

- Block Diagram Representation
- Equivalent Structures
- Basic FIR Digital Filter Structures
- Basic IIR Digital Filter Structures

1. Block Diagram Representation

• In the time domain, the input-output relations of an LTI digital filter is given by the convolution sum or, by the linear constant coefficient difference equation

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$
$$y[n] = -\sum_{k=1}^{N} d_{k}y[n-k] + \sum_{k=0}^{M} p_{k}x[n-k]$$

For the implementation of an LTI digital filter, the input-output relationship must be described by a valid computational algorithm.

- The convolution sum description of an LTI discrete-time system can, in principle, be used to implement the system.
- For an IIR finite-dimensional system, this approach is not practical as here the impulse response is of infinite length.
- However, a direct implementation of the IIR finite-dimensional system is practical

1. Block Diagram Representation

• To illustrate what we mean by a computational algorithm, consider the causal firstorder LTI digital filter shown below

1.1 Basic Building Blocks

• The computational algorithm of an LTI digital filter can be conveniently represented in block diagram form using the basic building blocks shown below

- Using the above equation we can compute *y*[*n*] for *n*≥0 knowing the initial condition *y*[−1] and the input *x*[*n*] for *n*≥−1
 - $y[0] = -d_1y[-1] + p_0x[0] + p_1x[-1]$ $y[1] = -d_1y[0] + p_0x[1] + p_1x[0]$ $y[2] = -d_1y[1] + p_0x[2] + p_1x[1]$
- We can continue this calculation for any value of *n* we desire (by iterative computation)

• The corresponding signal flow charts are shown on the right-hand side

1.1 Basic Building Blocks

- Advantages of block diagram/signal flow chart representation
 - Easy to write down the computational algorithm by inspection.

•••

- Easy to analyze the block diagram to determine the explicit relation between the output and input.
- Easy to manipulate a block diagram to derive other "equivalent" block diagrams yielding different computational algorithms.

1.1 Basic Building Blocks

- Advantages of block diagram/signal flow chart representation (const.)
 - Easy to determine the hardware requirements.
 - Easier to develop block diagram representations from the transfer function directly.

....

1.2 Analysis of Block Diagrams

• Steps of Analyzing Block Diagrams

- Carried out by writing down the expressions for the output signals of each adder as a sum of its input signals, and developing a set of equations relating the filter input and output signals in terms of all internal signals
- Eliminating the unwanted internal variables then results in the expression for the output signal as a function of the input signal and the filter parameters that are the multiplier coefficients

1.2 Analysis of Block Diagrams

Example:

• Consider the single-loop feedback structure shown below

The output E(z) of the adder is

 $E(z) = X(z) + G_2(z)Y(z)$ But from the figure $Y(z) = G_1(z)E(z)$

1.2 Analysis of Block Diagrams

• Eliminating *E*(*z*) from the previous two equations we arrive at

 $[1 - G_1(z)G_2(z)]Y(z) = G_1(z)X(z)$

....

which leads to

$$H(z) = \frac{Y(z)}{X(z)} = \frac{G_1(z)}{1 - G_1(z)G_2(z)}$$

1.3 Canonic and Noncanonic Structures

- A digital filter structure is said to be canonic if the number of delays in the block diagram representation is equal to the order of the transfer function
- Otherwise, it is a noncanonic structure
- The structure shown in the next slide is noncanonic as it employs two delays to realize a first-order difference equation

- Two digital filter structures are defined to be equivalent if they have the same transfer function
- There are a number of methods for the generation of equivalent structures
- However, a fairly simple way to generate an equivalent structure from a given realization is via the transpose operation

2. Equivalent Structures

• Transpose Operation

(1) Reverse all paths

- (2) Replace pick-off nodes by adders, and vice versa
- (3) Interchange the input and output nodes
- X All other methods for developing equivalent structures are based on a specific algorithm for each structure

2. Equivalent Structures

- There are literally an infinite number of equivalent structures realizing the same transfer function
- It is thus impossible to develop all equivalent realizations
- In this course we restrict our attention to a discussion of some commonly used structures

