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1. Block Diagram Representation

 In the time domain, the input-output relationsIn the time domain, the input output relations 
of an LTI digital filter is given by the 
convolution sum or, by the linear constant linear constant 
coefficient difference equationcoefficient difference equation
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 For the implementation of an LTI digital filter, the 
input-output relationship must be described by a validvalid
computational algorithm.
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1. Block Diagram Representation

 The convolution sumconvolution sum description of an LTIThe convolution sumconvolution sum description of an LTI 
discrete-time system can, in principle, be used 
to implement the system.

 For an IIR finite-dimensional system, this 
approach is not practical as here the impulse impulse 
response is of infinite lengthresponse is of infinite lengthresponse is of infinite lengthresponse is of infinite length.

 However, a direct implementation of the IIR 
finite-dimensional system is practical
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1. Block Diagram Representation

 To illustrate what we mean by a computa-To illustrate what we mean by a computa
tional algorithm, consider the causal firstcausal first--
order LTI digital filterorder LTI digital filter shown below
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1. Block Diagram Representation

 Using the above equation we can compute y[n]Using the above equation we can compute y[n]
for n≥0 knowing the initial condition y[－1]
and the input x[n] for n≥－1

1 0 1[0] [ 1] [0] [ 1]y d y p x p x     
1 0 1[1] [0] [1] [0]y d y p x p x   

[2] [1] [2] [1]d
 We can continue this calculation for any value 

of n we desire (by iterative computationby iterative computation)

1 0 1[2] [1] [2] [1]y d y p x p x   

1.1 Basic Building Blocks

 The computational algorithm of an LTI digital 
fil b i l d i bl kbl kfilter can be conveniently represented in block block 
diagramdiagram form using the basic building blocksbasic building blocks
shown below
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 The corresponding signal flow chartssignal flow charts are

1.1 Basic Building Blocks

The corresponding signal flow chartssignal flow charts are 
shown on the right-hand side

z−1
1z

a

x(n) x(n−1)

x(n) ax(n)

x(n) x(n−1)

x(n) ax(n)

a

x1(n)

x2(n)

x1(n)+x2(n) x1(n) x1(n)+x2(n)

x2(n)



3

1.1 Basic Building Blocks

 Advantages of block diagram/signal flow 
h ichart representation

 Easy to write down the computational algorithm by 
inspection.

 Easy to analyze the block diagram to determine the 
explicit relation between the output and input.

 Easy to manipulate a block diagram to derive other Easy to manipulate a block diagram to derive other 
“equivalent” block diagrams yielding different 
computational algorithms.

1.1 Basic Building Blocks

 Advantages of block diagram/signal flow 
h i ( )chart representation (const.)

 Easy to determine the hardware requirements.
 Easier to develop block diagram representations from 

the transfer function directly.

1.2 Analysis of Block Diagrams

 Steps of Analyzing Block DiagramsSteps of Analyzing Block Diagrams
 Carried o t b riting do n the e pressions for the Carried out by writing down the expressions for the 

output signals of each adder as a sum of its input 
signals, and developing a set of equations relating the 
filter input and output signals in terms of all internal 
signals

 Eliminating the unwanted internal variables then Eliminating the unwanted internal variables then 
results in the expression for the output signal as a 
function of the input signal and the filter parameters 
that are the multiplier coefficients

1.2 Analysis of Block Diagrams

Example:Example:

 Consider the single-loop feedback structure 
shown below

1( )G z

2 ( )G z

( )X z ( )Y z( )E z

The output E(z) of the adder is

But from the figure

2 ( )

2( ) ( ) ( ) ( )E z X z G z Y z 

1( ) ( ) ( )Y z G z E z
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1.2 Analysis of Block Diagrams

 Eliminating E(z) from the previous two g ( ) p
equations we arrive at

which leads to
 1 2 11 ( ) ( ) ( ) ( ) ( )G z G z Y z G z X z 

1( )( )( ) G zY zH 1

1 2

( )( )( )
( ) 1 ( ) ( )

H z
X z G z G z

 


1.3 Canonic and Noncanonic 
Structures

 A digital filter structure is said to be canoniccanonic A digital filter structure is said to be canoniccanonic
if the number of delays in the block diagram 
representation is equal to the order of the 
transfer function

