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1. z-Transform

 DTFT provides a frequencyfrequency--domain domain p q yq y
representationrepresentation of discrete-time signals and 
LTI discrete-time systems.

 DTFTDTFT of a sequence may of a sequence may not existnot exist because because 
of theof the convergence conditionconvergence condition

5

of the of the convergence conditionconvergence condition..

1. z-Transform

 zz--Transform(ZT)Transform(ZT)( )( )
 Generalization of the DTFT DTFT in complex frequency 

domain. 
※ ZT for discrete-time systems
※ Laplace-transform(LT) for continuous-time systems

 Existing for many sequences whose DTFTDTFT does not 
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exist. 
 Permitting simple algebraic manipulations.
 Providing a great deal of insight into system design and 

behavior. 

1. 1 Definition of z-Transform

 Recall:  DTFT of a sequence g(n)

G(ejω) can be viewed as a Fourier series and

  





n

njj engeG  ][

7

G(ejω) can be viewed as a Fourier series and 
g[n] is the coefficients of this series. 

 Building block in DTFT: ejω

 One dimensional (single-variable) function

1. 1 Definition of z-Transform

 Define a new two dimensional variable 
z= = rerejjωω

 z is called the complexcomplex frequencyfrequency
 r ：attenuationattenuation
 ω: realreal frequencyfrequency

 simple algebraic manipulations.
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1. 1 Definition of z-Transform

F i [ ] it t f G( ) For a given sequence g[n], its z-transform G(z)
is defined as

where z = Re(z) + jIm(z) is a complex variable

  [ ] n

n

G z g n z






 
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where z = Re(z) + jIm(z) is a complex variable.

[ ] ( ) ( [ ])zg n G z g n 

1. 1 Definition of z-Transform

L t th th t fj
 Let            , then the z-transform

 DTFT of the modified sequencemodified sequence {g(n)r -n}

jz re 

  





n

njnerngzG ][

   



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 For r = 1 (i.e., |z| = 1, unit circleunit circle.), reduces to its DTFT, 

    )][(][ n

n

njn rngerngzG 



   Y

 


j
ez

eGzG j 


)( provided the DTFT exists!

1. 1 Definition of z-Transform

 Geometrical interpretationGeometrical interpretation -- considering theGeometrical interpretation Geometrical interpretation considering the 
location of the point location of the point zz in the complex in the complex zz--planeplane. 

 For fixed r and ω, the point                  in the 
complex z-plane is at the tip of a vector of tip of a vector of 
length r originating at the point length r originating at the point zz = 0 = 0 and 
subtending an anglesubtending an angle ωω with respect to the realwith respect to the real

jrez 
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subtending an angle subtending an angle ωω with respect to the real with respect to the real 
axisaxis. 

1. 1 Definition of z-Transform

jrez 
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 Contour |z| = 1 ：a circle in the z-plane of 
unity radius and is called the unit circle.
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1. 1 Definition of z-Transform

 For r=1 (i.e., |z|=1), the zz--transformtransform of g[n]  
d i F i fF i f

( )G z
( )jG reduces to its Fourier transformFourier transform , 

providing the latter exists.providing the latter exists.
 Evaluate          on the unit circle 
 CounterclockwiseCounterclockwise:

( )jG e 

( )G z

:   1    1       1z j j     

13

 ClockwiseClockwise:

j j
:  0  / 2  3 / 2  0      

:     1       1        1z j j     
: 2 / 2 3 / 2  0           

1. 1 Definition of z-Transform

 It follows: by traversing the unit circle either traversing the unit circle either 
l k i l k il k i l k iclockwise or counterclockwiseclockwise or counterclockwise, we can 

evaluate the Fourier transform            at allall
values of the frequency                      values of the frequency                      with 
Fourier transform exhibiting a periodic 
response with a period       .

( )jG e 

   

2
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1. 2 Region of Convergence (ROC) 

 Conditions on the convergence of the infinite Conditions on the convergence of the infinite 
series

For a given sequence, the set the set RR of values of of values of zz
for which its zz--transform converges transform converges is called 

[ ] n

n
g n z







15

gg
the Region of convergenceRegion of convergence (ROC).

