Ch6 z-Transforms

- 6.1 Derive the z-transforms and the ROCs of the following sequences given in Table 6.1.
 - a) $n\alpha^n\mu[n]$
 - b) $r^n \cos(\omega_0 n) \mu[n]$
- 6.2 Determine the z-transform and the corresponding ROC of the following sequences:

a)
$$x_1[n] = \alpha^n \mu[n+4]$$

b)
$$x_2[n] = -\alpha^n \mu[-n-3]$$

c)
$$x_3[n] = nr^n \cos(\omega_0 n) \mu[n]$$

d)
$$x_4[n] = \alpha^n \mu[-n]$$

6.3 Consider the following sequences:

i.
$$x_1[n] = (0.2)^n \mu[n+1],$$

ii. $x_2[n] = (0.6)^n \mu[n-2],$

iii.
$$x_3[n] = (0.5)^n \mu[n-6]$$

- iv. $x_4[n] = (-0.5)^n \mu[-n-3]$
- a) Determine the ROCs of the z-transform of each of the given sequences;
- b) From the ROCs determined in Part a), determine the ROCs of the following sequences:,
 - v. $y_1[n] = x_1[n] + x_2[n]$
 - vi. $y_2[n] = x_1[n] + x_4[n]$
 - vii. $y_3[n] = x_2[n] + x_3[n]$
- viii. $y_4[n] = x_2[n] + x_4[n]$

6.4 Determine the z-transform of the two-sided sequence $v[n] = \alpha^{|n|}$, $|\alpha| < 1$. What is its ROC?

6.5 Determine the z-transform and the corresponding ROC of the following sequences. Assume $|\beta| > |\alpha| > 0$. Show their pole-zero plots and indicate clearly the ROC in these plots.

a)
$$x_1[n] = \alpha^n \mu[n+1] + \beta^n \mu[n+2],$$

b) $x_2[n] = \alpha^n \mu[n-1] + \beta^n \mu[-n-1]$

c)
$$x_3[n] = \alpha^n \mu[n+2] + \beta^n \mu[-n-1]$$

- (Optional) Determine the z-transform and the corresponding ROC of the following sequences:
 - d) $x_1[n] = n^2 \alpha^n \mu[n]$

e)
$$x_2[n] = \frac{(n+1)(n+2)}{2} \alpha^n \mu[n]$$

- 6.6 Let X(z) denote the z-transform of a sequence x[n] with an ROC \mathcal{R}_x . Determine the z-transform and the ROC of each of the following functions of x[n]:
 - a) $y_1[n] = nx[n],$

b)
$$y_2[n] = n^2 x[n]$$

c)
$$y_3[n] = (n+1)^2 x[n]$$

6.7 Determine the all possible ROCs of the following z-transforms and the their corresponding inverse z-transform

a)
$$X_1(z) = \frac{7 + 3.6z^{-1}}{1 + 0.9z^{-1} + 0.18z^{-2}}$$

b)
$$X_2(z) = \frac{4 - 1.6z^{-1} - 0.4z^{-2}}{(1 + 0.6z^{-1})(1 - 0.4z^{-1})}$$

• (Optional) Let the z-transforms of the sequences x[n] and y[n] be denoted by X(z) and Y(z), respectively, with \mathcal{R}_x and \mathcal{R}_y denoting their respective ROCs. Determine the expression for the z-transform of the cross-correlation sequence $r_{xy}[\ell]$ in terms of X(z) and Y(z), and its ROC in terms of \mathcal{R}_x and \mathcal{R}_y . Using this result, determine the z-transform $R_{xx}(z)$ of the autocorrelation sequence $r_{xx}[\ell]$ of the causal sequence $x[n] = \alpha^n \mu[n]$, $0 < |\alpha| < 1$, and then determine the expression for the autocorrelation sequence $r_{xx}[\ell]$ by applying the inverse z-transform to $\mathcal{R}_{xx}(z)$.

(Optional) Let H(z) = A(z²) - z⁻¹B(z²) be the z-transform of a causal sequence with its ROC including the unit circle. Define Y(z) = A(z²) + z⁻¹B(z²), with y[n] denoting its inverse z-transform. Is y[n] causal? What is the ROC of Y(z)? If the magnitude of the DTFT X(e^{jω}) of x[n] is as shown in Fig. 1, sketch the magnitude Y(e^{jω}) of the DTFT of y[n].

6.8 Let the z-transform of a sequence x[n] by X(z) with \mathcal{R}_x denoting its ROC. Express the z-transforms of the real and imaginary parts of x[n] in terms of X(z). Show also their respective ROCs.

6.9 Determine the z-transform and the ROCs of the sequences

a)
$$y_1[n] = \mu[n+2] - \mu[n-3],$$

b)
$$y_2[n] = 2n\alpha^n \mu[n], \ |\alpha| < 1.$$

Show that the ROC includes the unit circle for each z-transform. Evaluate the z-transform evaluated on the unit circle for each sequence and show that it is precisely the DTFT of the respective sequence.

