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Digital Filter Structures

Digital Filter Structures

 Block Diagram RepresentationBlock Diagram Representation
 Equivalent StructuresEquivalent Structures
 Basic FIR Digital Filter StructuresBasic FIR Digital Filter Structures
 Basic IIR Digital Filter StructuresBasic IIR Digital Filter Structuresgg

1. Block Diagram Representation

 In the time domain, the input-output relationsIn the time domain, the input output relations 
of an LTI digital filter is given by the 
convolution sum or, by the linear constant linear constant 
coefficient difference equationcoefficient difference equation
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 For the implementation of an LTI digital filter, the 
input-output relationship must be described by a validvalid
computational algorithm.
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1. Block Diagram Representation

 The convolution sumconvolution sum description of an LTIThe convolution sumconvolution sum description of an LTI 
discrete-time system can, in principle, be used 
to implement the system.

 For an IIR finite-dimensional system, this 
approach is not practical as here the impulse impulse 
response is of infinite lengthresponse is of infinite lengthresponse is of infinite lengthresponse is of infinite length.

 However, a direct implementation of the IIR 
finite-dimensional system is practical
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1. Block Diagram Representation

 To illustrate what we mean by a computa-To illustrate what we mean by a computa
tional algorithm, consider the causal firstcausal first--
order LTI digital filterorder LTI digital filter shown below

1 1

0p
( )x n ( )y n0 [ ]p x n

1 [ 1]d y n 
1z 1z

1p 1d

1 [ 1]p x n 

1 0 1[ ] [ 1] [ ] [ 1]y n d y n p x n p x n     

1. Block Diagram Representation

 Using the above equation we can compute y[n]Using the above equation we can compute y[n]
for n≥0 knowing the initial condition y[－1]
and the input x[n] for n≥－1

1 0 1[0] [ 1] [0] [ 1]y d y p x p x     
1 0 1[1] [0] [1] [0]y d y p x p x   

[2] [1] [2] [1]d
 We can continue this calculation for any value 

of n we desire (by iterative computationby iterative computation)

1 0 1[2] [1] [2] [1]y d y p x p x   

1.1 Basic Building Blocks

 The computational algorithm of an LTI digital 
fil b i l d i bl kbl kfilter can be conveniently represented in block block 
diagramdiagram form using the basic building blocksbasic building blocks
shown below

( )x n ( )y n ( )x n ( )y n

1z( )x n ( )y n

( )x n ( )x n

( )x n

( )w n

 The corresponding signal flow chartssignal flow charts are

1.1 Basic Building Blocks

The corresponding signal flow chartssignal flow charts are 
shown on the right-hand side
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1.1 Basic Building Blocks

 Advantages of block diagram/signal flow 
h ichart representation

 Easy to write down the computational algorithm by 
inspection.

 Easy to analyze the block diagram to determine the 
explicit relation between the output and input.

 Easy to manipulate a block diagram to derive other Easy to manipulate a block diagram to derive other 
“equivalent” block diagrams yielding different 
computational algorithms.

1.1 Basic Building Blocks

 Advantages of block diagram/signal flow 
h i ( )chart representation (const.)

 Easy to determine the hardware requirements.
 Easier to develop block diagram representations from 

the transfer function directly.

1.2 Analysis of Block Diagrams

 Steps of Analyzing Block DiagramsSteps of Analyzing Block Diagrams
 Carried o t b riting do n the e pressions for the Carried out by writing down the expressions for the 

output signals of each adder as a sum of its input 
signals, and developing a set of equations relating the 
filter input and output signals in terms of all internal 
signals

 Eliminating the unwanted internal variables then Eliminating the unwanted internal variables then 
results in the expression for the output signal as a 
function of the input signal and the filter parameters 
that are the multiplier coefficients

1.2 Analysis of Block Diagrams

Example:Example:

 Consider the single-loop feedback structure 
shown below

1( )G z

2 ( )G z

( )X z ( )Y z( )E z

The output E(z) of the adder is

But from the figure

2 ( )

