzl' + p2222 + p3233
D(z) l+dz +d,z” +d;z
e We can implement H(z) as a cascade of two
filter sections as shown below

X(z) —» H\(2) J(L H,(z) —»Y(2)

4.1 Direct Form IIR Digital Filter
Structures

4.1 Direct Form IIR Digital Filter 0ce
Structures

|
e The time-domain representation of /,(z) is
given by
yinl=win]=d,yln-1]-d,y[n-2]-d,y[n-3]
e Realization of H,(z) follows from the above
equation and is shown below

w(n) y(n)

y(n=1)

y(n=2)

—d [ y(n-3)

[
o where H,(z)=P(2)= p,+ pz '+ p,z "+ p,z”
H,(z)=1/D(z)

e The filter section /,(z) can be seen to be an

FIR filter and can be realized as shown below
Do

x(n) w(n)

271

b

—1
z

b,

~1
z

Ps

4.1 Direct Form IIR Digital Filter eoe
Structures

|
e Considering the basic cascade realization
results in Direct form | :

1
H(z)=P(z)
D(z)
x(n) Do n)
z”! '\
D -d,
27! Ea
Dy —-d
z7! 27
Ps —d,
zeros poles

13



4.1 Direct Form IIR Digital Filter eoe

4.1 Direct Form IIR Digital Filter

Structures Structures
\ |
e Changing the order of blocks in cascade e Observe in the direct form structure shown
results in Direct form 11 : below, the signal variable at nodes (1) and(@’)
1 1 are the same, and hence the two top delays
H(Z):P(Z)'D(Z):D(Z)'P(Z) can be shared
x(n) P () e Following the same argument, the bottom two
i -, delays can be shared
oo = e Sharing of all delays reduces the total number
% |5 @ L of delays to 3 resulting in a canonic
- realization along with its transpose structure.
—d, o)) D3

poles zeros

[ X X ]
0000 0000
4.1 Direct Form IIR Digital Filter et ecet
Structures . 4.2 Cascade Realizations .

e Sharing of all delays reduces the total number of
delays to 3 resulting in a canonic realization
shown below along with its transpose structure.

e By expressing the numerator and the
denominator polynomials of the transfer
function as a product of polynomials of lower

Po Py .o .

) i degree, a digital filter can be realized as a
@ | p p | -4 cascade of low-order filter sections

7 7 e Consider, for example, H(z)=P(z)/D(z)
A O expressed as H(z)= H,(z)H,(z)---H,(z)

A z z)=H (z)H,(z Nz
Sl pld _ R@PAERE)

o Direct form realizations of an N-th order IIR transfer D, (z)D,(z)---D,(z)

function should be evidént.

14



4.2 Cascade Realizations

e Consider, for example, H(z)=P(z)/D(z)
expressed as

H(Z): Hl(Z)Hz(Z)"'Hk(Z)
_ REP(E)R()
D\ (2)D,(z)---D,(2)

4.2 Cascade Realizations

4.2 Cascade Realizations

e There are altogether a total of 36 (P - P)
different cascade realizations of

H(z) =L@ - ROREARE)
D(z) DI(Z)DZ(Z)D3(Z)

based on pole-zero-pairings and ordering

e Due to finite wordlength effects, each such

cascade realization behaves differently from
Others

e Examples of cascade realizations obtained by
different pole-zero pairings are shown below

R(z) B(2) B(2) B(2) B (2) B(2)
— » » —»
Dl(z) Dz(z) D}(z) D,(z) Dz(z) Dl(z)
R()| _|A(G) B(2) |R®| _|BG) B(2)

—>
D;,(2), D (2) D,(z) D,(2) D (2) Dy(z2)
R(z) B(2) P(2) R(z) B(2) P(2)
D\(z) D;(z) D, (z) Dy(z2) D,(2) D\(2)
[ X X ]
0000
[ X XX}
[ LX)
; ; (X ]
4.2 Cascade Realizations H
[
b
x(n) <> Gy ()
szl b A T
S a; |-
x(n-1)* > <+ Y-
APV VT U I
x(n—-2)#" T2 LT A y(n-2)
F(z) D(z)
x(n) 4> 7V1V1 > 20l y(n)
o ANEA
A a A Lbl A
ke >
Zy v _
A ay Y LbzA
Dy(z) F(2)
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4.2 Cascade Realizations

|

e Usually, the polynomials are factored into a
product of 1st-order and 2nd-order (sos)
polynomials:

