Ch6 z-Transforms

6.1 Derive the z-transforms and the ROCs of the following sequences given in Table 6.1.
a) $n \alpha^{n} \mu[n]$
b) $\quad r^{n} \cos \left(\omega_{0} n\right) \mu[n]$
6.2 Determine the z-transform and the corresponding ROC of the following sequences:
a) $x_{1}[n]=\alpha^{n} \mu[n+4]$
b) $\quad x_{2}[n]=-\alpha^{n} \mu[-n-3]$
c) $\quad x_{3}[n]=n r^{n} \cos \left(\omega_{0} n\right) \mu[n]$
d) $\quad x_{4}[n]=\alpha^{n} \mu[-n]$
6.3 Consider the following sequences:
i. $\quad x_{1}[n]=(0.2)^{n} \mu[n+1]$,
ii. $\quad x_{2}[n]=(0.6)^{n} \mu[n-2]$,
iii. $\quad x_{3}[n]=(0.5)^{n} \mu[n-6]$
iv. $\quad x_{4}[n]=(-0.5)^{n} \mu[-n-3]$
a) Determine the ROCs of the z-transform of each of the given sequences;
b) From the ROCs determined in Part a), determine the ROCs of the following sequences:,
v. $y_{1}[n]=x_{1}[n]+x_{2}[n]$
vi. $\quad y_{2}[n]=x_{1}[n]+x_{4}[n]$
vii. $\quad y_{3}[n]=x_{2}[n]+x_{3}[n]$
viii. $\quad y_{4}[n]=x_{2}[n]+x_{4}[n]$
6.4 Determine the z-transform of the two-sided sequence $v[n]=\alpha^{|n|},|\alpha|<1$. What is its ROC?
6.5 Determine the z-transform and the corresponding ROC of the following sequences. Assume $|\beta|>|\alpha|>0$. Show their pole-zero plots and indicate clearly the ROC in these plots.
a) $x_{1}[n]=\alpha^{n} \mu[n+1]+\beta^{n} \mu[n+2]$,
b) $\quad x_{2}[n]=\alpha^{n} \mu[n-1]+\beta^{n} \mu[-n-1]$
c) $x_{3}[n]=\alpha^{n} \mu[n+2]+\beta^{n} \mu[-n-1]$

- (Optional) Determine the z-transform and the corresponding ROC of the following sequences:
d) $\quad x_{1}[n]=n^{2} \alpha^{n} \mu[n]$
e) $\quad x_{2}[n]=\frac{(n+1)(n+2)}{2} \alpha^{n} \mu[n]$
6.6 Let $X(z)$ denote the z-transform of a sequence $x[n]$ with an ROC \mathcal{R}_{x}. Determine the z-transform and the ROC of each of the following functions of $x[n]$:
a) $y_{1}[n]=n x[n]$,
b) $y_{2}[n]=n^{2} x[n]$
c) $y_{3}[n]=(n+1)^{2} x[n]$
6.7 Determine the all possible ROCs of the following z-transforms and the their corresponding inverse z-transform
a) $\quad X_{1}(z)=\frac{7+3.6 z^{-1}}{1+0.9 z^{-1}+0.18 z^{-2}}$
b) $\quad X_{2}(z)=\frac{4-1.6 z^{-1}-0.4 z^{-2}}{\left(1+0.6 z^{-1}\right)\left(1-0.4 z^{-1}\right)}$
- (Optional) Let the z-transforms of the sequences $x[n]$ and $y[n]$ be denoted by $X(z)$ and $Y(z)$, respectively, with \mathcal{R}_{x} and \mathcal{R}_{y} denoting their respective ROCs. Determine the expression for the z-transform of the cross-correlation sequence $r_{x y}[\ell]$ in terms of $X(z)$ and $Y(\mathrm{z})$, and its ROC in terms of \mathcal{R}_{x} and \mathcal{R}_{y}. Using this result, determine the z-transform $R_{x x}(z)$ of the autocorrelation sequence $r_{x x}[\ell]$ of the causal sequence $x[n]=\alpha^{n} \mu[n]$, $0<|\alpha|<1$, and then determine the expression for the autocorrelation sequence $r_{x x}[\ell]$ by applying the inverse z-transform to $R_{x x}(z)$.
- (Optional) Let $H(z)=A\left(z^{2}\right)-z^{-1} B\left(z^{2}\right)$ be the z-transform of a causal sequence with its ROC including the unit circle. Define $Y(z)=A\left(z^{2}\right)+z^{-1} B\left(z^{2}\right)$, with $y[n]$ denoting its inverse z-transform. Is $y[n]$ causal? What is the ROC of $Y(z)$? If the magnitude of the DTFT $X\left(e^{j \omega}\right)$ of $x[n]$ is as shown in Fig. 1 , sketch the magnitude $Y\left(e^{j \omega}\right)$ of the DTFT of $y[n]$.