※※ ZT may exist for many sequences for which the ZT may exist for many sequences for which the 
DTFT does not existDTFT does not exist

1. 2 Region of Convergence (ROC) 

 From the DTFT it follows that the series From the DTFT, it follows that the series

if i b l t l bl

( ) [ ]j n j n

n
G re g n r e 


 



 

n][
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converges if               is absolutely summable, 
i.e., if

nrng ][








n

nrng ][
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1. 2 Region of Convergence (ROC) 

 ROC R is an annular regionannular region of the z plane: ROC R is an annular region annular region of the z-plane:

where


 gg RzR
_

_
0 g gR R


  
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 Note: The z-transform is a form of a Laurent series Laurent series 
and is an analytic function at every point in the ROC.

 maybe 0;        maybe .
_gR 

gR

1. 2 Region of Convergence (ROC) 

Example of ROCExample of ROC

g
R g

R 

pp

1

z-plane

Re{z}

jIm{z}

0

18

unit circleGray region ：ROC

If                 , ROC is a null space : ZT does not exist.
_gg RR 



1. 2 Region of Convergence (ROC) 

Example 1:Example 1:

Calculate the ZT of
 1

0 0

1

( ) [ ]

1
1

nn n n

n n n

X z x n z a z az

z

  
  

  

  

 

  
[ ] [ ]nx n a u n
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Note that the above equation holds only for             , 
i.e. 

1 1az 
z a

Region of convergence

11 z aaz 

1. 2 Region of Convergence (ROC) 

Example 2:Example 2:

Calculate the ZT of

 
   

1 1
1

1 1

( )
nn n

n n
n n

X z a z az

zaz a z

 
 

 
  

  

  

 

 

[ ] [ 1]nx n a u n   

20

Note that the above equation holds only for             , 
i.e. 

-1 1a z 
z a

Region of convergence

   
1 1n n z a   
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1. 2 Region of Convergence (ROC) 

From the above two examples we find thatFrom the above two examples, we find that
 Very different time functions different time functions can have the 

same zsame z--transform expressionstransform expressions. 
 ROC plays an important role in computing the z-

transform or inverse z-transform.

21

 Unique sequence can be associated with a z-
transform is by specifying its ROC

1. 2 Region of Convergence (ROC) 

Example 3:Example 3:

Calculate the ZT  of ][n

11
1)( 


z

zX


1  for 1 z　

b tti 1

)(z

22
Region of convergence

by setting 1

11
1)( 


z

z 1 for 1 z　

1 z 

1. 2 Region of Convergence (ROC) 

Example 3:Example 3:

Note: The unit step sequence is not 
absolutely summable, and hence its DTFT 
does not converge uniformly.

][n

23

1. 2 Region of Convergence (ROC) 

Example 4:Example 4: Calculate the ZT of finite-length

, 1
[ ]

0, otherwise

n M n N
g n

   
 


Example 4:Example 4: Calculate the ZT of finite length
sequence

1
1

1 


MN

M
N

24

11

)(

0

1

11
1

)()(


































 

z
zz

z
zz

zzzzG

NMNMMNMN
M

n

nM

Mn

nn








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1. 2 Region of Convergence (ROC) 

Since the sum involves a finite number of termsfinite number of terms, the ,
sum is finite everywhere in the z-plane except possibly 
z =0 and/or z =      , provided is finite. 

 N > M ≥ 0, the ROC is the entire z-plane excluding 
the origin z =0. 

M 0 d N 0 h ROC i h i l

 

25

M< 0 and N> 0, the ROC is the entire z-plane 
excluding z =0 and z =∞ . 

M < N < 0, the ROC is the entire z-plane excluding 
z = ∞  . 

1. 2 Region of Convergence (ROC) 

Example 5:Example 5: The finite energy sequence 

has a DTFT given by

sin
[ ] ,   c

LP
n

h n n
n



    

01,
( )  

0
cj

LPH e 
    



26

( )
0,LP   


 
which converges in the meanconverges in the mean--square sense.square sense.

 However, does not have a z-transform as it is 
not absolutely summable for any value of r.

[ ]LPh n

1. 2 Region of Convergence (ROC) 

 The DTFT of a sequence h[n] convergesconverges( )jH e  The DTFT of a sequence h[n] converges converges 
uniformlyuniformly if and only ifif and only if the ROC of the ROC of the zz--transform transform 
HH((zz) of ) of hh[[nn] includes the unit circle] includes the unit circle.