2. Equivalent Structures

- Under infinite precision arithmetic any given realization of a digital filter behaves identically to any other equivalent structure
- However, in practice, due to the finite wordlength limitations, a specific realization behaves totally differently from its other equivalent realizations

2. Equivalent Structures

- Hence, it is important to choose a structure that has the least quantization effects when implemented using finite precision arithmetic
- One way to arrive at such a structure is to determine a large number of equivalent structures, analyze the finite wordlength effects in each case, and select the one showing the least effects

2. Equivalent Structures

- In certain cases, it is possible to develop a structure that by construction has the least quantization effects
- Here, we review some simple realizations that in many applications are quite adequate

3. FIR Digital Filter Structures

- Direct Form
- ◆ Cascade Form
- ◆ Polyphase Realization
- ◆ Linear-phase Structure
- ♦ Tapped Delay Line

3. FIR Digital Filter Structures

• A causal FIR filter of order N is characterized by a transfer function H(z) given by

$$H(z) = \sum_{k=0}^{N} h[k] z^{-k}$$

which is a polynomial in z^{-1}

• In the time-domain the input-output relation of the above FIR filter is given by

$$y[n] = \sum_{k=0}^{N} h[k] x[n-k]$$

- An FIR filter of order N is characterized by N+1 coefficients and, in general, require N+1 multipliers and N two-input adders
- Structures in which the multiplier coefficients are precisely the coefficients of the transfer function are called direct form structures

3.1 Direct Form FIR Digital Filter Structures

• A direct form realization of an FIR filter can be readily developed from the convolution sum description as indicated below for *N*=4

3.1 Direct Form FIR Digital Filter Structures

• An analysis of this structure yields

y[n] = h[0]x[n] + h[1]x[n-1] + h[2]x[n-2]+ h[3]x[n-3] + h[4]x[n-4] .

which is precisely of the form of the convolution sum description

• The direct form structure shown on the previous slide is also known as a tapped delay line or a transversal (横截型) filter.

3.2 Cascade Form FIR Digital Filter Structures	

- A higher-order FIR transfer function can also be realized as a cascade of second order FIR sections and possibly a first-order section
- To this end we express H(z) as

 $H(z) = h[0] \prod_{k=1}^{K} \left(1 + \beta_{1k} z^{-1} + \beta_{2k} z^{-2} \right)$

where K = N/2 if N is even, and K = (N+1)/2if N is odd, with $\beta_{2K} = 0$

3.2 Cascade Form FIR Digital Filter Structures

• A cascade realization for N = 6 is shown below

3.3 Polyphase Realization

• *H*(*z*) can be expressed as a sum of two terms, with one term containing the even-indexed coefficients and the other containing the odd-indexed coefficients:

$$H(z) = (h[0] + h[2]z^{-2} + h[4]z^{-4} + h[6]z^{-6} + h[8]z^{-8}) + (h[1]z^{-1} + h[3]z^{-3} + h[5]z^{-5} + h[7]z^{-7}) = (h[0] + h[2]z^{-2} + h[4]z^{-4} + h(6)z^{-6} + h[8]z^{-8}) + z^{-1}(h[1] + h[3]z^{-2} + h[5]z^{-4} + h[7]z^{-6})$$

•••

3.3 Polyphase Realization

- The polyphase decomposition of *H*(*z*) leads to a parallel form structure
- To illustrate this approach, consider a causal FIR transfer function *H*(*z*) with *N* = 8:

$$H(z) = h[0] + h[1]z^{-1} + h[2]z^{-2} + h[3]z^{-3} + h[4]z^{-4} + h[5]z^{-5} + h[6]z^{-6} + h[7]z^{-7} + h[8]z^{-8}$$

3.3 Polyphase Realization

• By using the notation

 $E_0(z) = h[0] + h[2]z^{-1} + h[4]z^{-2} + h[6]z^{-3} + h[8]z^{-4}$ $E_1(z) = h[1] + h[3]z^{-1} + h[5]z^{-2} + h[7]z^{-3}$ we can express H(z) as

