Chapter 6

z-Transform

Part C

The Transfer Function

Part C: The Transfer Function

- Definition
- Transfer Function Expression
- Frequency Response from Transfer Function
- Geometric Interpretation of Frequency Response Computation
- Stability Condition in Terms of Poles Locations

2. 1 Definition

- Z-transform H(z) of the impulse response h[n] of the filter is called the *transfer function* or the *system function*
- Generalization of the frequency response $H(e^{j\omega})$
- Derived through the method similar to that of the frequency response

3

• LTI discrete-time system

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

■ Taking the DTFT

$$Y(e^{j\omega}) = \sum_{n=-\infty}^{\infty} y[n]e^{-j\omega n}$$
$$= \sum_{n=-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} h[k]x[n-k]\right)e^{-j\omega n}$$

5

2.1 Definition

7

□ Taking the z-Transform

Ing the z-1 ransform
$$Y(z) = \sum_{k=-\infty}^{\infty} h[k] \left(\sum_{k=-\infty}^{\infty} x[l]z^{-l} \right) z^{-l}$$

$$= \left(\sum_{k=-\infty}^{\infty} h[k]z^{-k} X(z) \right)$$

$$= \left(\sum_{k=-\infty}^{\infty} h[k]z^{-k} X(z) \right)$$

- Here
- Y(z) = H(z)X(z)
- Thus

$$H(z) = Y(z)/X(z)$$
 $\xrightarrow{\text{IZT}} h[n$

1. Definition

□ Taking the z-Transform

$$Y(z) = \sum_{n=-\infty}^{\infty} y[n]z^{-n}$$

$$= \sum_{n=-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} h[k]x[n-k] \right) z^{-n}$$

$$= \sum_{k=-\infty}^{\infty} h[k] \left(\sum_{n=-\infty}^{\infty} x[n-k]z^{-n} \right)$$

$$= \sum_{k=-\infty}^{\infty} h[k] \left(\sum_{l=-\infty}^{\infty} x[l]z^{-(l+k)} \right)$$

6

2.2 Transfer function Expression

- LTI FIR Digital Filter
 - **■** Impulse response

$$h[n]$$
, $N_1 \le n \le N_2$

■ Transfer function

$$H(z) = \sum_{n=N_1}^{N_2} h[n] z^{-n}$$

* All the poles of causal FIR digital filter are at z=0.

8

^

2.1 Definition

Example:

• Consider the *M*-point **moving average** FIR filter with an impulse response

$$h(n) = \begin{cases} 1/M, & 0 \le n \le M - 1 \\ 0, & \text{otherwise} \end{cases}$$

• Its transfer function is then given by

$$H(z) = \frac{1}{M} \sum_{n=0}^{M-1} z^{-n} = \frac{1 - z^{-M}}{M(1 - z^{-1})} = \frac{z^{M} - 1}{M \cdot z^{M-1}(z - 1)}$$

2.2 Transfer function Expression

• LTI IIR Digital Filter

□ LTI discrete-time system characterized by a difference equation

$$\sum_{k=0}^{N} d_k y[n-k] = \sum_{k=0}^{M} p_k x[n-k]$$

□ Transfer function: taking the z-transform and division

$$H(z) = \frac{\sum_{k=0}^{M} p_k z^{-k}}{\sum_{k=0}^{N} d_k z^{-k}}$$

11

2.1 Definition

- The transfer function has M zeros on the unit circle at $z = e^{j2\pi k/M}$, k = 0,...,M-1
- There are poles at z = 0 and a single pole at z = 1

The pole at z = 1 exactly cancels the zero at z = 1. The ROC is the entire z-plane except z = 0

2.2 Transfer function Expression

• LTI IIR Digital Filter

□ Or, equivalently as

$$H(z) = z^{(N-M)} \frac{\sum_{k=0}^{M} p_k z^{M-k}}{\sum_{k=0}^{N} d_k z^{M-k}}$$

□ Alternate form

$$H(z) = \frac{p_0}{d_0} \frac{\prod_{k=0}^{M} (1 - \xi_k z^{-1})}{\prod_{k=0}^{N} (1 - \lambda_k z^{-1})} = z^{N-M} \frac{\prod_{k=0}^{M} (z - \xi_k)}{\prod_{k=0}^{N} (z - \lambda_k)}$$
₁₂