Fig. 1
6.8 Let the z-transform of a sequence $x[n]$ by $X(z)$ with \mathcal{R}_{χ} denoting its ROC. Express the z-transforms of the real and imaginary parts of $x[n]$ in terms of $X(z)$. Show also their respective ROCs.
6.9 Determine the z -transform and the ROCs of the sequences
a) $y_{1}[n]=\mu[n+2]-\mu[n-3]$,
b) $y_{2}[n]=2 n \alpha^{n} \mu[n], \quad|\alpha|<1$.

Show that the ROC includes the unit circle for each z-transform. Evaluate the z-transform evaluated on the unit circle for each sequence and show that it is precisely the DTFT of the respective sequence.

- (Optional) The z -transform $X(z)$ of the length-9 sequence

$$
x[n]=\left\{\begin{array}{llllllll}
3, & 1, & -5, & -11, & 0, & -5, & 3, & 3,
\end{array}\right\}, \quad-5 \leq n \leq 3
$$

is sampled at 6 points $\omega_{k}=2 \pi k / 6,0 \leq k \leq 5$, on the unite circle yielding the frequency samples

$$
\tilde{X}[k]=\left.X(z)\right|_{z=e^{i z k k / 6}}, 0 \leq k \leq 5
$$

Determine, without evaluating $\tilde{X}[k]$, the periodic sequence $\tilde{x}[n]$ whose discrete-Fourier series coefficients are given by $\tilde{X}[k]$. What is the period of $\tilde{x}[n]$.
6.10 Let $X(z)$ denote the z-transform of the length- 10 sequence $x[n]$

$$
\{x[n]\}=\{6,8,-7,8,2,-8,-4,1,-9,5\}
$$

Let $X_{0}[k]$ represent the samples of $X(z)$ evaluated on the unit circle at 8 equally spaced points given by $Z=e^{j(2 \pi k / 8)}, 0 \leq k \leq 7$, i.e.,

$$
X_{0}[k]=\left.X(z)\right|_{z=e^{j 2 \pi k / 8}}, \quad 0 \leq k \leq 7
$$

Determine the 8 -point IDFT $x_{0}[n]$ of $X_{0}[k]$ without computing the IDFT.
6.11 Consider the causal sequence $x[n]=(-0.5)^{n} \mu[n]$, with a z-transform given by $X(z)$
a) Determine the inverse z-transform of $X\left(z^{3}\right)$ without computing $X(z)$,
b) Determine the inverse z-transform of $\left(1+z^{-2}\right) X\left(z^{3}\right)$ without computing $X(z)$,
6.12 Let

$$
X(z)=\frac{3-7.8 z^{-1}}{\left(1-0.7 z^{-1}\right)\left(1+1.6 z^{-1}\right)}
$$

be the z-transform of a sequence $x[n]$. What are the possible ROCs of $X(z)$? Does the DTFT $X\left(e^{j \omega}\right)$ of $x[n]$ exist? Justify your answer.