 Otherwise, it is a noncanonicnoncanonic structure
Th t t h i th t lid i The structure shown in the next slide is 
noncanonic as it employs two delays to 
realize a first-order difference equation

1.3 Canonic and Noncanonic 
Structures

1z

0p
( )x n ( )y n

1z

1 0 1[ ] [ 1] [ ] [ 1]y n d y n p x n p x n     

1p 1d

2. Equivalent Structures

 Two digital filter structures are defined to be Two digital filter structures are defined to be 
equivalentequivalent if they have the same transfer 
function

 There are a number of methods for the 
generation of equivalent structures

 However, a fairly simple way to generate an 
equivalent structure from a given realization 
is via the transpose operationtranspose operation
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2. Equivalent Structures

 Transpose OperationTranspose Operationp pp p
(1) Reverse all paths
(2) Replace pick-off nodes by adders, and vice 

versa
(3) Interchange the input and output nodes
※ All other methods for developing equivalent 

structures are based on a specific algorithm 
for each structure

2. Equivalent Structures

 There are literally an infinite number of There are literally an infinite number of 
equivalent structures realizing the same 
transfer function

 It is thus impossible to develop all equivalent 
realizations

hi i i In this course we restrict our attention to a 
discussion of some commonly used structures

2. Equivalent Structures

 Under infiniteinfinite precisionprecision arithmetic any given Under infiniteinfinite precisionprecision arithmetic any given 
realization of a digital filter behaves 
identically to any other equivalent structure

 However, in practice, due to the finite finite 
wordlength limitationswordlength limitations, a specific realization 
behaves totally differently from its otherbehaves totally differently from its other 
equivalent realizations

2. Equivalent Structures

 Hence it is important to choose a structure Hence, it is important to choose a structure 
that has the least quantization effectsleast quantization effects when 
implemented using finite precision arithmeticfinite precision arithmetic

 One way to arrive at such a structure is to 
determine a large number of equivalent 
structures analyze the finite wordlengthfinite wordlengthstructures, analyze the finite wordlength finite wordlength 
effectseffects in each case, and select the one 
showing the least effects
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2. Equivalent Structures

 In certain cases it is possible to develop a In certain cases, it is possible to develop a 
structure that by construction has the least 
quantization effects

 Here, we review some simple realizations that 
i li i i din many applications are quite adequate

3. FIR Digital Filter Structures

 Direct FormDirect Form
 Cascade FormCascade Form
 PolyphasePolyphase RealizationRealization
 LinearLinear--phase Structurephase Structure
 Tapped Delay LineTapped Delay Line

3. FIR Digital Filter Structures

 A causal FIR filter of order N is characterized A causal FIR filter of order N is characterized 
by a transfer function H(z) given by

which is a polynomial in 1z

    k
N

k
zkhzH 
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p y
 In the time-domain the input-output relation 

of the above FIR filter is given by
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3.1 Direct Form FIR Digital Filter 
Structures

A FIR filt f d N i h t i d b An FIR filter of order N is characterized by 
N+1 coefficients and, in general, require N+1
multipliers and N two-input adders

 Structures in which the multiplier coefficients 
are precisely the coefficients of the transfer 
f i ll d di fdi ffunction are called direct formdirect form structures
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3.1 Direct Form FIR Digital Filter 
Structures

A di t f li ti f FIR filt A direct form realization of an FIR filter can 
be readily developed from the convolution 
sum description as indicated below for N =4

1z( )x n
( 1)x n  ( 4)x n ( 3)x n ( 2)x n 1z 1z 1z

(0)h (4)h(3)h(2)h(1)h

( )y n

3.1 Direct Form FIR Digital Filter 
Structures

 An analysis of this structure yields An analysis of this structure yields

which is precisely of the form of the 
convolution sum description

             
       4433           

22110



nxhnxh

nxhnxhnxhny

p
 The direct form structure shown on the 

previous slide is also known as a tapped delay tapped delay 
lineline or a transversal (transversal (横截型横截型)) filterfilter.