2.2 Transfer function Expression

Example:

• A causal LTI IIR digital filter is described by a constant coefficient difference equation, given by

$$y[n] = x[n-1]-1.2x[n-2]+x[n-3] +1.3y[n-1]-1.04y[n-2]+0.222y[n-3]$$

• Its transfer function is therefore given by

$$H(z) = \frac{Y(z)}{X(z)} = \frac{z^{-1} - 1.2z^{-2} + z^{-3}}{1 - 1.3z^{-1} + 1.04z^{-2} - 0.222z^{-3}}$$

2.3 Frequency Response from **Transfer Function**

• If ROC of the transfer function H(z) includes the unit circle, the frequency response $H(e^{j\omega})$ of the LTI digital filter can be obtained simply as follows:

$$H(e^{j\omega}) = H(z)\big|_{z=e^{j\omega}}$$

• Transfer function H(z) can be determined from its Fourier transform $H(e^{j\omega})$ by analytic continuation

 $H(z) = H(e^{j\omega})\Big|_{\omega = -\ln z}$

15

2.2 Transfer function Expression

Example:

• Alternative form $H(z) = \frac{z^2 - 1.2z + 1}{z^3 - 1.3z^2 + 1.04z^2 - 0.222}$

$$H(z) = \frac{(z - 0.6 + j0.8)(z - 0.6 - j0.8)}{(z - 0.3)(z - 0.5 + j0.7)(z - 0.5 + j0.7)}$$

- Zero-pole plot
 - **ROC:** $|z| > \sqrt{0.74}$

2.3 Frequency Response from **Transfer Function**

- For a stable rational transfer function in the form

$$H(z) = \frac{p_0}{d_0} \cdot z^{(N-M)} \cdot \frac{\prod_{k=1}^{M} (z - \xi_k)}{\prod_{k=1}^{N} (z - \lambda_k)}$$

• The factored form of the frequency response is given by

$$H(e^{j\omega}) = \frac{p_0}{d_0} \cdot e^{j\omega(N-M)} \cdot \frac{\prod_{k=1}^{M} \left(e^{j\omega} - \xi_k\right)}{\prod_{k=1}^{N} \left(e^{j\omega} - \lambda_k\right)}$$

2.3 Frequency Response from **Transfer Function**

- zero factor $\left(e^{j\omega} \xi_k\right)$ pole factor $\left(e^{j\omega} \lambda_k\right)$
- The magnitude function is given by

$$\begin{aligned} \left| H(e^{j\omega}) \right| &= \left| \frac{p_0}{d_0} \right| \left| e^{j\omega(N-M)} \right| \frac{\prod_{k=1}^{M} \left| e^{j\omega} - \xi_k \right|}{\prod_{k=1}^{N} \left| e^{j\omega} - \lambda_k \right|} \\ &= \left| \frac{p_0}{d_0} \right| \cdot \frac{\prod_{k=1}^{M} \left| e^{j\omega} - \xi_k \right|}{\prod_{k=1}^{N} \left| e^{j\omega} - \lambda_k \right|} \end{aligned}$$

17

2.3 Frequency Response from **Transfer Function**

19

• For a real coefficient transfer function, the magnitude-squared function

$$\begin{aligned} \left| H(e^{j\omega}) \right|^2 &= \left| \frac{p_0}{d_0} \right|^2 \frac{\prod_{k=1}^M (e^{j\omega} - \xi_k) (e^{-j\omega} - \xi_k^*)}{\prod_{k=1}^N (e^{j\omega} - \lambda_k) (e^{-j\omega} - \lambda_k^*)} \\ &= H(e^{j\omega}) H^*(e^{j\omega}) \\ &= H(e^{j\omega}) H(e^{-j\omega}) = H(z) H(z^{-1}) \Big|_{z=e^{j\omega}} \end{aligned}$$