- (Optional) Determine the inverse z-transform $x[n]$ of the following z-transform:

$$
X(z)=\frac{1}{1-z^{-3}},|z|>1
$$

by expanding in a power series and computing the inverse z-transform of the individual terms in the power series. Compare the result with those obtained using a partial fraction approach.
6.13 Determine the inverse z-transforms of the following z-transforms:
a) $\quad X_{1}(z)=\ln \left(1-\alpha z^{-1}\right),|z|>|\alpha|$,
b) $\quad X_{2}(z)=\ln \left(\frac{\alpha-z^{-1}}{\alpha}\right),|z|>1 /|\alpha|$
c) $\quad X_{3}(z)=\sin \left(z^{-1}\right), \quad z \neq 0$,

- (Optional)The z-transform of a right-sided sequence $h[n]$ is given by

$$
H(z)=\frac{z+1.7}{(z+0.3)(z-0.5)}
$$

Find its inverse z-transform $h[n]$ via the partial-fraction approach. Using the MATLAB verify the partial fraction expansion.

- (Optional) Prove $Y_{C}(z)=\left\langle Y_{L}(z)\right\rangle_{\left(z^{-N}-1\right)}$.
6.14 The magnitude response of a digital filter with a real-coefficient transfer function $H(z)$ is shown in Fig.2. Plot the magnitude response function of the filter $H\left(z^{5}\right)$.

- (Optional) Consider a sequence $x[n]$ with a z-transform $X(z)$. Define a new z-transform $\hat{X}(z)$ given by the complex natural logarithm of $X(z)$; that is $\hat{X}(z)=\ln X(z)$. The inverse z-transform of $\hat{X}(z)$ to be denoted by $\hat{x}[n]$ is called the complex cepstrum of $x[n][$ Tri79. Assume that the ROCs of both $X(z)$ and $\hat{X}(z)$ include the unit circle.
a) Relate the DTFT $X\left(e^{j \omega}\right)$ of $\chi[n]$ to the DTFT $\hat{X}\left(e^{j \omega}\right)$ of its complex cepstrum;
b) Show that the complex cepstrum of a real sequence is a real-valued sequence;
c) Let $\hat{X}_{e v}[n]$ and $\hat{X}_{\text {od }}[n]$ denote, respectively the even and odd parts of a real-valued complex cepstrum. Express $\hat{X}_{e v}[n]$ and $\hat{X}_{o d}[n]$ in terms of $X\left(e^{j \omega}\right)$, the DTFT of $x[n]$.
6.15 Determine the transfer function of the following causal LTI discrete-time system described by the difference equation:

$$
\begin{aligned}
& y[n]=5 x[n]+9.5 x[n-1]+1.4 x[n-2]-24 x[n-3] \\
& +0.1 y[n-1]-0.14 y[n-2]-0.49 y[n-3]
\end{aligned}
$$

a) Express the transfer function in a factored form and sketch its pole-zero plot;
b) Is the corresponding system BIBO stable?
6.16 The transfer function of a causal LTI discrete-time system is given by:

$$
H(z)=\frac{1-3.3 z^{-1}+0.36 z^{-2}}{1+0.3 z^{-1}-0.18 z^{-2}}
$$

a) Determine the impulse response $h[n]$ of the above system
b) Determine the output $y[n]$ of the above system for all values of n for an input

$$
x[n]=2.1(0.4)^{n} \mu[n]+0.3(-0.3)^{n} \mu[n]
$$

6.17 Using z-transform methods, determine the explicit expression for the impulse response $h[n]$ of a causal LTI discrete-time system that develop an output $y[n]=2(-0.2)^{n} \mu[n]$ for an input $x[n]=3(0.5)^{n} \mu[n]$.
6.18 A causal LTI discrete-time system is described by the difference equation

$$
y[n]=0.4 y[n-1]+0.05 y[n-2]+3 x[n]
$$

where $x[n]$ and $y[n]$ are, respectively, the input and the output sequences of the system.
a) Determine the transfer function $H(\mathrm{z})$ of the system.
b) Determine the impulse response $h[n]$ of the system.
c) Determine the step response $s[n]$ of the system.