2( ) ( ) ( ) ( )E z X z G z Y z 

1( ) ( ) ( )Y z G z E z
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1.2 Analysis of Block Diagrams

 Eliminating E(z) from the previous two g ( ) p
equations we arrive at

which leads to
 1 2 11 ( ) ( ) ( ) ( ) ( )G z G z Y z G z X z 

1( )( )( ) G zY zH 1

1 2

( )( )( )
( ) 1 ( ) ( )

H z
X z G z G z

 


1.3 Canonic and Noncanonic 
Structures

 A digital filter structure is said to be canoniccanonic A digital filter structure is said to be canoniccanonic
if the number of delays in the block diagram 
representation is equal to the order of the 
transfer function

 Otherwise, it is a noncanonicnoncanonic structure
Th t t h i th t lid i The structure shown in the next slide is 
noncanonic as it employs two delays to 
realize a first-order difference equation

1.3 Canonic and Noncanonic 
Structures

1z

0p
( )x n ( )y n

1z

1 0 1[ ] [ 1] [ ] [ 1]y n d y n p x n p x n     

1p 1d

2. Equivalent Structures

 Two digital filter structures are defined to be Two digital filter structures are defined to be 
equivalentequivalent if they have the same transfer 
function

 There are a number of methods for the 
generation of equivalent structures

 However, a fairly simple way to generate an 
equivalent structure from a given realization 
is via the transpose operationtranspose operation
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2. Equivalent Structures

 Transpose OperationTranspose Operationp pp p
(1) Reverse all paths
(2) Replace pick-off nodes by adders, and vice 

versa
(3) Interchange the input and output nodes
※ All other methods for developing equivalent 

structures are based on a specific algorithm 
for each structure

2. Equivalent Structures

 There are literally an infinite number of There are literally an infinite number of 
equivalent structures realizing the same 
transfer function

 It is thus impossible to develop all equivalent 
realizations

hi i i In this course we restrict our attention to a 
discussion of some commonly used structures

2. Equivalent Structures

 Under infiniteinfinite precisionprecision arithmetic any given Under infiniteinfinite precisionprecision arithmetic any given 
realization of a digital filter behaves 
identically to any other equivalent structure

 However, in practice, due to the finite finite 
wordlength limitationswordlength limitations, a specific realization 
behaves totally differently from its otherbehaves totally differently from its other 
equivalent realizations

2. Equivalent Structures

 Hence it is important to choose a structure Hence, it is important to choose a structure 
that has the least quantization effectsleast quantization effects when 
implemented using finite precision arithmeticfinite precision arithmetic

 One way to arrive at such a structure is to 
determine a large number of equivalent 
structures analyze the finite wordlengthfinite wordlengthstructures, analyze the finite wordlength finite wordlength 
effectseffects in each case, and select the one 
showing the least effects
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2. Equivalent Structures

 In certain cases it is possible to develop a In certain cases, it is possible to develop a 
structure that by construction has the least 
quantization effects

 Here, we review some simple realizations that 
i li i i din many applications are quite adequate

3. FIR Digital Filter Structures

 Direct FormDirect Form
 Cascade FormCascade Form
 PolyphasePolyphase RealizationRealization
 LinearLinear--phase Structurephase Structure
 Tapped Delay LineTapped Delay Line

3. FIR Digital Filter Structures

 A causal FIR filter of order N is characterized A causal FIR filter of order N is characterized 
by a transfer function H(z) given by

which is a polynomial in 1z

    k
N

k
zkhzH 




0

p y
 In the time-domain the input-output relation 

of the above FIR filter is given by

     knxkhny
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3.1 Direct Form FIR Digital Filter 
Structures

A FIR filt f d N i h t i d b An FIR filter of order N is characterized by 
N+1 coefficients and, in general, require N+1
multipliers and N two-input adders