....

$$H(z) = E_0(z^2) + z^{-1}E_1(z^2)$$

3.3 Polyphase Realization

• In a similar manner, by grouping the terms in the original expression for H(z), we can reexpress it in the form

$$H(z) = E_0(z^3) + z^{-1}E_1(z^3) + z^{-2}E_2(z^3)$$

where we have

$$E_0(z) = h[0] + h[3]z^{-1} + h[6]z^{-2}$$

$$E_1(z) = h[1] + h[4]z^{-1} + h[7]z^{-2}$$

$$E_2(z) = h[2] + h[5]z^{-1} + h[8]z^{-2}$$

3.3 Polyphase Realization

• The decomposition of H(z) in the form

$$H(z) = E_0(z^2) + z^{-1}E_1(z^2)$$

or

$$H(z) = E_0(z^3) + z^{-1}E_1(z^3) + z^{-2}E_2(z^3)$$

.

is more commonly known as the polyphase decomposition

3.3 Polyphase Realization

• In the general case, an *L*-branch polyphase decomposition of an FIR transfer function of order \hat{N} is of the form

. . . .

$$H(z) = \sum_{m=0}^{L-1} z^{-m} E_m(z^L)$$

where

where

$$E_m(z) = \sum_{n=0}^{\lfloor (N+1)/L \rfloor} h[Ln+m]z^{-m}$$
with $h[n] = 0$ for $n > N$

• Figures below show the 4-branch, 3-branch, and 2-branch polyphase realization of a transfer function H(z)

3.3 Polyphase Realization

- The subfilters $E_{m}(z^{L})$ in the polyphase realization of an FIR transfer function are also FIR filters and can be realized using any methods described so far
- However, to obtain a canonic realization of the overall structure, the delays in all subfilters must be shared

3.3 Polyphase Realization

• Figure below shows a canonic realization of a length-9 FIR transfer function obtained using delay sharing

3.4 Linear-Phase FIR Digital Filter **Structures**

• Linear-phase FIR filter of length N is characterized by the symmetric impulse response h

$$[n] = h[N - n]$$

• An antisymmetric impulse response condition h[n] = -h[N-n]

results in a constant group delay and "linearphase" property

• Symmetry of the impulse response coefficients can be used to reduce the number of multiplications

3.4 Linear-Phase FIR Digital Filter Structures	
• Length $N+1$ is odd ($N=6$)	

....

 $H(z) = h[0] + h[1]z^{-1} + h[2]z^{-2} + h[3]z^{-3} + h[2]z^{-4} + h[1]z^{-5} + h[0]z^{-6}$ $=h[0](1+z^{-6})+h[1](z^{-1}+z^{-5})+h[2](z^{-2}+z^{-4})+h[3]z^{-3}$

• The Type 1 linear-phase structure for a length-7 FIR filter requires 4 multipliers, whereas a direct form realization requires 6 multipliers

• The Type 2 linear-phase structure for a length-8 FIR filter requires 4 multipliers, whereas a direct form realization requires 7 multipliers

3.5 Tapped Delay Line

• The structure consists of a chain of $M_1 + M_2 + M_3$ unit delays with taps at the input, at the end of first M1 delays, at the end of next M2 delays, and at the output, respectively.

4. IIR Digital Filter Structures

- Direct Form
- Cascade Form
- Parallel Form

3.5 Tapped Delay Line

• The direct form FIR structure of the figure can be seen to be a special case of a tapped delay line, where there is a tap after each unit delay.

....

....

4.1 Direct Form IIR Digital Filter Structures

- The causal IIR digital filters we are concerned with in this course are characterized by a real rational transfer function of z⁻¹or, equivalently by a constant coefficient difference equation.
- From the difference equation representation, it can be seen that the realization of the causal IIR digital filters requires some form of feedback.