- (Optional) Fig. 3a) and b) show, respectively, the DPCM (differential pulse-code modulation) coder and decoder often employed for the compression of the digital signal. The linear predictor $P(\mathrm{z})$ in the encoder develops a prediction $\hat{x}[n]$ of the input signal $x[n]$, and the difference signal $d[n]=x[n]-\hat{x}[n]$ is quantized by the quantizer \mathcal{Q} developing the quantized output $u[n]$, which is represented with fewer bits than that of $x[n]$. The output of the encoder is transmitted over a channel to the decoder. In the absence of any errors due to transmission and quantization, the input $v[n]$ to the decoder is equal to $u[n]$, and the decoder generates the output $y[n]$, which is equal to the input $x[n]$. Determine the transfer function $H(\mathrm{z})=U(\mathrm{z}) / X(\mathrm{z})$ of the encoder in the absence of any quantization, and the transfer function $G(\mathrm{z})=Y(\mathrm{z}) / V(\mathrm{z})$ of the decoder for the case of each of the following
predictors, and show that $G(\mathrm{z})$ is the inverse of $H(\mathrm{z})$ in each case.
a) $\quad P(z)=h_{1} z^{-1}$
b) $\quad P(z)=h_{1} z^{-1}+h_{2} z^{-2}$

Fig. 3 a)

Fig. 3 b)
6.19 Determine the closed-form expression for the frequency response $H\left(e^{j \omega}\right)$ of an LTI discrete-time system characterized by the an impulse response

$$
h[n]=\delta[n]-\alpha \delta[n-R], \quad|\alpha|<1
$$

a) Determine the maximum and the minimum values of its magnitude response.
b) How many peaks and dips of the magnitude response occur in the range $0 \leq \omega<2 \pi$? What are the location of the peaks and dips?
c) Sketch the magnitude and the phase response for $R=5$.

- (Optional) An IIR LTI discrete-time system is described by the difference equation

$$
y[n]+a_{1} y[n-1]+a_{3} y[n-2]=b_{0} x[n]+b_{1} x[n-1]+b_{2} x[n-2]
$$

where $y[n]$ and $x[n]$ denote, respectively, the output and the input sequences.
a) Determine the expression for its frequency response;
b) For what values of the constants b_{0}, b_{1}, and b_{2}, will the magnitude response be a constant for all value of ω.
6.20 The frequency response $H\left(e^{j \omega}\right)$ of a length-4 FIR filter with a real and antisymmetric impulse response has the following specific values: $H\left(e^{j 3 \pi / 2}\right)=-5-j 5$ and $H\left(e^{j \pi}\right)=2$. Determine $H(z)$.
6.21 A causal stable LTI discrete-time system is characterized by an impulse response

$$
h_{1}[n]=1.9 \delta[n]+0.5(-0.2)^{n} \mu[n]-0.6(0.7)^{n} \mu[n]
$$

Determine the impulse response $h_{2}[n]$ of its inverse system, which is causal and stable.
(Pay attention to the definition of the reverse system!!)
6.22 Consider the FIR LTI discrete-time system characterized by the difference equation

$$
y[n]=x[n]+\alpha x[n-M]
$$

a) Determine the impulse response $h[n]$.
b) Determine the impulse response $g[n]$ of its causal reverse system.
c) Check the stability of the inverse system.
(Pay attention to the definition of the reverse system!!)

- (Optional)
d) Let $G(z)$ be a causal stable rational transfer function with an ROC given by $|z| \geq \beta$. For what values of the constant α will the transfer function $H(z)=G(z / \alpha)$ remain stable? What is the ROC of $H(z)$.
e) Consider the causal stable transfer function

$$
G(z)=\frac{1-0.5 z^{-1}+2 z^{-2}}{\left(1+0.9 z^{-1}\right)\left(1+0.4 z^{-1}\right)}
$$

Develop a transfer function $H(z)$ by scaling the complex variable z by a constant α, i.e., $H(z)=G(z / \alpha)$. Determine the range of values of α for which $H(z)$ remains stable.
6.23 The transfer function of an LTI discrete-time system is given by

$$
H(z)=\frac{3+5.9 z^{-1}}{\left(1-3.5 z^{-1}\right)\left(1+0.6 z^{-1}\right)}
$$

a) How many ROCs are associated with $H(z)$?
b) Does the frequency response $H\left(e^{j \omega}\right)$ of the system exist? Justify your answer.
c) Can the system by stable? If it is stable, can it by causal?
d) Determine the forms of its impulse response $h[n]$.
(Hint: Find all the ROCs and discuss accordingly.)