 The existence of the DTFT does not always imply The existence of the DTFT does not always imply 
the existence of the zthe existence of the z--transformtransform.

( )H e

27

1. 2 Region of Convergence (ROC) 
Some commonly used z-transform pairs.

Sequence z-Transform ROC

1 All values of z]n[

]n[

]n[n

11
1

 z

11
1

1z

αz 

28

]n[

[n]n)cos(r 0
n 

][)sin( 0 nnωr n 

11  αz

221
0

1
0

)cos2(1
)cos(1





 zrzωr 
zωr -

221
0

1
0

)cos2(1
)sin(1





 zrzωr 
zωr -

αz 

rz 

rz 
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2 Rational z-Transform

 LTI discrete-time systems, all involved ZTLTI discrete time systems, all involved ZT 
are rational functions of z－1

 Ratios of two polynomials Ratios of two polynomials in z－1:
1 ( 1)

0 1 1
1 ( 1)

( )( )
( )

M M
M M

N N

p p z p z p zP zG z
D z d d z d z d z

   


   

   
 

  


(Form I)

29

 DegreeDegree of numerator polynomialnumerator polynomial P(z): M
 DegreeDegree of denominator  polynomial denominator  polynomial D(z): N

( )
0 1 1 1( ) N ND z d d z d z d z   

2 Rational z-Transform

 Alternate representation of a rational z Alternate representation of a rational z-
transform is as a ratio of two polynomials ratio of two polynomials in z:

1
( ) 0 1 1

1( )
M M

N M M M
N N

p z p z p z pG z z
d z d z d z d


 



   


  


30

0 1 1 1N Nd z d z d z d   

(Form II)

2 Rational z-Transform

 A rational z transform can be alternatively A rational z-transform can be alternatively 
written in factored form factored form as

(Form III)













 N

l l

M

l l

z

z
d
pzG

1
1

1
1

0

0

)1(

)1(
)(





31

(Form IV)










 N

l l

M

l lMN

z

z
d
pzzG

1

1

0

0)(

)(

)(
)(





2 Rational z-Transform

 Roots of the numeratornumerator polynomialpolynomial,
, known as the zeros of G(z)

 Roots of the denominatordenominator polynomialpolynomial,
k th l f G( )

lz 

lz 
)(G 

0)( lG 

32

, known as the poles of G(z))( lG 
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2 Rational z-Transform

C id



M

l l zpG 1
1

0
)1(

)(


Consider:

 Rational z-transform can be represented completely represented completely by ：

the locations of its poles { } 、zeros { }







 N

l l

l

zd
pzG

1
1

1

0

0

)1(
)(



l l

33

the locations of its poles { } 、zeros { } 

and the gain constant         .

l l

0

0

d
p

2 Rational z-Transform

C id
 1( ) 0( )

M
l lN M zpG

 Consider:

 Note G(z) has M M finite zeros finite zeros and N finite 
poles
 If N > M there are additional NN－－MM zeros atzeros at z = 0 (the

 
 

1( ) 0

0 1

( ) l lN M
N
l l

pG z z
d z










34

 If N > M there are additional NN M M zeros at zeros at z  0 (the 
origin in the z-plane)

 If N < M there are additional MM－－NN poles at poles at z = 0

2 Rational z-Transform

Example: The z-transform 1( ) , for 1H z z Example: The z transform 
has zero at zero at zz=0 =0 and a pole at pole at zz=1=1

1( ) ,    for 1
1

H z z
z 



35

2 Rational z-Transform

A h i l i i f h f A physical interpretation of the concepts of 
poles and zeros can be given by plotting the 
loglog--magnitude magnitude 20log20log1010||GG((zz)| )| as shown on next 
slide for

1 21 2 4 2 88

36

1 2

1 2

1 2.4 2.88( )
1 0.8 0.64

z zG z
z z

 

 

 


 
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2 Rational z-Transform

Two poles at 
very large peaks

z=0.4±j0.6928

37

Two zeros at 
z=1.2±j1.2

narrow and deep wells

3 General Form of ROC of a Rational 
z- Transform

 Without the knowledgeWithout the knowledge of the ROC Without the knowledge Without the knowledge of the ROC, 
there is no unique relationship between no unique relationship between 
a sequence and its za sequence and its z--transformtransform. Hence, 
the z-transform must always be 
specified with its ROC.
If th ROCROC f t f i l d thi l d th

38

 If the ROCROC of a z-transform includes the includes the 
unit circleunit circle, the DTFTDTFT of the sequence is 
obtained by simply evaluating the zevaluating the z--
transform on the unit circletransform on the unit circle.