3.1 Direct Form FIR Digital Filter 
Structures

 nx
 1nx  2nx  3nx  4nx

General FormGeneral Form
 nx 1z

 0h  2h

1z

 3h

1z

 4h

1z

 1h

 ny

 nx
1z 1z 1z nx

 0h  2h  2Nh  1Nh 1h

 ny

3.2 Cascade Form FIR Digital Filter 
Structures

 A higher-order FIR transfer function can also A higher order FIR transfer function can also 
be realized as a cascade of second order FIR cascade of second order FIR 
sectionssections and possibly a firstfirst--order sectionorder section

 To this end we express H(z) as

 1 2
1 2( ) [0] 1

K

k kH z h z z    
where if N is even, and
if N is odd, with

 1 2
1

( ) [ ] k k
k
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3.2 Cascade Form FIR Digital Filter 
Structures

 A cascade realization for N = 6 is shown below
(0)h
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21
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1z

1z 1z 1z

1z

(0)h(0)h

11

 nx

21
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3.3 Polyphase Realization

 The polyphase decomposition of H(z) leads to 
a parallel form structurea parallel form structure

 To illustrate this approach, consider a causal 
FIR transfer function H(z) with N = 8: 

  1 2 3 4[0] [1] [2] [3] [4]H z h h z h z h z h z        
5 6 7 8

[0] [1] [2] [3] [4]

            [5] [6] [7] [8]

H z h h z h z h z h z

h z h z h z h z   

    

   

3.3 Polyphase Realization

 H(z) can be expressed as a sum of two terms, 
with one term containing the even-indexedwith one term containing the even-indexed
coefficients and the other containing the odd-
indexed coefficients: 

            
        

2 4 6 8

1 3 5 7

0 2 4 6 8

1 3 5 7

H z h h z h z h z h z

h z h z h z h z

   

   

    

                    1 3 5 7      h z h z h z h z   

          
        

2 4 6 8

1 2 4 6

0 2 4 6 8

          1 3 5 7

h h z h z h z h z

z h h z h z h z

   

   

    

   

3.3 Polyphase Realization

 By using the notation
           1 2 3 4

we can express H(z) as    

           
         

1 2 3 4
0

1 2 3
1

0 2 4 6 8

1 3 5 7

E z h h z h z h z h z

E z h h z h z h z

   

  

    

   

     2
1

12
0 zEzzEzH      
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3.3 Polyphase Realization

 In a similar manner, by grouping the terms in 
the original expression for H(z) we can re-the original expression for H(z), we can re-
express it in the form

where we have 

       3
2

23
1

13
0 zEzzEzzEzH  

       1 20 3 6E z h h z h z          
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1 2
1
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3.3 Polyphase Realization

 The decomposition of H(z) in the form

   
or

is more commonly known as the polyphase 

       3
2

23
1

13
0 zEzzEzzEzH  

     2
1

12
0 zEzzEzH 

y p yp
decomposition

3.3 Polyphase Realization

 In the general case, an L-branch polyphase 
decomposition of an FIR transfer function ofdecomposition of an FIR transfer function of 
order N is of the form 

where 
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3.3 Polyphase Realization

 Figures below show the 4-branch, 3-branch, 
and 2-branch polyphase realization of aand 2-branch polyphase realization of a 
transfer function H(z)
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3.3 Polyphase Realization

 The subfilters in the polyphase 
realization of an FIR transfer function are also

)( L
m zE

realization of an FIR transfer function are also 
FIR filters and can be realized using any 
methods described so far

 However, to obtain a canonic realization of 
the overall structure, the delays in all , y
subfilters must be shared

3.3 Polyphase Realization

 Figure below shows a canonic realization of a 
length-9 FIR transfer function obtained usinglength-9 FIR transfer function obtained using 
delay sharing

1z
3z3z

]2[h

]4[h

]5[h

]7[h

]8[h

]0[h

1z

]1[h

]3[h

]6[h

3.4 Linear-Phase FIR Digital Filter 
Structures

 Linear-phase FIR filter of length N is 
characterized by the symmetric impulsesymmetric impulsecharacterized by the symmetric impulse symmetric impulse 
responseresponse

