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The Transfer Function
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2. 1 Definition

 Z-transform H(z) of the impulse response h[n]
of the filter is called the transfer function or
the system function

 Generalization of the frequency response
 Derived through the method similar to that of

the frequency response
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2.1 Definition

 LTI discrete-time system

 Taking the DTFT 
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1. Definition

 Taking the z-Transform 
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2.1 Definition

 Taking the z-Transform

 Here

 Thus
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2.2 Transfer function Expression

 LTI FIR Digital Filter 
 Impulse response        

,
 Transfer function 

※ All the poles of causal FIR digital filter are at z=0. 
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2.1 Definition

Example :

 Consider the M-point moving average FIR 
filter with an impulse response

 Its transfer function is then given by
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2.1 Definition

 The transfer function has M zeros on the unit 
circle at

 There are poles at z = 0 and a single pole at   
z = 1

2 / , 0, , 1j k Mz e k M  

The pole at z = 1
exactly cancels the 
zero at z = 1.  The 
ROC is the entire z-
plane except z = 0
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2.2 Transfer function Expression

 LTI IIR Digital Filter 
 LTI discrete-time system characterized by a 

difference equation 

 Transfer function : taking the z-transform and 
division
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2.2 Transfer function Expression

 LTI IIR Digital Filter 
 Or, equivalently as

 Alternate form
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2.2 Transfer function Expression

Example :
 A causal LTI IIR digital filter is described by a 

constant coefficient difference equation, given by

 Its transfer function is therefore given by
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2.2 Transfer function Expression

Example :
 Alternative form

 Zero-pole plot

 ROC: 
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2.3 Frequency Response from
Transfer Function

 If ROC of the transfer function H(z) includes 
the unit circle, the frequency response             
of the LTI digital filter can  be obtained 
simply as follows:

 Transfer function H(z) can be determined 
from its Fourier transform             by analytic 
continuation 
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2.3 Frequency Response from
Transfer Function

 For a stable rational transfer function in the 
form

 The factored form of the frequency response 
is given by
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2.3 Frequency Response from
Transfer Function

 zero factor
 pole factor  
 The magnitude function is given by
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2.3 Frequency Response from
Transfer Function

 The phase response for a rational transfer 
function is of the form
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2.3 Frequency Response from
Transfer Function

 For a real coefficient transfer function, the 
magnitude-squared function 
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2.3 Frequency Response from
Transfer Function

 Phase response of an LTI discrete-time 
system with a real-coefficient transfer 
function 
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2.3 Frequency Response from
Transfer Function

 Group delay of an LTI discrete-time system 
with a real-coefficient transfer function 
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2.4 Geometric Interpretation of 
Frequency Response Computation

 For a stable rational transfer function in the 
form

 Typical factor
 Pole factor: 

 Zero factor:
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2.4 Geometric Interpretation of 
Frequency Response Computation
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2.4 Geometric Interpretation of 
Frequency Response Computation
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 As ω varies from 0 to 2 π
 Tip of the vector moves
counterclockwise from the

point z = 1 tracing the unit circle 
and back to the point z = 1.
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2.4 Geometric Interpretation of 
Frequency Response Computation

 Likewise, from

 Phase response at a specific value of ω is obtained 
by 
 adding the phase of the term             and the linear-

phase term                       to the sum of the angles of the 
zero vectors minus the angles of the pole vectors.
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2.4 Geometric Interpretation of 
Frequency Response Computation

 Thus, an approximate plot of the magnitude 
and phase responses of the transfer function 
of an LTI digital filter can be developed by 
examining the pole and zero locations

 Now, a zero (pole) vector has the smallest 
(largest) magnitude when ω =φ
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2.4 Geometric Interpretation of 
Frequency Response Computation

 To highly attenuate signal components in a 
specified frequency range, we need to place 
zeros very close to or on the unit circle in 
this range.

