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1.1 General Expression
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1.1 General Expression

e Recall that, for z= re&/®, the z-transform G(z)
given by i
G(2)_,. =G(re’) = D glnlr e

is merely the DTFT of the modified sequence
glnjr™
e Accordingly, the inverse DTFT is thus given
by .
glnlr™" = EL” G(re’”)e’"dw

1.1 General Expression

e By making a change of variable z= re/® | the
previous equation can be converted into a
contour integral given by

1 nl
g[n]= > ij(z)z dz
where c¢ is a counterclockwise contour of
integration defined by |z|= 7
e But the integral remains unchanged when c is
replaced with any contour ¢’ encircling the

point z=0 in the ROC of G(z)

1.1 General Expression

e The contour integral can be evaluated using
the Cauchy’s residue theorem resulting in

gln]= Z[residues of G(z)z"™" at the poles inside c]

--%

o The above equation needs to be evaluated at all values
of n.

o Difficult to arrive at a closed-form answer in most
cases. 7

residues of G(z)z"™" at the poles outside ¢

only if there are any higher-order poles inside ¢

Example:
G(z) = 1-0.5z7" Zeros: z=02z=0.5
1+0.75z7+0.125z2 Poles: z=-0.5 z=-0.25
P N Three ROCs:
B | |2/ <0.25
B } 025<|2|<0.5
iojg : |z|>0.5
-1 05 ngpm 05 1 8
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1.1 General Expression .
\
-0.5)z"
G(Z)anl — (Z )Z
(z+0.5)(z+0.25)
Casel: |[]<0.25
If n>0, there is no poles inside c. Thus, g[n]=0 when n>0
If n <0, there is an |n|-order pole at z=0 which is inside c. In
this case, we can compute the summation of the residues
outside ¢ instead of that inside
g[n] = —{Res{z =-0.5}+Res{z = —0.25}}
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1.1 General Expression
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Case2: 0.25<|7<0.5

If n>0, there is only one pole at z= - 0.25 inside ¢

gln]=(z+0.25)— =09z |
2 +0752+0.125|_,
=-3(-0.25)" nz0

1
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1.1 General Expression H
[
(z-0.5)z" |
n]l=-(z+0.5
glnl==( )22+0.752+0.125|Z:70.5
—(z+0.25)— (-05z" |
2 +0.752+0.125| .
= —4(-0.5)" +3(~0.25)" n<-1
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1.1 General Expression H

If n <0, there are one first-order pole at z=—0.25 and one
|n|th-order pole at z=0 inside c, respectively. Thus, we can
compute the summation of the residues outside ¢ instead of
that inside

(Z—O.S)Zn |
nl=—(z+0.5
=0 s vos)

Hence, we can rewrite g[n] as follows

g[n]=-3(-0.25)"u[n] - 4(-0.5)"u[-n —1]



1.1 General Expression

1.1 General Expression

Case3: |2>0.5

If n>0, there are two first-order poles at z= - 0.25 and z=- 0.5
inside ¢
(z-0.5)z" |
2 +0.752+0.125|
(z-0.5)z" |
2 +0.752+0.125| .
=4(-0.5)" —3(-0.25)" n=0

g[n]=(z+0.5)

+(z+0.25)

1.2 Inverse z-Transform by Partial-
Fraction Expansion

If n<0, there are two first-order poles and one |n|th-order pole
at z=—0.25, z=—0.25 and z=0 inside c, respectively. Thus, we
can compute the summation of the residues outside ¢ instead
of that inside. Because there is no poles outside c. Thus,
2[n]=0 in this case

Summary:

—4(=0.5)"u[-n—1]+3(=0.25) u[-n—1],  |2/<0.25

gln]=1-3(-0.25)"u[n] - 4(=0.5)"u[-n—1], 0.25<|z|<0.5

4(=0.5)"u[n] - 3(-0.25)" u[n], |2[>0.5

14

1.2 Inverse z-Transform by Partial- eoo
Fraction Expansion

e A rational z-transform G(z) with a causal
inverse transform g[#n] has an ROC that is
exterior to a circle

e Here it is more convenient to express G(z) in a
partial-fraction expansion form and then
determine g[#] by summing the inverse
transform of the individual simpler terms in
the expansion

e A rational G(z) can be expressed as

6= p 3= p" 3z

i=0

e Ifthen G(z) can be re-expressed as

M-N .
G(Z) = Z Ihzé PFOI(’%';;gc)tmn
=0

where the degree of P(z) is less than N

2017/11/29



1.2 Inverse z-Transform by Partial-
Fraction Expansion

e Rational G(z)

R(2)
G 1)
(Z)+ D(z)

e Then
M-N M-N
Dz e D sln-1]
(= =0

1.2 Inverse z-Transform by Partial-
Fraction Expansion

1.2 Inverse z-Transform by Partial-
Fraction Expansion

M-N
e Rational G(z)= Z nz"
=0

e For simple poles, let

D(z) =

H(z)=0E) Z(”—] > p,(2,) uln]

1—/1£z’1

poles: {4/}, 1<£<N
Constants: 2, = (1—%271)H(Z)L:%

19

Example 1: Determine the inverse z-transform
-1 -2 -3
G(z)= 2+0.8z7 + E)I.SZ +g.3z
1+0.8z7 +0.2z
By long division we arrive at

1.55[n—1]
-1
G(z)= 354152 p—22F 212
1+0.8z7 +0.2z
-3.56[n] 1

1.2 Inverse z-Transform by Partial-
Fraction Expansion

Let

-1
H(z) = 55+2.1z

1+0.827'+0.2z°
__ 275+025) . 2.75-025]
1-(=04+02/)z" 1-(-04-02/)z"

(2.75+0.25/)(=0.4+0.2 )" u[n]
(2.75-0.25 j)(=0.4 0.2 /)" u[n]

20
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1.2 Inverse z-Transform by Partial-
Fraction Expansion

1.2 Inverse z-Transform by Partial-
Fraction Expansion

M-N
e Rational G(z)= Z mz‘”
(=0

e For multiple poles, let

INACER I
H@O=50) 7 z(l—/l[z‘lj |

=0

constants:
1 dei
P = . [(1-vz)'G -
Vi (L —i)!(—v)Lf' d(zfl)Lﬂ [A=vz" ) G(D]l.., 1<i<L
multiple poles: v ’

1.2 Inverse z-Transform by Partial-
Fraction Expansion

Solutions:

Step 1-- Converting G(z) into the form of
proper fractions by long division

Step 2— Summing up the inverse transform of
the individual simpler terms in the expansion

* Assumming that g[n] is causal

22

1.2 Inverse z-Transform by Partial- oo
Fraction Expansion

Example 2: Determine the inverse z-transform

H(z)= z(z+2) _ (1:1;227 ) _
(z-0.2)(z+0.6) (1-0.2z7)(1+0.6z7)

A partial-fraction expansion of H(z) is

HE =l L
1-0.2z 1+0.6z
-0 2Z‘I)H(Z)‘ _ ﬁ =2.75
P . =02 140.6z"" 2=02 ' ”

Example 2:

Now H(z)= P — P -
1-02z"  1+0.62
1+2z7"
s _ 1+2z7 =2.75
pr=( z7) (Z)L:oz 1+0.6z7"|
1+2z7
= (1+0.6z)H T2z, 7
P> ( z ) (Z)‘z:Oﬁ 1_0-22_1 2=0.2

24

2017/11/29



2017/11/29

1.2 Inverse z-Transform by Partial-
Fraction Expansion

1.2 Inverse z-Transform by Partial- EE:'
Fraction Expansion H
\
Example 2:
2.75 1.75
H(z)= +
Hence  H(2)=100 51 62
Inverse transform is therefore given by
h[n]=2.75(0.2)" u[n]—1.75(-1.6)" u[n]
25
1.2 Inverse z-Transform by Partial- EE:'