 Structures in which the multiplier coefficients 
are precisely the coefficients of the transfer 
f i ll d di fdi ffunction are called direct formdirect form structures
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3.1 Direct Form FIR Digital Filter 
Structures

A di t f li ti f FIR filt A direct form realization of an FIR filter can 
be readily developed from the convolution 
sum description as indicated below for N =4

1z( )x n
( 1)x n  ( 4)x n ( 3)x n ( 2)x n 1z 1z 1z

(0)h (4)h(3)h(2)h(1)h

( )y n

3.1 Direct Form FIR Digital Filter 
Structures

 An analysis of this structure yields An analysis of this structure yields

which is precisely of the form of the 
convolution sum description

             
       4433           

22110



nxhnxh

nxhnxhnxhny

p
 The direct form structure shown on the 

previous slide is also known as a tapped delay tapped delay 
lineline or a transversal (transversal (横截型横截型)) filterfilter.

3.1 Direct Form FIR Digital Filter 
Structures

 nx
 1nx  2nx  3nx  4nx

General FormGeneral Form
 nx 1z

 0h  2h

1z

 3h

1z

 4h

1z

 1h

 ny

 nx
1z 1z 1z nx

 0h  2h  2Nh  1Nh 1h

 ny

3.2 Cascade Form FIR Digital Filter 
Structures

 A higher-order FIR transfer function can also A higher order FIR transfer function can also 
be realized as a cascade of second order FIR cascade of second order FIR 
sectionssections and possibly a firstfirst--order sectionorder section

 To this end we express H(z) as

 1 2
1 2( ) [0] 1

K

k kH z h z z    
where if N is even, and
if N is odd, with

 1 2
1

( ) [ ] k k
k

 



/ 2K N  1 / 2K N 
2 0K 
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3.2 Cascade Form FIR Digital Filter 
Structures

 A cascade realization for N = 6 is shown below
(0)h

11

21

1z
12

22

13

23

(0)h

1z

1z 1z 1z
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22
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23
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3.3 Polyphase Realization

 The polyphase decomposition of H(z) leads to 
a parallel form structurea parallel form structure

 To illustrate this approach, consider a causal 
FIR transfer function H(z) with N = 8: 

  1 2 3 4[0] [1] [2] [3] [4]H z h h z h z h z h z        
5 6 7 8

[0] [1] [2] [3] [4]

            [5] [6] [7] [8]

H z h h z h z h z h z

h z h z h z h z   

    

   

3.3 Polyphase Realization

 H(z) can be expressed as a sum of two terms, 
with one term containing the even-indexedwith one term containing the even-indexed
coefficients and the other containing the odd-
indexed coefficients: 

            
        
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0 2 4 6 8

1 3 5 7
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   
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3.3 Polyphase Realization

 By using the notation
           1 2 3 4

we can express H(z) as    

           
         

1 2 3 4
0

1 2 3
1

0 2 4 6 8

1 3 5 7

E z h h z h z h z h z

E z h h z h z h z

   

  

    

   

     2
1

12
0 zEzzEzH      
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3.3 Polyphase Realization

 In a similar manner, by grouping the terms in 
the original expression for H(z) we can re-the original expression for H(z), we can re-
express it in the form

where we have 

       3
2

23
1

13
0 zEzzEzzEzH  

       1 20 3 6E z h h z h z          
       
       

0

1 2
1
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2

0 3 6

1 4 7

2 5 8

E z h h z h z

E z h h z h z

E z h h z h z

 

 

  

  

  

3.3 Polyphase Realization

 The decomposition of H(z) in the form

   
or

is more commonly known as the polyphase 

       3
2

23
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13
0 zEzzEzzEzH  

     2
1

12
0 zEzzEzH 

y p yp
decomposition

3.3 Polyphase Realization

 In the general case, an L-branch polyphase 
decomposition of an FIR transfer function ofdecomposition of an FIR transfer function of 
order N is of the form 

where 

 