 Likewise, to highly emphasize signal 
components in a specified frequency range, 
we need to place poles very close to the unit 
circle in this range.
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2.5 Stability Condition in Terms 
of Poles Locations

 A causal LTI digital filter is BIBO stable if 
and only if its impulse response h [n] is 
absolutely summable, i.e.,

 We now develop a stability condition in terms 
of the pole locations of the transfer function 
H(z)
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2.5 Stability Condition in Terms 
of Poles Locations

 ROC of the z-transform H(z)
 |z|=r for which h [n]r-n is absolutely summable

 Thus, if the ROC includes the unit circle |z|= 1, 
then the digital filter is stable, and vice versa

 Meanwhile, for LTI system causality we 
require that h[n]=0, for n <0. This implies that 
the ROC of H(z) must be outside some circle 
of radius Rx-
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2.5 Stability Condition in Terms 
of Poles Locations

Theorem
A causality LTI system is stable if and only if the 
system function H(z) has all its poles inside the unit 
circle. So, the ROC will include the unit circle and 
entire z-plane including the point

 An causal FIR digital filter with bounded 
impulse response is always stable (?)

z  
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2.5 Stability Condition in Terms 
of Poles Locations

Proof:   (Hint : reduction to absurdity)

1 Re z
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2.5 Stability Condition in Terms 
of Poles Locations

 On the other hand, an causal IIR filter may be 
unstable if not designed properly.

 Furthermore，an originally stable IIR filter 
characterized by infinite precision coefficients 
may become unstable when coefficients get 
quantized due to implementation
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Example 1: 
Under what conditions, the following system is stable or 
causal ?

Solution:

Step 1----Determine the zeros and poles of H(z)
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2.5 Stability Condition in Terms 
of Poles Locations
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Step 2----plot the zeros and poles on the z-plane

ROC1={|z|<0.5}
—Blue Area

ROC2={0.5<|z|<2}
—yellow Area

ROC3={|z|>2}
—Green Area

11/2 2
× ×

zero poles

Re z

jIm z Step 3----Determine all 
possible ROCs 
according to the 
distribution of the 
zeros and poles

2.5 Stability Condition in Terms 
of Poles Locations

35

Step4----Discuss the system’s stability and causality

Case 1: ROC1={|z|<0.5} Because the unit circle does not lie 
in this area and the ROC is inside of the circle with 
radius 0.5, the system is anti-causal and unstable.

Case 2: ROC2={0.5<|z|<2} Because the unit circle lies in this 
area and the ROC is an annulus bounded by 0.5 and 2 , 
the system is anti-causal and stable.

Case 3: ROC3={|z|>2} Because the unit does not lie in this 
area and the ROC is outside of the circle with radius 2, 
the system is causal and unstable.          

2.5 Stability Condition in Terms 
of Poles Locations

36

Example 2: 
Consider a causal LTI discrete-time system with an 
impulse response

 Solution: For this system

 Therefore if                 for which the system is BIBO stable

 If               , the system in not BIBO stable. 

2.5 Stability Condition in Terms 
of Poles Locations
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Example 3: 
Consider a causal LTI discrete-time IIR system an

The plot of impulse response is 

2.5 Stability Condition in Terms 
of Poles Locations

21 850586.0845.11
1)(  


zz

zH

38

Example 3: 
 The absolute summablility condition is satisfied.

Hence, H(z) is a stable transfer function.

 Now, consider the case when the transfer function 
coefficients are rounded to values with 2 digits after the 
decimal point:

2.5 Stability Condition in Terms 
of Poles Locations
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Example 3: 
 The plot of the impulse response of           is shown below

 Absolute summability condition is violated.

Thus,            is an unstable transfer function

2.5 Stability Condition in Terms 
of Poles Locations
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Example 4: 
Consider a causal LTI IIR discrete-time system with 
decaying impulse response

 Solution 

which has infinite number of poles on the unit circle at

and hence, it is unstable. 

2.5 Stability Condition in Terms 
of Poles Locations
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