3 General Form of ROC of a Rational 
z- Transform

 There is a relationship between the ROC of There is a relationship between the ROC of 
the z-transform of the impulse response of a 
causal LTI discrete-time system and its 
BIBO stability.

 The ROC of a rational z-transform is 
b d d b th l ti f it l I i

39

bounded by the locations of its poles. It is 
instructive to examine the pole-zero plot of a 
z-transform.

3  General Form of ROC

Example Example Consider again the pole-zero plot of 
th t f )(zthe z-transform )(z

40

 the ROC is the region of the z-plane just 
outside the circle centered at the origin and 
going through the pole at z = 1
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3  General Form of ROC

ExampleExample
The z-transform the sequence 
is given by

[ ] ( 0.6) [ ]nh n n 

1

1(z) ,
1 0.6

H
z




41

 Here the ROC is just outside the circle going 
through the point

                      0.6z 

0.6z  

3 General Form of ROC of a Rational 
z- Transform

 In general there are four types of ROCs In general, there are four types of ROCs 
for z -transforms, and they depend on 
the type of the corresponding time 
functions.
–– FiniteFinite--length sequence length sequence 

42

–– RightRight--sided sequencesided sequence
–– LeftLeft--sided sequencesided sequence
–– TwoTwo--sided (infinite duration) sequencesided (infinite duration) sequence

3.1  General Form of ROC

–– FiniteFinite--length Sequencelength Sequenceg qg q
A finitefinite--length sequencelength sequence g[n] is defined for M ≤ n ≤ N
with |g[n]| < ∞. 

,
[ ]

0, otherwise

n M n N
g n

  
 


Example :Example :

43

0
( ) [ ] [ ]

N M nN N M
n

N
n M n

zG z g n z g n M
z

 


 

   

3.1  General Form of ROC

A finite-length sequence is bounded sequence withA finite length sequence is bounded sequence with 
converge everywhere in the z-plane except possible z
=0 and/or z=∞
 N> M> 0, the ROC is the entire z-plane excluding the 
origin z =0. 
M < 0 and N > 0, the ROC is the entire z-plane excluding z 

0

44

=0 and z = ∞∞ . 
M<N < 0, the ROC is the entire z-plane excluding z = ∞∞ . 
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3.1  General Form of ROC

–– RightRight--sided Sequencesided Sequence
A rightright--sided sequencesided sequence u[n] with nonzero sample values only 
for n ≥M

R

jIm{z}

45

g
R 

1 Re{z}0

ROC
unit circle

3.1  General Form of ROC

R  If M≥0 R z  

Comment

g
R   If M≥0, gR z   

g
R   If M <0, gR z   

If M =0, u[n] is called a causal sequencecausal sequence

46

Comment
All causal sequences (or the impulse responses of 
LTI systems) are right-sided, while not all right-
sided sequences correspond to causal systems.

3.1  General Form of ROC

–– LeftLeft--sided Sequencesided Sequence
A left-sided sequence v[n] with nonzero sample 
values only for n ≤ N jIm{z}

R

47unit circle

g
R 

1 Re{z}0

ROC

3.1  General Form of ROC

0R0 R 0gR  If N >0, 0 gz R  

0gR  If N ≤ 0,

If N=0, v[n] is called a anticausalanticausal sequencesequence

0 gz R  

48
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3.1  General Form of ROC

–– TwoTwo--sided Sequencesided Sequence
The z-Transform of a two-sided sequence w[n] can be 
expressed as

1

0

( ) [ ] [ ] [ ]n n n

n n n

W z w n z w n z w n z
  

  

  

    