1

0
)()( L

m
L

m
m zEzzH

( 1)/N L  

with                 for n >N
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( ) [ ]
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m
n

E z h Ln m z
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



 
0][ nh

3.3 Polyphase Realization

 Figures below show the 4-branch, 3-branch, 
and 2-branch polyphase realization of aand 2-branch polyphase realization of a 
transfer function H(z)

+
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3.3 Polyphase Realization

 The subfilters in the polyphase 
realization of an FIR transfer function are also

)( L
m zE

realization of an FIR transfer function are also 
FIR filters and can be realized using any 
methods described so far

 However, to obtain a canonic realization of 
the overall structure, the delays in all , y
subfilters must be shared

3.3 Polyphase Realization

 Figure below shows a canonic realization of a 
length-9 FIR transfer function obtained usinglength-9 FIR transfer function obtained using 
delay sharing

1z
3z3z

]2[h

]4[h

]5[h

]7[h

]8[h

]0[h

1z

]1[h

]3[h

]6[h

3.4 Linear-Phase FIR Digital Filter 
Structures

 Linear-phase FIR filter of length N is 
characterized by the symmetric impulsesymmetric impulsecharacterized by the symmetric impulse symmetric impulse 
responseresponse

 An antisymmetric impulse responseantisymmetric impulse response condition 

results in a constant group delay and “linear-

][][ nNhnh 

][][ nNhnh 
g p y

phase” property
 Symmetry of the impulse response Symmetry of the impulse response 

coefficients can be used to coefficients can be used to reduce the number reduce the number 
of multiplicationsof multiplications

3.4 Linear-Phase FIR Digital Filter 
Structures

 Length N+1 is odd ( N=6 ) Length N+1 is odd ( N 6 )
               1 2 3 4 5 60 1 2 3 2 1 0H z h h z h z h z h z h z h z           

        342516 3)(2)(1)1(0   zhzzhzzhzh

1z 1z 1z
x(n)

(3)h(2)h(1)h(0)h

1z 1z 1z

y(n)
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3.4 Linear-Phase FIR Digital Filter 
Structures

1z1z1z

1z1z1z

(0)h (1)h (2)h (3)h

 The Type 1 linear-phase structure for a length-
7 FIR filter requires 4 multipliers, whereas a 
direct form realization requires 6 multipliers

3.4 Linear-Phase FIR Digital Filter 
Structures

 Length N+1 is even ( N=7) Length N+1 is even ( N 7)
         

        7754

321

0123         
3210









zhzhzhzh
zhzhzhhzH

        )(3)(2)(1)1(0 4352617   zzhzzhzzhzh
1z 1z 1z

(3)h(2)h

z

(1)h(0)h

z

1z1z 1z

1z

z

3.4 Linear-Phase FIR Digital Filter 
Structures

1z1z 1z

1z1z

(0)h (1)h (2)h (3)h

1z
1z

 The Type 2 linear-phase structure for a length-
8 FIR filter requires 4 multipliers, whereas a 
direct form realization requires 7 multipliers

3.4 Linear-Phase FIR Digital Filter 
Structures

General FormGeneral Form
Type 2 and 4Type 2 and 4

1z

1z 1z 1z( )x n

1z 1z1z

( )y n
(2)h(1)h(0)h 1

2
Nh  

 
 

Type 2 and 4Type 2 and 4

(N+1) /2 
multipliers

Type 1Type 1 and 3and 3

±1 ±1 ±1 ±1 ±1

Direct Form 
needs N

1z 1z

1z1z

1z

1z

( )x n

( )y n
(2)h(1)h(0)h 1

2
Nh  

 

N/2 
multipliers

Type 1Type 1 and 3and 3

±1 ±1 ±1 ±1

needs N
multipliers
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3.5 Tapped Delay Line

 The structure consists of a chain of M1 +M2 The structure consists of a chain of M1 +M2
+M3 unit delays with taps at the input, at the 
end of first M1 delays, at the end of next M2 
delays, and at the output, respectively. 