Fraction Expansion

Example 3: Determine the inverse z-transform
3
G(z)= z , z| > 1

2

1,
(Z_E)(Z+§)

A partial-fraction expansion of H(z) is

0.36 0.24 04
T 1,
l——z' 1+-z" (+=z")
2 3 3

G(z) =

26

1.2 Inverse z-Transform by Partial- oce
Fraction Expansion

Example 3:

! —r, 0.36(1)"y[n]
| 2

-z 1+-z"
3

2
04

. 2
(H—l zl)
3

gln]= [0.36(%)" +0.24(— %)” +0.4(n+1)(- %)”],u[n]

AN 0.24<—§)"u[n]

—= 0.4(n+1)(—§)"u[n]

27

e Enlargement of ROC caused by pole-zero
cancellation

Consider two causal sequences g[#] and A[n] , with
z-transforms G(z) and H(z), respectively, as given

below:
2+1.2z
0@ =g k02
(z) = 3 , |z| > 0.6
1+0.6z7"

28



1.2 Inverse z-Transform by Partial-
Fraction Expansion

e The intersection of the two ROCs is |z| > 0.6. The
product of the above two z-transforms is

2412z, 3 6
1-02z7" 71406z 1-02z"

G(2)H(z) = (

whose ROC is given by |z| > 0.2, which is larger
than the region |z| > 0.6

29

1.3 Partial-Fraction Expansion
Using MATLAB
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1.3 Partial-Fraction Expansion eoo
Using MATLAB H

e [num.den|=residuez(r,p,c) converts a z-
transform expressed in a partial-fraction
expansion form to its rational form

31

e [1.p,c]= residuez(num,den) develops the
partial-fraction expansion of a rational z-
transform with numerator and denominator
coefficients given by vectors num and den
0 Vector I contains the residues
O Vector p contains the poles

o Vector € contains the constants n,

30

1.4 Inverse z-Transform via 000
Long Division

e The z-transform (G(z) of a causal sequence
{g[n]} can be expanded in a power series in
z-! by long division

e In the series expansion, the coefficient
multiplying the term z-” is then the n-th
sample g[n]

e For arational z-transform expressed as a
ratio of polynomials in z- !, the power series
expansion can be obtained by long division.

32



1.4 Inverse z-Transform via
Long Division

Example 1: .
e Consider X (z)= ! +12Z -
1+04z7 -0.12z"
Long division of the numerator by the
denominator yields
X(z)=1+1.62"-0.5222+0.4z" —0.224z" +---
e Hence

lnli={ 1, 1.6, —0.52, 0.4, —0.2224,...} n=0
I

n=0 33

1.5 Inverse z-Transform Using
MATLAB

e The function impz can be used to find the
inverse of a rational z-transform G(z)

e The function computes the coefficients of the
power series expansion of G(2)

e The number of coefficients can either be user
specified or determined automatically

35
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1.4 Inverse z-Transform via o2
Long Division .

Example 2:
e Consider X(z)=

-1
z

=1+2z" 4322 +4z7 +....

1
Long division -y

z!
Then (1 . Z—I)Z

e Hence

=z 4222432 44270+

{x[n]}Z{Q 1234 .}, for n>0. x[n]:{”’ n>0,

0, n<0.
34

. (X )
2. z-Transform Properties H
Useful properties of the z-transform. |
Property Sequence z-Transform ROC
gln] G(z) R,
hn] H(z) %,
Conjugation g *[n] G*(z%) R,
Time-reversal g[-n] G(1/z) /R,
Linearity agln]+ Bhin] aG(z)+/)’H(z) Includes®, NR,
Time-shifting  g[n -7, ] 2" G(z) N except possibly

the point z=0 or
Multiplication by

an exponential  o" g[n] Glz/a) ||,
sequence

36
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2. z-Transform Properties

Useful properties of the z-transform.