• (Optional) The z-transform X(z) of the length-9 sequence

 $x[n] = \{3, 1, -5, -11, 0, -5, 3, 3, 8\}, -5 \le n \le 3$

is sampled at 6 points $\omega_k = 2\pi k / 6$, $0 \le k \le 5$, on the unite circle yielding the frequency samples

$$X[k] = X(z)|_{z=e^{j2\pi k/6}}, \ 0 \le k \le 5$$

Determine, without evaluating $\tilde{X}[k]$, the periodic sequence $\tilde{x}[n]$ whose discrete-Fourier series coefficients are given by $\tilde{X}[k]$. What is the period of $\tilde{x}[n]$.

6.10 Let X(z) denote the z-transform of the length-10 sequence x[n]

$${x[n]} = {6, 8, -7, 8, 2, -8, -4, 1, -9, 5}$$

Let $X_0[k]$ represent the samples of X(z) evaluated on the unit circle at 8 equally spaced points given by $z = e^{j(2\pi k/8)}$, $0 \le k \le 7$, i.e.,

$$X_0[k] = X(z)|_{z=e^{j2\pi k/8}}, \ 0 \le k \le 7$$

Determine the 8-point IDFT $x_0[n]$ of $X_0[k]$ without computing the IDFT.

6.11 Consider the causal sequence $x[n] = (-0.5)^n \mu[n]$, with a z-transform given by X(z)

- a) Determine the inverse z-transform of $X(z^3)$ without computing X(z),
- b) Determine the inverse z-transform of $(1+z^{-2})X(z^3)$ without computing X(z),

6.12 Let

$$X(z) = \frac{3 - 7.8z^{-1}}{(1 - 0.7z^{-1})(1 + 1.6z^{-1})}$$

be the z-transform of a sequence x[n]. What are the possible ROCs of X(z)? Does the DTFT $X(e^{j\omega})$ of x[n] exist? Justify your answer.

• (Optional) Determine the inverse z-transform x[n] of the following z-transform:

$$X(z) = \frac{1}{1 - z^{-3}}, |z| > 1,$$

by expanding in a power series and computing the inverse z-transform of the individual terms in the power series. Compare the result with those obtained using a partial fraction approach.

6.13 Determine the inverse z-transforms of the following z-transforms:

a)
$$X_1(z) = \ln(1 - \alpha z^{-1}), |z| > |\alpha|$$

b)
$$X_2(z) = \ln(\frac{\alpha - z^{-1}}{\alpha}), |z| > 1/|\alpha|$$

c)
$$X_3(z) = \sin(z^{-1}), \ z \neq 0,$$

• (Optional)The z-transform of a right-sided sequence h[n] is given by

$$H(z) = \frac{z+1.7}{(z+0.3)(z-0.5)}$$

Find its inverse z-transform h[n] via the partial-fraction approach. Using the MATLAB verify the partial fraction expansion.

- (Optional) Prove $Y_C(z) = \langle Y_L(z) \rangle_{(z^{-N}-1)}$.
- 6.14 The magnitude response of a digital filter with a real-coefficient transfer function H(z) is shown in Fig.2. Plot the magnitude response function of the filter $H(z^5)$.

- (Optional) Consider a sequence x[n] with a z-transform X(z). Define a new z-transform Â(z) given by the complex natural logarithm of X(z); that is Â(z) = ln X(z). The inverse z-transform of Â(z) to be denoted by â[n] is called the *complex cepstrum* of x[n][Tri79]. Assume that the ROCs of both X(z) and Â(z) include the unit circle.
 - a) Relate the DTFT $X(e^{j\omega})$ of x[n] to the DTFT $\hat{X}(e^{j\omega})$ of its complex cepstrum;
 - b) Show that the complex cepstrum of a real sequence is a real-valued sequence;
 - c) Let $\hat{x}_{ev}[n]$ and $\hat{x}_{od}[n]$ denote, respectively the even and odd parts of a real-valued complex cepstrum. Express $\hat{x}_{ev}[n]$ and $\hat{x}_{od}[n]$ in terms of $X(e^{j\omega})$, the DTFT of x[n].
- 6.15 Determine the transfer function of the following causal LTI discrete-time system described by the difference equation:

$$y[n] = 5x[n] + 9.5x[n-1] + 1.4x[n-2] - 24x[n-3]$$

+0.1y[n-1] - 0.14y[n-2] - 0.49y[n-3]

- a) Express the transfer function in a factored form and sketch its pole-zero plot;
- b) Is the corresponding system BIBO stable?