3Mz 2Mz1Mz 
][nx

zzz

0 1 2 3
][ny

3.5 Tapped Delay Line

 The direct form FIR structure of the figure The direct form FIR structure of the figure 
can be seen to be a special case of a tapped 
delay line, where there is a tap after each unit 
delay. 

0P)(nx )(ny

1z

1d1P

1z

4.  IIR Digital Filter Structures

 Direct FormDirect Form
 Cascade FormCascade Form
 Parallel FormParallel Form

4.1 Direct Form IIR Digital Filter 
Structures

 The causal IIR digital filters we are concerned The causal IIR digital filters we are concerned 
with in this course are characterized by a real 
rational transfer function of      or, 
equivalently by a constant coefficient 
difference equation.

 From the difference equation representation it

1z

 From the difference equation representation, it 
can be seen that the realization of the causal 
IIR digital filters requires some form of 
feedbackfeedback.
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4.1 Direct Form IIR Digital Filter 
Structures

 Direct formsDirect forms ---- Coefficients are directly the
f f i ffi itransfer function coefficients

 Consider for simplicity a 3rd-order IIR filter 
with a transfer function (assuming          )

1 2 3
0 1 2 3

1 2 3

( )( )
( ) 1

p p z p z p zP zH z
D z d z d z d z

  

  

  
 

  

0 1d 

 We can implement H(z) as a cascade of two 
filter sections as shown below

1 2 3( ) 1D z d z d z d z  

2 ( )H z( )W z
1( )H z( )X z ( )Y z

4.1 Direct Form IIR Digital Filter 
Structures

 where 1 2 3
1 0 1 2 3( ) ( )H z P z p p z p z p z      

 The filter section H1(z) can be seen to be an 
FIR filter and can be realized as shown below

1 0 1 2 3

2

( ) ( )
( ) 1/ ( )

p p p p
H z D z

0p
( )x n ( )w n

1p
1z

2p
1z

3p
1z

4.1 Direct Form IIR Digital Filter 
Structures

 The time-domain representation of H2(z) is 
given bygiven by

 Realization of H2(z) follows from the above 
equation and is shown below

1 2 3[ ] [ ] [ 1] [ 2] [ 3]y n w n d y n d y n d y n      

( )w n ( )y n

1d
1z

2d
1z

3d
1z

( 1)y n 

( 2)y n 

( 3)y n 

4.1 Direct Form IIR Digital Filter 
Structures

 Considering the basic cascade realization 
lt i Di t fDi t f IIresults in Direct form Direct form II ::

1( ) ( )
( )

H z P z
D z

 

1p
1z

0p
( )x n

1d

1z

( )y n

1p

2p
1z

3p
1z

1

2d

1z

3d

1z

zeroszeros polespoles
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4.1 Direct Form IIR Digital Filter 
Structures

 Changing the order of blocks in cascade 
results in Direct form Direct form IIII ::

1 1( ) ( ) ( )
( ) ( )

H z P z P z
D z D z

   
0p

( )x n

d
1z

p
1z

( )y n

zeroszerospolespoles

1d

2d
1z

3d
1z

1p

2p
1z

3p
1z

1 1'

2

3

2'

3'

4.1 Direct Form IIR Digital Filter 
Structures

 Observe in the direct form structure shown 
below, the signal variable at nodes       and       
are the same, and hence the two top delays 
can be shared

 Following the same argument, the bottom two 
delays can be shared

1 1’

y
 Sharing of all delays reduces the total number 

of delays to 3 resulting in a canonic 
realization along with its transpose structure.

4.1 Direct Form IIR Digital Filter 
Structures

 Sharing of all delays reduces the total number of 
d l 3 l i i ii li ili idelays to 3 resulting in a canoniccanonic realizationrealization
shown below along with its transposetranspose structurestructure.