 An antisymmetric impulse responseantisymmetric impulse response condition 

results in a constant group delay and “linear-

][][ nNhnh 

][][ nNhnh 
g p y

phase” property
 Symmetry of the impulse response Symmetry of the impulse response 

coefficients can be used to coefficients can be used to reduce the number reduce the number 
of multiplicationsof multiplications

3.4 Linear-Phase FIR Digital Filter 
Structures

 Length N+1 is odd ( N=6 ) Length N+1 is odd ( N 6 )
               1 2 3 4 5 60 1 2 3 2 1 0H z h h z h z h z h z h z h z           

        342516 3)(2)(1)1(0   zhzzhzzhzh

1z 1z 1z
x(n)

(3)h(2)h(1)h(0)h

1z 1z 1z

y(n)
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3.4 Linear-Phase FIR Digital Filter 
Structures

1z1z1z

1z1z1z

(0)h (1)h (2)h (3)h

 The Type 1 linear-phase structure for a length-
7 FIR filter requires 4 multipliers, whereas a 
direct form realization requires 6 multipliers

3.4 Linear-Phase FIR Digital Filter 
Structures

 Length N+1 is even ( N=7) Length N+1 is even ( N 7)
         

        7754

321

0123         
3210









zhzhzhzh
zhzhzhhzH

        )(3)(2)(1)1(0 4352617   zzhzzhzzhzh
1z 1z 1z

(3)h(2)h

z

(1)h(0)h

z

1z1z 1z

1z

z

3.4 Linear-Phase FIR Digital Filter 
Structures

1z1z 1z

1z1z

(0)h (1)h (2)h (3)h

1z
1z

 The Type 2 linear-phase structure for a length-
8 FIR filter requires 4 multipliers, whereas a 
direct form realization requires 7 multipliers

3.4 Linear-Phase FIR Digital Filter 
Structures

General FormGeneral Form
Type 2 and 4Type 2 and 4

1z

1z 1z 1z( )x n

1z 1z1z

( )y n
(2)h(1)h(0)h 1

2
Nh  

 
 

Type 2 and 4Type 2 and 4

(N+1) /2 
multipliers

Type 1Type 1 and 3and 3

±1 ±1 ±1 ±1 ±1

Direct Form 
needs N

1z 1z

1z1z

1z

1z
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(2)h(1)h(0)h 1

2
Nh  

 

N/2 
multipliers

Type 1Type 1 and 3and 3

±1 ±1 ±1 ±1
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multipliers



12

3.5 Tapped Delay Line

 The structure consists of a chain of M1 +M2 The structure consists of a chain of M1 +M2
+M3 unit delays with taps at the input, at the 
end of first M1 delays, at the end of next M2 
delays, and at the output, respectively. 

3Mz 2Mz1Mz 
][nx

zzz

0 1 2 3
][ny

3.5 Tapped Delay Line

 The direct form FIR structure of the figure The direct form FIR structure of the figure 
can be seen to be a special case of a tapped 
delay line, where there is a tap after each unit 
delay. 

0P)(nx )(ny

1z

1d1P

1z

4.  IIR Digital Filter Structures

 Direct FormDirect Form
 Cascade FormCascade Form
 Parallel FormParallel Form

4.1 Direct Form IIR Digital Filter 
Structures

 The causal IIR digital filters we are concerned The causal IIR digital filters we are concerned 
with in this course are characterized by a real 
rational transfer function of      or, 
equivalently by a constant coefficient 
difference equation.

 From the difference equation representation it

1z

 From the difference equation representation, it 
can be seen that the realization of the causal 
IIR digital filters requires some form of 
feedbackfeedback.
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4.1 Direct Form IIR Digital Filter 
Structures

 Direct formsDirect forms ---- Coefficients are directly the
f f i ffi itransfer function coefficients

 Consider for simplicity a 3rd-order IIR filter 
with a transfer function (assuming          )

1 2 3
0 1 2 3

1 2 3

( )( )
( ) 1

p p z p z p zP zH z
D z d z d z d z

  

  

  
 

  