4.1 Direct Form IIR Digital Filter Structures

- Direct forms -- Coefficients are directly the transfer function coefficients
- Consider for simplicity a 3rd-order IIR filter with a transfer function (assuming $d_0 = 1$)

$$H(z) = \frac{P(z)}{D(z)} = \frac{p_0 + p_1 z^{-1} + p_2 z^{-2} + p_3 z^{-3}}{1 + d_1 z^{-1} + d_2 z^{-2} + d_3 z^{-3}}$$

• We can implement *H*(*z*) as a cascade of two filter sections as shown below

$$X(z) \longrightarrow H_1(z) \longrightarrow W(z) \longrightarrow H_2(z) \longrightarrow Y(z)$$

4.1 Direct Form IIR Digital Filter Structures

• The time-domain representation of $H_2(z)$ is given by

 $y[n] = w[n] - d_1 y[n-1] - d_2 y[n-2] - d_3 y[n-3]$

• Realization of $H_2(z)$ follows from the above equation and is shown below

$$w(n) \xrightarrow{z^{-1}} y(n)$$

$$(1) \xrightarrow{z^{-1}} y(n-1)$$

$$(1) \xrightarrow{z^{-1}} y(n-2)$$

$$(2) \xrightarrow{z^{-1}} y(n-2)$$

$$(2) \xrightarrow{z^{-1}} y(n-3)$$

4.1 Direct Form IIR Digital Filter Structures

- $+ n z^{-1} + n z^{-2} + n z^{-3}$
- where $H_1(z) = P(z) = p_0 + p_1 z^{-1} + p_2 z^{-2} + p_3 z^{-3}$ $H_2(z) = 1/D(z)$
- The filter section $H_1(z)$ can be seen to be an FIR filter and can be realized as shown below

4.1 Direct Form IIR Digital Filter Structures

• Considering the basic cascade realization results in *Direct form* I :

4.1 Direct Form IIR Digital Filter Structures

• Changing the order of blocks in cascade results in *Direct form* II :

4.1 Direct Form IIR Digital Filter Structures

• Sharing of all delays reduces the total number of delays to 3 resulting in a canonic realization shown below along with its transpose structure.

Direct form realizations of an *N*-th order IIR transfer function should be evident.

4.1 Direct Form IIR Digital Filter Structures

- Observe in the direct form structure shown below, the signal variable at nodes 1 and 1 are the same, and hence the two top delays can be shared
- Following the same argument, the bottom two delays can be shared
- Sharing of all delays reduces the total number of delays to 3 resulting in a canonic realization along with its transpose structure.

4.2 Cascade Realizations

- By expressing the numerator and the denominator polynomials of the transfer function as a product of polynomials of lower degree, a digital filter can be realized as a cascade of low-order filter sections
- Consider, for example, H(z) = P(z)/D(z)expressed as $H(z) = H_1(z)H_2(z)\cdots H_k(z)$ $P(z)P_1(z)\cdots P_n(z)$

$$=\frac{T_{1}(z)T_{2}(z)}{D_{1}(z)D_{2}(z)\cdots D_{k}(z)}$$

4.2 Cascade Realizations

• Consider, for example, H(z)=P(z)/D(z) expressed as

....

$$H(z) = H_1(z)H_2(z)\cdots H_k(z)$$
$$= \frac{P_1(z)P_2(z)\cdots P_k(z)}{D_1(z)D_2(z)\cdots D_k(z)}$$

• Examples of cascade realizations obtained by different pole-zero pairings are shown below

4.2 Cascade Realizations

• There are altogether a total of 36 ($P_3^2 \cdot P_3^2$) different cascade realizations of

 $H(z) = \frac{P(z)}{D(z)} = \frac{P_1(z)P_2(z)P_3(z)}{D_1(z)D_2(z)D_3(z)}$

based on pole-zero-pairings and ordering

• Due to finite wordlength effects, each such cascade realization behaves differently from Others