0p

1d
1z

1

1p

0p

1d1p
1z

1z

 Direct form realizations of an N-th order IIR transfer 
function should be evident.

2d
1z

3d
1z

2p

3p

2d

3d

2p
z

3p
1z

4.2 Cascade Realizations

 By expressing the numerator and the By expressing the numerator and the 
denominator polynomials of the transfer 
function as a product of polynomials of lower 
degree, a digital filter can be realized as a 
cascade of low-order filter sections 

 Consider for example H(z)=P(z)/D(z) Consider, for example, H(z)=P(z)/D(z)
expressed as        

)()()(
)()()(         

21

21

21

zDzDzD
zPzPzP
zHzHzHzH

k

k

k








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4.2 Cascade Realizations

 Consider for example H(z)=P(z)/D(z) Consider, for example, H(z) P(z)/D(z)
expressed as

       
)()()(

21

zPzPzP
zHzHzHzH k




)()()(
)()()(         

21

21

zDzDzD
zPzPzP

k

k






4.2 Cascade Realizations

 Examples of cascade realizations obtained by Examples of cascade realizations obtained by 
different pole-zero pairings are shown below

1

1

( )
( )

P z
D z

2

2

( )
( )

P z
D z

3

3

( )
( )

P z
D z

1( )P z 2 ( )P z 3( )P z

1

2

( )
( )

P z
D z

2

3

( )
( )

P z
D z

3

1

( )
( )

P z
D z

1( )P z 2 ( )P z 3( )P z1

3

( )
( )D z

2

1

( )
( )D z

3

2

( )
( )D z

1

1

( )
( )

P z
D z

2

3

( )
( )

P z
D z

3

2

( )
( )

P z
D z

1

2

( )
( )D z

2

1

( )
( )D z

3

3

( )
( )D z

1

3

( )
( )

P z
D z

2

2

( )
( )

P z
D z

3

1

( )
( )

P z
D z

4.2 Cascade Realizations

 There are altogether a total of 36 2 2( )P P There are altogether a total of 36           
different cascade realizations of

based on pole-zero-pairings and ordering

1 2 3

1 2 3

( ) ( ) ( )( )( )
( ) ( ) ( ) ( )

P z P z P zP zH z
D z D z D z D z

 

3 3( )P P

based on pole zero pairings and ordering

 Due to finite wordlength effects, each such 
cascade realization behaves differently from 
Others

4.2 Cascade Realizations

( )x n ( )y n0b
1( ) ( )y

( 1)x n 

( 2)x n 

( 1)y n 

( 2)y n 

1b

2b

1z

1z

1z

1z
1a

2a

0b

1( )P z 1( )D z

1w 2w( ) ( )y n
1z

1z
1a

2a

0

1b

2b

1z

1z

1 2( )x n ( )y n

1( )D z 1( )P z
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4.2 Cascade Realizations

 Usually, the polynomials are factored into a 
product of 1st-order and 2nd-order (sos) 
polynomials:

for a first-order factor

1 2
1 2

0 1 2
1 2

1( )
1

k k

k k k

z zH z p
z z

 
 

 

 

  
    


0  

( )x n ( )y n
1a

2a

0b

1b

2b

1z

1z

for a first order factor 2 2 0k k  

 
1 2

1 2
1 2

1 2

1
1

j j
k

j j

β z β z
H z

α z α z

 

 

 


 

4.2 Cascade Realizations

 Realizing complex conjugate poles and zeros Realizing complex conjugate poles and zeros 
with second order blocks results in real 
coefficients

ExampleExample
 Third order transfer function

1 1 2
11 12 22

0 1 1 2
11 12 22

1 1( )( )
( ) 1 1

z z zP zH z p
D z z z z

  
  

  

  

    
        

4.2 Cascade Realizations

 One possible realization is shown below One possible realization is shown below

 General structure:

0p

12

1z

22

1z

12

22

11

1z
11

 General structure:

H1(z) H2(z) HN/2(z)