2.3 Frequency Response from **Transfer Function**

• The phase response for a rational transfer function is of the form

$$\arg H(e^{j\omega}) = \arg(p_0/d_0) + \omega(N-M)$$
$$+ \sum_{k=1}^{M} \arg(e^{j\omega} - \xi_k) - \sum_{k=1}^{N} \arg(e^{j\omega} - \lambda_k)$$

18

2.3 Frequency Response from **Transfer Function**

20

• Phase response of an LTI discrete-time system with a real-coefficient transfer function

$$\theta(\omega) = \tan^{-1} \left[\frac{H_{\text{im}}(z)}{H_{\text{re}}(z)} \right]_{z=e^{j\omega}} = \frac{1}{2j} \ln \left[\frac{H(z)}{H(z^{-1})} \right]_{z=e^{j\omega}}$$

2.3 Frequency Response from Transfer Function

• Group delay of an LTI discrete-time system with a real-coefficient transfer function

$$\tau_g(\omega) = -\frac{d\theta(\omega)}{d\omega} = -\operatorname{Re}\left(z\frac{d\left[\ln H(z)\right]}{dz}\right)\Big|_{z=e^{j\omega}}$$

21

2.4 Geometric Interpretation of Frequency Response Computation

2.4 Geometric Interpretation of Frequency Response Computation

For a stable rational transfer function in the form

$$H(e^{j\omega}) = \frac{p_0}{d_0} e^{j\omega(N-M)} \frac{\prod_{k=1}^{M} \left(e^{j\omega} - \xi_k\right)}{\prod_{k=1}^{N} \left(e^{j\omega} - \lambda_k\right)}$$

- Typical factor $e^{j\omega} \rho e^{j\phi}$
 - Pole factor: $e^{j\omega} \xi_k$
 - \triangleright Zero factor: $e^{j\omega} \lambda_k$

22

2.4 Geometric Interpretation of Frequency Response Computation

- As ω varies from 0 to 2 π
 - □ Tip of the vector moves counterclockwise from the point z = 1 tracing the unit circle and back to the point z = 1.

2.4 Geometric Interpretation of Frequency Response Computation

• Likewise, from

$$\arg H(e^{j\omega}) = \arg(p_0/d_0) + \omega(N-M)$$
$$+ \sum_{k=1}^{M} \arg(e^{j\omega} - \xi_k) - \sum_{k=1}^{N} \arg(e^{j\omega} - \lambda_k)$$

- **Phase response** at a specific value of ω is obtained by
 - > adding the phase of the term p_0/d_0 and the linearphase term $\omega(N-M)$ to the sum of the angles of the zero vectors minus the angles of the pole vectors.

• Thus, an *approximate plot* of the magnitude and phase responses of the transfer function of an LTI digital filter can be developed by *examining the pole and zero locations*

• Now, a zero (pole) vector has the smallest (largest) magnitude when $\omega = \varphi$

25

2.5 Stability Condition in Terms of Poles Locations

26

• To highly *attenuate* signal components in a specified frequency range, we need to place zeros very close to or on the unit circle in this range.

Frequency Response Computation

2.4 Geometric Interpretation of

• Likewise, to highly *emphasize* signal components in a specified frequency range, we need to place poles very close to the unit circle in this range.

• A causal LTI digital filter is BIBO stable if and only if its impulse response *h* [*n*] is absolutely summable, i.e.,

$$S = \sum_{n=-\infty}^{\infty} |h(n)| < \infty$$

 We now develop a stability condition in terms of the pole locations of the transfer function H(z)

27

2.5 Stability Condition in Terms of Poles Locations

- ROC of the z-transform H(z)
 □ |z|=r for which h [n]r⁻ⁿ is absolutely summable
- Thus, if the ROC includes the unit circle |z|=1, then the digital filter is stable, and vice versa
- Meanwhile, for LTI system causality we require that h[n]=0, for n < 0. This implies that the ROC of H(z) must be outside some circle of radius R_r .

29

2.5 Stability Condition in Terms of Poles Locations

31

Proof: (Hint : reduction to absurdity)

2.5 Stability Condition in Terms of Poles Locations

Theorem

A causality LTI system is stable **if and only if** the system function H(z) has **all its poles inside the unit circle**. So, the ROC will include the unit circle and entire z-plane including the point $z = \infty$

• An causal FIR digital filter with bounded impulse response is always stable (?)