H(z)= poH(l+ﬂlkZ_ +ﬁ2kz_2]

-1 _
P\l+a,z +a,z

for a first-order factor «,, = f3,, =0

by

/

_—
L L

) 4 Y,

z
1+ﬁ,jz’1 +ﬁ2jz’2 I » b
- \
=]

’d .
-~} |

A g y(n)

1,(2) -0,z +a, 27 A A
J J

4.2 Cascade Realizations

4.2 Cascade Realizations .

e One possible realization is shown below
Po

—ay, ﬂll —Qp ﬁlz

—0y P

e General structure:

— H@ | H@

e Realizing complex conjugate poles and zeros
with second order blocks results in real
coefficients

Example
e Third order transfer function

H(z)—@— (1+,6’Hz ][1+,Blzz + B,z j

= =P = - =
D(z) l+a,z" \1+a,z" +a,z”

4.2 Cascade Realizations .

Example

e Direct form Il and cascade form realizations
of

0.44z° +0.362z +0.02
z)=
(22 +0.82+0.5)(z—0.4)

_(o.44+0.36221+o.0222J( z” j

1+08z7" +0.5z72 1-04z"

16



4.2 Cascade Realizations

Example
e Direct form II and cascade form realizations

4.3 Parallel Realizations

Direct Form 1l Cascade Form

4.3 Parallel Realizations

e Parallel realizations are obtained by making
use of the partial fraction expansion of the
transfer function

Parallel form 1I: . .
H(z)=9, +Z( OuZ_+0nZ 2]

-1 —
T\ U+a,z ta,,z

for a real pole

Ay =0, =0

e Parallel realizations are obtained by making
use of the partial fraction expansion of the
transfer function

Parallel form I

-1
Yor V2
HEz)=y,+ E
(2)=7, p 1+alkzl+a2kzzj

for a real pole

Ay =7 =0

4.3 Parallel Realizations

e The two basic parallel realizations of a 3rd
order IR transfer function are shown below

7o 0,
x(n) ) Yo x(n) ‘
1 y(n) ]
z z
—on -a, | Oy y(m)
Yoz
B -1
z7y z
—a, 712 —a, S
7 z7!
—Qy —Qxn On
Parallel Form | Parallel Form Il

17



4.3 Parallel Realizations

e General structure:

e Easy to realize:
No choices in section ordering and
No choices in pole and zero pairing

4.3 Parallel Realizations

4.3 Parallel Realizations

e Their realizations are parallel form I shown
below

0.1 ~0.1
4

0.6

-0.8 | -0.2

Parallel Form |

Example

e A partial-fraction expansion of
0.44+0.362z7 +0.002z"

H(z)=
_ _() 1+0.4z7'+0.1822-0.2z"°
in z 'yields |
H(z)= 01+ 0.6 -0.5-02z

+
1-0.4z" 1+0.8z7+0.5z7
e Likewise, a partial-fraction expansion of H(z)

in z yields 024z 0221402552
H(Z) = - + 1 -2
1-04z" 1+082'+0.5z2

4.3 Parallel Realizations

|
e Likewise, a partial-fraction expansion of H(z)

in z yields parallel form I1
-1 -1 -2
H(z) 0.24z 0.2z7 +0.25z

= +
1-04z7" 1+0.827+0.5z7

04 1024

-0.8 02

-0.5 .
Parallel Form II 925




4.3 Parallel Realizations

e Consider

4.3 Parallel Realizations

-N N-1
e Consider H(z)= 1-z Z HK]
N z

—k -1
k:Ol_WN
e .- . . JHO) -
, g
N " >\ ‘
H(1)
. (1))
wy :

]
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