4.2 Cascade Realizations

ExampleExampleExampleExample
 Direct form II and cascade form realizations 

of

    


 2

2

4.05.08.0
02.0362.044.0

zzz
zzzH






























1

1

21

21

4.015.08.01
02.0362.044.0

z
z

zz
zz
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4.2 Cascade Realizations

ExampleExampleExampleExample
 Direct form II and cascade form realizations

1

1z

4.0 44.0
44.0

1z

1z

18.0

2.0

362.0

02.0

1z

1z

1z

8.0

5.0

362.0

02.0

4.0

Direct Form II Cascade Form

4.3 Parallel Realizations

 Parallel realizations are obtained by making Parallel realizations are obtained by making 
use of the partial fraction expansionpartial fraction expansion of the 
transfer function
Parallel formParallel form I:I:

1
0 1

0 1 2( ) k k zH z  
 

   

for a real pole

0 1 2
1 2

( )
1k k kz z


     



2 1 0k k  

4.3 Parallel Realizations

 Parallel realizations are obtained by making Parallel realizations are obtained by making 
use of the partial fraction expansionpartial fraction expansion of the 
transfer function
Parallel formParallel form II:II:

1 2
1 2

0 1 2( )
1

k kz zH z  
 

 

 
   

 


for a real pole

0 1 2
1 21k k kz z    



2 2 0k k  

4.3 Parallel Realizations

 The two basic parallel realizations of a 3rd 
order IIR transfer function are shown below

11

0

11

1z

01

11

02

0

( )x n ( )x n

( )y n

( )y n

1z

12

22

12

22

12

22

12
1z

1z

1z

1z

Parallel Form IParallel Form I Parallel Form IIParallel Form II
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4.3 Parallel Realizations

 General structure:

H1(z)

H2(z)

H ( )



 Easy to realize:
No choices in section ordering and
No choices in pole and zero pairing

HN/2(z)

4.3 Parallel Realizations

ExampleExample

 A partial-fraction expansion of

in      yields

2 3

1 2 3

0.44 0.362 0.002( )
1 0.4 0.18 0.2

z zH z
z z z

 

  

 


  
1z

10.6 0.5 0.2( ) 0 1 zH z
 

  

 Likewise, a partial-fraction expansion of H(z)
in z yields

1 1 2( ) 0.1
1 0.4 1 0.8 0.5

H z
z z z     

  

1 1 2

1 1 2

0.24 0.2 0.25( )
1 0.4 1 0.8 0.5

z z zH z
z z z

  

  


 

  

4.3 Parallel Realizations

 Their realizations are parallel form I shown e e o s e pa allel fo m s ow
below

1z

6.0

4.0

5.0

1.0

1z

4.0

5.0

1.0

6.0

8.0

1z

5.0

1z

2.0

Parallel Form IParallel Form I

1z

1z

8.0

5.0

2.0

4.3 Parallel Realizations

 Likewise, a partial-fraction expansion of H(z) 
i i ld ll l f IIin z yields parallel form II 

  21

21

1

1

5.08.01
25.02.0

4.01
24.0
















zz

zz
z

zzH

1z

24040

1z

4.0 24.0

1z

1z

24.0

2.0

25.0

8.0

5.0

4.0

1z

1z

8.0

25.05.0

2.0

Parallel Form IIParallel Form II
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4.3 Parallel Realizations

 Consider
1

1
0

1 [ ]( )
1

N N

k
k N

z H kH z
N W z

 

 



 



   
1

0

1( )
N

c k
k

H z H z H z
N





 
 

 

0

1

1
     [ ]

1

k

N
c

k k
N

H z z
H kH z
W z



 

  

  

4.3 Parallel Realizations

 Consider
1

1

1 ]( )
1

N N

k

z H kH z
N W z

 

 


  [

0 1k NN W z 

 nx  ny

1zNz 

 0H

 1H

0
NW

N
1

1z

1z

 1NH

1
NW

1N
NW