4.2 Cascade Realizations

• Usually, the polynomials are factored into a product of 1st-order and 2nd-order (sos) polynomials:

$$H(z) = p_0 \prod_{k} \left(\frac{1 + \beta_{1k} z^{-1} + \beta_{2k} z^{-2}}{1 + \alpha_{1k} z^{-1} + \alpha_{2k} z^{-2}} \right)$$

for a first-order factor $\alpha_{2k} = \beta_{2k} = 0$

4.2 Cascade Realizations

• One possible realization is shown below

4.2 Cascade Realizations

- Realizing complex conjugate poles and zeros with second order blocks results in real coefficients

Example

• Third order transfer function

$$H(z) = \frac{P(z)}{D(z)} = p_0 \left(\frac{1 + \beta_{11} z^{-1}}{1 + \alpha_{11} z^{-1}}\right) \left(\frac{1 + \beta_{12} z^{-1} + \beta_{22} z^{-2}}{1 + \alpha_{12} z^{-1} + \alpha_{22} z^{-2}}\right)$$

Example

• Direct form II and cascade form realizations of

$$H(z) = \frac{0.44z^{2} + 0.362z + 0.02}{(z^{2} + 0.8z + 0.5)(z - 0.4)}$$
$$= \left(\frac{0.44 + 0.362z^{-1} + 0.02z^{-2}}{1 + 0.8z^{-1} + 0.5z^{-2}}\right) \left(\frac{z^{-1}}{1 - 0.4z^{-1}}\right)$$

4.2 Cascade Realizations

Example

• Direct form II and cascade form realizations

....

4.3 Parallel Realizations

• Parallel realizations are obtained by making use of the partial fraction expansion of the transfer function

Parallel form II:

$$H(z) = \delta_0 + \sum_{k} \left(\frac{\delta_{1k} z^{-1} + \delta_{2k} z^{-2}}{1 + \alpha_{1k} z^{-1} + \alpha_{2k} z^{-2}} \right)$$

for a real pole

$$\alpha_{2k} = \delta_{2k} = 0$$

4.3 Parallel Realizations

• Parallel realizations are obtained by making use of the partial fraction expansion of the transfer function

Parallel form I:

$$H(z) = \gamma_0 + \sum_{k} \left(\frac{\gamma_{0k} + \gamma_{1k} z^{-1}}{1 + \alpha_{1k} z^{-1} + \alpha_{2k} z^{-2}} \right)$$

.

for a real pole

$$\alpha_{2k} = \gamma_{1k} = 0$$

• The two basic parallel realizations of a 3rd order IIR transfer function are shown below

4.3 Parallel Realizations

• General structure:

••••

- Easy to realize:
 - No choices in section ordering and No choices in pole and zero pairing

4.3 Parallel Realizations

• Their realizations are *parallel form I* shown

4.3 Parallel Realizations

Example

• A partial-fraction expansion of $H(z) = \frac{0.44 + 0.362z^{-2} + 0.002z^{-3}}{1 + 0.4z^{-1} + 0.18z^{-2} - 0.2z^{-3}}$ in z^{-1} yields $H(z) = -0.1 + \frac{0.6}{1 - 0.4z^{-1}} + \frac{-0.5 - 0.2z^{-1}}{1 + 0.8z^{-1} + 0.5z^{-2}}$ • Likewise, a partial-fraction expansion of H(z)in z yields $H(z) = \frac{0.24z^{-1}}{1 - 0.4z^{-1}} + \frac{0.2z^{-1} + 0.25z^{-2}}{1 + 0.8z^{-1} + 0.5z^{-2}}$

4.3 Parallel Realizations

• Likewise, a partial-fraction expansion of *H*(*z*) in *z* yields *parallel form II*

4.3 Parallel Realizations

• Consider

$$H(z) = \frac{1 - z^{-N}}{N} \cdot \sum_{k=0}^{N-1} \frac{H[k]}{1 - W_N^{-k} z^{-1}}$$
$$H(z) = \frac{1}{N} H_c(z) \cdot \sum_{k=0}^{N-1} H_k(z)$$
$$\begin{cases} H_c(z) = 1 - z^{-N} \\ H_k(z) = \frac{H[k]}{1 - W_N^{-k} z^{-1}} \end{cases}$$