0 1d 

 We can implement H(z) as a cascade of two 
filter sections as shown below

1 2 3( ) 1D z d z d z d z  

2 ( )H z( )W z
1( )H z( )X z ( )Y z

4.1 Direct Form IIR Digital Filter 
Structures

 where 1 2 3
1 0 1 2 3( ) ( )H z P z p p z p z p z      

 The filter section H1(z) can be seen to be an 
FIR filter and can be realized as shown below

1 0 1 2 3

2

( ) ( )
( ) 1/ ( )

p p p p
H z D z

0p
( )x n ( )w n

1p
1z

2p
1z

3p
1z

4.1 Direct Form IIR Digital Filter 
Structures

 The time-domain representation of H2(z) is 
given bygiven by

 Realization of H2(z) follows from the above 
equation and is shown below

1 2 3[ ] [ ] [ 1] [ 2] [ 3]y n w n d y n d y n d y n      

( )w n ( )y n

1d
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2d
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3d
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( 2)y n 

( 3)y n 

4.1 Direct Form IIR Digital Filter 
Structures

 Considering the basic cascade realization 
lt i Di t fDi t f IIresults in Direct form Direct form II ::

1( ) ( )
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H z P z
D z
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4.1 Direct Form IIR Digital Filter 
Structures

 Changing the order of blocks in cascade 
results in Direct form Direct form IIII ::

1 1( ) ( ) ( )
( ) ( )

H z P z P z
D z D z

   
0p

( )x n

d
1z

p
1z

( )y n

zeroszerospolespoles

1d

2d
1z

3d
1z

1p

2p
1z

3p
1z

1 1'

2

3

2'

3'

4.1 Direct Form IIR Digital Filter 
Structures

 Observe in the direct form structure shown 
below, the signal variable at nodes       and       
are the same, and hence the two top delays 
can be shared

 Following the same argument, the bottom two 
delays can be shared

1 1’

y
 Sharing of all delays reduces the total number 

of delays to 3 resulting in a canonic 
realization along with its transpose structure.

4.1 Direct Form IIR Digital Filter 
Structures

 Sharing of all delays reduces the total number of 
d l 3 l i i ii li ili idelays to 3 resulting in a canoniccanonic realizationrealization
shown below along with its transposetranspose structurestructure.
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1z

1

1p

0p

1d1p
1z

1z

 Direct form realizations of an N-th order IIR transfer 
function should be evident.

2d
1z

3d
1z

2p

3p
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2p
z

3p
1z

4.2 Cascade Realizations

 By expressing the numerator and the By expressing the numerator and the 
denominator polynomials of the transfer 
function as a product of polynomials of lower 
degree, a digital filter can be realized as a 
cascade of low-order filter sections 

 Consider for example H(z)=P(z)/D(z) Consider, for example, H(z)=P(z)/D(z)
expressed as        
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4.2 Cascade Realizations

 Consider for example H(z)=P(z)/D(z) Consider, for example, H(z) P(z)/D(z)
expressed as
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zHzHzHzH k
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4.2 Cascade Realizations

 Examples of cascade realizations obtained by Examples of cascade realizations obtained by 
different pole-zero pairings are shown below
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P z
D z

1

2

( )
( )D z

2

1

( )
( )D z

3

3

( )
( )D z

1

3

( )
( )

P z
D z

2

2

( )
( )

P z
D z

3

1

( )
( )

P z
D z

4.2 Cascade Realizations

 There are altogether a total of 36 2 2( )P P There are altogether a total of 36           
different cascade realizations of

based on pole-zero-pairings and ordering

1 2 3

1 2 3

( ) ( ) ( )( )( )
( ) ( ) ( ) ( )

P z P z P zP zH z
D z D z D z D z

 

3 3( )P P

based on pole zero pairings and ordering

 Due to finite wordlength effects, each such 
cascade realization behaves differently from 
Others

4.2 Cascade Realizations
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4.2 Cascade Realizations

 Usually, the polynomials are factored into a 
product of 1st-order and 2nd-order (sos) 
polynomials:

for a first-order factor

1 2
1 2

0 1 2
1 2
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1

k k

k k k

z zH z p
z z
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for a first order factor 2 2 0k k  
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β z β z
H z
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4.2 Cascade Realizations

 Realizing complex conjugate poles and zeros Realizing complex conjugate poles and zeros 
with second order blocks results in real 
coefficients