49

+A right-sided 
sequence

-gz R

A left-sided 
sequence

gz R 

3.1  General Form of ROC

Obviously, the ROC of W(z) is the intersection of                gz R y, ( )
and . If                   , its ROC has the following 
form

g

gz R  g gR R 
jIm{z}

But, if                 , its 
ROC is a null space, 

g gR R 

50

g
R g

R 

1 Re{z}0

p ,
i.e., the transform 
does not exist 

3.1  General Form of ROC

ExampleExample

Consider the sequences for where α and β
can be either complex or real

p ep e

][)(][ nnx nn  

 

 z

]1[)(][  nnx nn   z0

51

][)(][ 

]1[][][  nnnx nn 

][]1[][ nnnx nn  

  z

z z    

3.1  General Form of ROC

Finally for a twoFinally for a two--sided sequence some of the polessided sequence some of the polesFinally, for a twoFinally, for a two--sided sequence, some of the poles sided sequence, some of the poles 
contribute to terms in the parent sequence for contribute to terms in the parent sequence for n n < 0 and < 0 and 
the other poles contribute to terms the other poles contribute to terms n n > 0 .> 0 .

 ROC is thus bounded
 on the outside by the poleoutside by the pole with the smallestsmallest

52

 on the outside by the pole outside by the pole with the smallest smallest 
magnitudemagnitude that contributes for n n < 0< 0

 on the insideinside by the pole with the largest magnitude largest magnitude 
that contributes for nn> 0 > 0 
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3.1  General Form of ROC

Example Example 

Consider the two-sided sequence x[n]=an, where a can 
be either complex or real. Its z-Transform is given by

p ep e

1

0

( ) n n n n

n n

X z a z a z
 

 

 

  

53

z a z a

There is no overlap between these two regions. Hence, 
its z-transform does not exist

3.1  General Form of ROC

SummarySummary
 In general, if the rational z-transform has N poles 

with R R distinct magnitudesdistinct magnitudes, then it has RR+1 +1 
possible ROCspossible ROCs

 Thus, there are  RR+1 distinct sequences +1 distinct sequences with the 
same z-transform

54

Hence, a rational z-transform with a specified 
ROC has a unique sequence as its inverse z-
transform.

3. 2 ROC of Rational z-Transform

RecallRecall

ZT         of

Region of convergence

][n
11

1)( 


z
z 1 for 1 z　

 11 z

)(z

55

 The ROC of a rational z-transform is

3. 2 ROC of Rational z-Transform

 The ROC of a rational z-transform is 
bounded by the locations of its polesbounded by the locations of its poles

 ROC：
 unique relationship between a sequence and its z-

transform.
i l d h i i l

56

 ROC includes the unit circle：
 DTFT exists ↔ BIBO Stable

 ROCROC outsideoutside circular: circular: 
 Causal
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3.3 Determine the ROC by MATLAB

 To understand the relationship between 
the poles and the ROC, it is instructive 
to examine the pole-zero plot of a z-
transform

57

3.3 Determine the ROC by MATLAB

 The pole zero can be easily determined The pole-zero can be easily determined 
using MATLAB

[z,p,k] = tf2zp(num,den)
determines the zeros, poles, and the gain 
constant of a rational z-transform with the 

58

numerator coefficients specified by the 
vector num and the denominator 
coefficients specified by the vector den.

3.3 Determine the ROC by MATLAB

 [num den] = zp2tf(z p k) implements the [num,den]  zp2tf(z,p,k) implements the 
reverse process

 The factored formfactored form of the z-transform can be 
obtained using sos = zp2sos(z,p,k) where where 
sos stands for stands for secondsecond--order sectionorder section

59

 The above statement computes the 
coefficients of each second-order factor 
given as an  L×6 matrix sos

3.3 Determine the ROC by MATLAB

b b b 01 11 21 01 11 12

02 12 22 02 12 22

0 1 2 0 1 2L L L L L L

b b b a a a
b b b a a a

b b b a a a

 
 
 
 
 
 

sos
     

60

1 2
0 1 2

1 2
1 0 1 2

( )
L

k k k

k k k k

b b z b zG z
a a z a z

 

 


 


 
where
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3.3 Determine the ROC by MATLAB

 The polepole--zero plotzero plot is determined using The polepole zero plotzero plot is determined using 
the function zplane

 The z-transform can be either described 
in terms of its zeros and poles:zeros and poles:

zplane(zeros,poles)
f

61

or, it can be described in terms of its 
numerator and denominator coefficients:numerator and denominator coefficients:

zplane(num,den)