6.16 The transfer function of a causal LTI discrete-time system is given by:

$$H(z) = \frac{1 - 3.3z^{-1} + 0.36z^{-2}}{1 + 0.3z^{-1} - 0.18z^{-2}}$$

- a) Determine the impulse response h[n] of the above system
- b) Determine the output y[n] of the above system for all values of n for an input

$$x[n] = 2.1(0.4)^n \,\mu[n] + 0.3(-0.3)^n \,\mu[n].$$

6.17 Using z-transform methods, determine the explicit expression for the impulse response h[n] of a causal LTI discrete-time system that develop an output $y[n] = 2(-0.2)^n \mu[n]$ for an

input
$$x[n] = 3(0.5)^n \mu[n]$$
.

6.18 A causal LTI discrete-time system is described by the difference equation

$$y[n] = 0.4 y[n-1] + 0.05 y[n-2] + 3x[n]$$

where x[n] and y[n] are, respectively, the input and the output sequences of the system.

- a) Determine the transfer function H(z) of the system.
- b) Determine the impulse response h[n] of the system.
- c) Determine the step response s[n] of the system.
- (Optional) Fig. 3a) and b) show, respectively, the DPCM (*differential pulse-code modulation*) coder and decoder often employed for the compression of the digital signal. The linear predictor P(z) in the encoder develops a prediction $\hat{x}[n]$ of the input signal x[n], and the difference signal $d[n] = x[n] \hat{x}[n]$ is quantized by the quantizer Q developing the quantized output u[n], which is represented with fewer bits than that of x[n]. The output of the encoder is transmitted over a channel to the decoder. In the absence of any errors due to transmission and quantization, the input v[n] to the decoder is equal to u[n], and the decoder generates the output y[n], which is equal to the input x[n]. Determine the transfer function H(z) = U(z)/X(z) of the encoder in the absence of any quantization, and the transfer function G(z) = Y(z)/V(z) of the decoder for the case of each of the following

predictors, and show that G(z) is the inverse of H(z) in each case.

a) $P(z) = h_1 z^{-1}$

b)
$$P(z) = h_1 z^{-1} + h_2 z^{-2}$$

- Fig.3 b)
- 6.19 Determine the closed-form expression for the frequency response $H(e^{j\omega})$ of an LTI discrete-time system characterized by the an impulse response

$$h[n] = \delta[n] - \alpha \delta[n-R], \quad |\alpha| < 1,$$

- a) Determine the maximum and the minimum values of its magnitude response.
- b) How many peaks and dips of the magnitude response occur in the range $0 \le \omega < 2\pi$? What are the location of the peaks and dips?
- c) Sketch the magnitude and the phase response for R=5.
- (Optional) An IIR LTI discrete-time system is described by the difference equation

$$y[n] + a_1 y[n-1] + a_3 y[n-2] = b_0 x[n] + b_1 x[n-1] + b_2 x[n-2]$$

where y[n] and x[n] denote, respectively, the output and the input sequences.

- a) Determine the expression for its frequency response;
- b) For what values of the constants b_0 , b_1 , and b_2 , will the magnitude response be a constant for all value of ω .

6.20 The frequency response $H(e^{j\omega})$ of a length-4 FIR filter with a real and antisymmetric impulse response has the following specific values: $H(e^{j3\pi/2}) = -5 - j5$ and $H(e^{j\pi}) = 2$. Determine H(z). 6.21 A causal stable LTI discrete-time system is characterized by an impulse response

$$h_1[n] = 1.9\delta[n] + 0.5(-0.2)^n \mu[n] - 0.6(0.7)^n \mu[n]$$

Determine the impulse response $h_2[n]$ of its inverse system, which is causal and stable.

(Pay attention to the definition of the reverse system!!)

6.22 Consider the FIR LTI discrete-time system characterized by the difference equation

$$y[n] = x[n] + \alpha x[n - M]$$

- a) Determine the impulse response h[n].
- b) Determine the impulse response g[n] of its causal reverse system.
- c) Check the stability of the inverse system.

(Pay attention to the definition of the reverse system!!)

- (Optional)
 - d) Let G(z) be a causal stable rational transfer function with an ROC given by $|z| \ge \beta$. For

what values of the constant α will the transfer function $H(z) = G(z/\alpha)$ remain stable? What is the ROC of H(z).

e) Consider the causal stable transfer function

$$G(z) = \frac{1 - 0.5z^{-1} + 2z^{-2}}{(1 + 0.9z^{-1})(1 + 0.4z^{-1})}$$

Develop a transfer function H(z) by scaling the complex variable z by a constant α , i.e., $H(z) = G(z/\alpha)$. Determine the range of values of α for which H(z) remains stable.

6.23 The transfer function of an LTI discrete-time system is given by

$$H(z) = \frac{3 + 5.9z^{-1}}{(1 - 3.5z^{-1})(1 + 0.6z^{-1})}$$

- a) How many ROCs are associated with H(z)?
- b) Does the frequency response $H(e^{j\omega})$ of the system exist? Justify your answer.
- c) Can the system by stable? If it is stable, can it by causal?
- d) Determine the forms of its impulse response h[n].

(Hint: Find all the ROCs and discuss accordingly.)