ExampleExample
 Third order transfer function

1 1 2
11 12 22

0 1 1 2
11 12 22

1 1( )( )
( ) 1 1

z z zP zH z p
D z z z z

  
  

  

  

    
        

4.2 Cascade Realizations

 One possible realization is shown below One possible realization is shown below

 General structure:

0p

12

1z

22

1z

12

22

11

1z
11

 General structure:

H1(z) H2(z) HN/2(z)

4.2 Cascade Realizations

ExampleExampleExampleExample
 Direct form II and cascade form realizations 
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4.2 Cascade Realizations

ExampleExampleExampleExample
 Direct form II and cascade form realizations

1

1z

4.0 44.0
44.0

1z
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18.0

2.0

362.0

02.0

1z

1z

1z

8.0

5.0

362.0

02.0

4.0

Direct Form II Cascade Form

4.3 Parallel Realizations

 Parallel realizations are obtained by making Parallel realizations are obtained by making 
use of the partial fraction expansionpartial fraction expansion of the 
transfer function
Parallel formParallel form I:I:

1
0 1

0 1 2( ) k k zH z  
 

   

for a real pole

0 1 2
1 2

( )
1k k kz z


     



2 1 0k k  

4.3 Parallel Realizations

 Parallel realizations are obtained by making Parallel realizations are obtained by making 
use of the partial fraction expansionpartial fraction expansion of the 
transfer function
Parallel formParallel form II:II:

1 2
1 2

0 1 2( )
1

k kz zH z  
 

 

 
   

 


for a real pole

0 1 2
1 21k k kz z    



2 2 0k k  

4.3 Parallel Realizations

 The two basic parallel realizations of a 3rd 
order IIR transfer function are shown below

11

0

11

1z

01

11

02

0

( )x n ( )x n

( )y n

( )y n

1z

12

22

12

22

12

22

12
1z

1z

1z

1z

Parallel Form IParallel Form I Parallel Form IIParallel Form II
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4.3 Parallel Realizations

 General structure:

H1(z)

H2(z)

H ( )



 Easy to realize:
No choices in section ordering and
No choices in pole and zero pairing

HN/2(z)

4.3 Parallel Realizations

ExampleExample

 A partial-fraction expansion of

in      yields

2 3

1 2 3

0.44 0.362 0.002( )
1 0.4 0.18 0.2

z zH z
z z z

 

  

 


  
1z

10.6 0.5 0.2( ) 0 1 zH z
 

  

 Likewise, a partial-fraction expansion of H(z)
in z yields

1 1 2( ) 0.1
1 0.4 1 0.8 0.5

H z
z z z     

  

1 1 2

1 1 2

0.24 0.2 0.25( )
1 0.4 1 0.8 0.5

z z zH z
z z z

  

  


 

  

4.3 Parallel Realizations

 Their realizations are parallel form I shown e e o s e pa allel fo m s ow
below

1z

6.0

4.0

5.0

1.0

1z

4.0

5.0

1.0

6.0

8.0

1z

5.0

1z

2.0

Parallel Form IParallel Form I

1z

1z

8.0

5.0

2.0

4.3 Parallel Realizations

 Likewise, a partial-fraction expansion of H(z) 
i i ld ll l f IIin z yields parallel form II 
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21

1

1

5.08.01
25.02.0

4.01
24.0
















zz

zz
z

zzH

1z

24040

1z

4.0 24.0

1z

1z

24.0

2.0

25.0

8.0

5.0

4.0

1z

1z

8.0

25.05.0

2.0

Parallel Form IIParallel Form II
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4.3 Parallel Realizations

 Consider
1

1
0

1 [ ]( )
1

N N

k
k N

z H kH z
N W z

 

 



 



   
1

0

1( )
N

c k
k

H z H z H z
N





 
 

 

0

1

1
     [ ]

1

k

N
c

k k
N

H z z
H kH z
W z



 

  

  

4.3 Parallel Realizations

 Consider
1

1

1 ]( )
1

N N

k

z H kH z
N W z
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0 1k NN W z 

 nx  ny

1zNz 

 0H

 1H

0
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N
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 1NH

1
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