30

2.5 Stability Condition in Terms of Poles Locations

- On the other hand, an causal IIR filter may be unstable if not designed properly.
- Furthermore, an originally stable IIR filter characterized by infinite precision coefficients may become unstable when coefficients get quantized due to implementation

32

O

2.5 Stability Condition in Terms of Poles Locations

Example 1:

Under what conditions, the following system is stable or causal?

$$H(z) = \frac{-3z^{-1}}{2 - 5z^{-1} + 2z^{-2}}$$

Solution:

Step 1----Determine the zeros and poles of H(z)

$$H(z) = \frac{-3z^{-1}}{2 - 5z^{-1} + 2z^{-2}} = \frac{-3z}{(2z - 1)(z - 2)}$$

$$z_{\text{zero}} = 0, \ z_{\text{pole}} = 0.5, 2$$

33

2.5 Stability Condition in Terms of Poles Locations

35

Step4----Discuss the system's stability and causality

Case 1: ROC1= $\{|z|<0.5\}$ Because the unit circle does not lie in this area and the ROC is inside of the circle with radius 0.5, the system is anti-causal and unstable.

Case 2: ROC2= $\{0.5 < |z| < 2\}$ Because the unit circle lies in this area and the ROC is an annulus bounded by 0.5 and 2, the system is anti-causal and stable.

Case 3: ROC3= $\{|z|>2\}$ Because the unit does not lie in this area and the ROC is outside of the circle with radius 2, the system is causal and unstable.

2.5 Stability Condition in Terms of Poles Locations

Step 2----plot the zeros and poles on the z-plane

Step 3----Determine all possible ROCs according to the distribution of the zeros and poles

ROC1={|z|<0.5} —Blue Area ROC2={0.5<|z|<2} —yellow Area ROC3={|z|>2}

-Green Area

2.5 Stability Condition in Terms of Poles Locations

Example 2:

Consider a causal LTI discrete-time system with an impulse response

$$h[n] = \alpha^n \mu[n]$$

• Solution: For this system

$$S = \sum_{n=-\infty}^{\infty} \left| \alpha^n \mu[n] \right| = \sum_{n=-\infty}^{\infty} \left| \alpha^n \right| = \frac{1}{1 - \left| \alpha \right|}, \quad \text{if } \left| \alpha \right| < 1$$

- $\ \ \, \Box$ Therefore $S<\infty$ if $\ \ \, \left|\alpha\right|<1$ for which the system is BIBO stable
- \Box If $|\alpha|=1$, the system in not BIBO stable.

36

2.5 Stability Condition in Terms of Poles Locations

Example 3:

Consider a causal LTI discrete-time IIR system an

$$H(z) = \frac{1}{1 - 1.845 z^{-1} + 0.850586 z^{-2}}$$

The plot of impulse response is

37

2.5 Stability Condition in Terms of Poles Locations

Example 3:

• The plot of the impulse response of $\hat{h}[n]$ is shown below

• Absolute summability condition is violated.

Thus,
$$\hat{H}(z)$$
 is an unstable transfer function

39

2.5 Stability Condition in Terms of Poles Locations

Example 3:

- The absolute summablility condition is satisfied. Hence, H(z) is a stable transfer function.
- Now, consider the case when the transfer function coefficients are rounded to values with 2 digits after the decimal point:

$$\widehat{H}(z) = \frac{1}{1 - 1.85z^{-1} + 0.85z^{-2}}$$

38

2.5 Stability Condition in Terms of Poles Locations

Example 4:

Consider a causal LTI IIR discrete-time system with decaying impulse response

$$h[n] = \begin{cases} \frac{1}{n}, & n \ge 1\\ 0, & n \le 0 \end{cases}$$

• Solution $H(z) = \sum_{n=1}^{\infty} \frac{z^{-n}}{n} = \log_e \left(\frac{1}{1-z^{-1}}\right)$, which has infinite number of poles on the unit circle at |z| = 1 and hence, it is unstable.