Property Sequence z-Transform ROC
gln] G(z) R <
H[n] H(z) R,
Differentiation _, dG(Z) SR , except possibly
of G(z) ngln] dz the point z=0 or «
Convolution g[n]* h[n] G(z)H(z) Includes R, NN,

1 _
Modulation  g[n]h[n] 2—7y.§CG(v)H(z/v)v 'dv Includes RN,

Parseval's

relation

’gwg[n]h *[n]= iquCG(v)H *(1 / v*)v’ldv

37

2. z-Transform Properties

2. z-Transform Properties
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e Using the differentiation property, we arrive at

the z-transform of nx[n] as

—Z

e Using the linearity property we finally obtain

dX(z) az™
dZZ = (1_52—1)2 |Z| >|a|
1
Y(2)= 2 |Z|>|a|
(l—az

39

Example 1:

y [n] can be rewritten as y[n] = nx[n]+ x[n]
=a"u[n]

where x[n]

yn]=(n+Da"uln]

e The z-transform of x[x] is given by

X(z)=

e

2. z-Transform Properties

38

Example 2:

x[n] can be rewritten as x[n] = v[n] + v¥[n]

where

1,
vin|=—_—r e
(7] )

x[n]=r" cos(wyn) u[n]

Jayn

eThe z-transform of x [n] is given by

V(z)= 1

1 1 1

2 1—az! =5.1—rej“’°z_1 ’ ‘Z‘ >‘a‘:r

uin] Z%a”ﬂ[n]

40
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2. z-Transform Properties H
!
Using the conjugation property we obtain the z-
transform of v*[n] as
w,owy 1 1 1 1
Viiz)=— — = _ , lz|>|a|=r
=) 2 1-a’z" 2 1-re’™z"! || | |
Thus  x(z)=r(z)+V'(z")
1[ 1 1 J
=5 j —I+ —jo, -1 |
2\1-re’™z" 1—re’™z
-1
_ 1-(rcosw,)z |z|>r
1-(2rcosw, )z +riz 41
(X X J
o000
L X
e00
([ X ]
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2. z-Transform Properties
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2. z-Transform Properties .

Example 4:

Determine the energy of the sequence

x[n]=a"u[n], O<a<l
Using the Parseval’s relation

1 “1y, -
5,\' = EiX(V)X(V )V dV
Therefore

%S{) X(2)X(z")z"'dz =[sum of residues of X(z)X(z")z" inside c]
VARG

43

Example 3:

Determine the z-transform V(z) of the sequence v [#n]
dpn]+dvn—1]= p,sn]+ psln-11  |d,/d,|<]1

We have
dV(z) +d12_1V(z) =po+ plz_1
Therefore
-1
V(Z) — pO +p12_1
d,+dz
42
[ X X ]
0000
[ X XX
4
2. z-Transform Properties .

Example 4:
1
is oi X(z) = ——
The ZT is given by (2) o

y4

>a.
-1
z 1

Then X(2)X(z")z" = ~ =
(- )1-) (z-a)l-x)

It has a pole at z=¢ inside the unit circle

1| 1

1
= 2 §x= 2

w -« -«

residue =

l-az

44
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3. Computation of the Convolution Sum of | 22°
Finite-Length Sequences .
!
¢ Linear Convolution using
Polynomial Multiplication
¢ Circular Convolution using
Polynomial Multiplication
45
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3.1 Linear Convolution

3.1 Linear Convolution N

Y(2)=)[0]+ 1)z + 2]z +...+ L+ M]Z—(L+M)

o Polynomials in z"'of degree L+M

e Coefficients of the polynomial are
precisely the samples of the sequence.

n-th coefficient of y(z)

ynl= 3 a{kYin ]
47

e For length-L+1 and length-M+1 sequence x[n]
and /[n]
X(2)=x[0]+ 1]z +x[2]z +...+x[L]z""
H(z)=hO0]+ M1z +h[2]z7 +...+ A [M]z™"
o Polynomials in z7! of degree L and M
e From the convolution theorem:
y[n)=Anl*Hn]«— Y(z)=H(2)X(z)

46

3.1 Linear Convolution N

Example 1:
e Linear convolution of Right-Sided Sequences
x[n]z{—%, 0,1 -1 3} h[n]={%, 2,0, 1}
using the Polynomial Multiplication Method
X(z)==2+z"-z"+3z" H(z)=1+2z"-2z"
Y(2)=X(2)H(2)=(2+z" -z +3z ) (1+2z"-27)
=24z 4274327 42 4520 +2° =327

y[n]:{_/[‘z’ _47 15 33 15 55 1, _3} 48

2017/11/29
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3.1 Linear Convolution

Example 2:

e Linear convolution of Two-Sided Sequences
Xn]={3, -2, 4 nnl=1{4, 2, -1}

using the Pollfnomial Multipliiation Method
X(z)=3z-2+4z" H(z)=4+2z"-z7
Y(2)=X(2)H(2)=(3z—2+4z ") @d+2z" -27)
=12-249z"+1(¢” —4z”
Mn]={12, —TZ, 9,10, —4}

49

3.2 Circular Convolution

3.2 Circular Convolution N

\
e For length-N causal sequences x[z] and y[n],
0<n<N-1
X(2)=x0]+ 1]z +x[2]z7 + ..+ XN -1]z"7
H(z)=h[0]+ M1z +h[2]z7 +...+ [N =1]z"""
o Polynomials in z™'of degree N-1
e From the convolution definition:
Y, (2)=y,[0]+y,[1]z" +y,[2]z7 +..4+y,[2N=2]z *"?
Yo(2)= <YL(Z)>(,N,,)

Iakeg -1 51

e The circular convolution can also be related
to polynomial multiplication but requires a
modulo operation after the multiplication.

50

3.2 Circular Convolution N

Example 1:
e Circular convolution of causal sequences g[#] and /1]

(0 <n <3) using the Polynomial Multiplication
Method.

G(z)=g[0]+g[l]z"" +g[2]z" +¢[3]z”
H(z) =0+ A1)z + 2]z +H[3)z
Y, (2)=X(2)H(2)
=y, 01+, (12" +y,[2]" + y,[3]27
+y,[41z7* +,[5]z° +y,[6]z"° 52
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3.2 Circular Convolution

Example 1:

e Where

e Then

v,[0]= g[0]A[0]
v, [1]= gl0]A[1]+ g[1]A[0]
V.[2]= gl01A[2]+ g[1]A[1]+ g[2]A[0]
Y,[3]1= gl0]A[3]+ g[1]A[2] + gl 2]A[1]+ g[3]A[0]
v, [4]1= g]Al3]+ g[2]A[2]+ g[3]Al1]
v.[51=g[2]h[3]+ g[31h[2]
y,[6]=g[3]A[3]
Yo(2) = <YL(Z)>([“—1) Takez *=1

53

3.2 Circular Convolution N

Example 1:

Yo(2) =y, [00+ y, [z + p, 12027+, 3127 + p, [4]+ ,[512 +,[6]
= (v, [01+y,[4])+ (v, [0+, [5])z " + (v, [2]+ y,[6])2 7+, 3]z
= yc[o] + yc[l]z_l +yc[2]2_2 +yc[3]z_3

where
Yel0]=y, [0]+ y,[4] = g[01A[0]+ g[1]A[3]+ g[2]A[2] + g[3]A[1]
Yelll=y, [1+ y,[5]= g[O0JA[1]+ g[1]A[0] + g[2]A[3]+ g[3]A[2]
Yel2]=y,[2]+ y,[6] = g[O01A[2]+ g[1]A[1]+ g[2]A[0]+ g[3]A[3]
Yel31=y,[3]1= gl01A[3]+ g[11A[2] + g[2]A[1]+ g[3]A[0] 54
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