

Part A: z-Transform

- Definitlon: z-Transform
- Ratlonal z-Transform
- Region of Convergence (ROC) of a Rational zTransform
- DTFT provides a frequency-domain representation of discrete-time signals and LTI discrete-time systems.
- DTFT of a sequence may not exist because of the convergence condition.

1. z-Transform $\because \because$

- z-Transform(ZT)

\square Generalization of the DTFT in complex frequency domain.
※ ZT for discrete-time systems
※ Laplace-transform(LT) for continuous-time systems
\square Existing for many sequences whose DTFT does not exist.
\square Permitting simple algebraic manipulations.
\square Providing a great deal of insight into system design and behavior.

1. 1 Definition of z-Transform

- Recall: DTFT of a sequence $g(n)$

$$
G\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} g[n] e^{-j \omega n}
$$

$G\left(e^{j \omega}\right)$ can be viewed as a Fourier series and $g[n]$ is the coefficients of this series.

- Building block in DTFT:
- One dimensional (single-variable) function

1. 1 Definition of z-Transform

- Define a new two dimensional variable

$$
z=r e^{j \omega}
$$

$\square z$ is called the complex frequency
$\checkmark r$: attenuation
$\checkmark \omega$: real frequency
\square simple algebraic manipulations.

- For a given sequence $g[n]$, its z-transform $G(z)$ is defined as

$$
G(z)=\sum_{n=-\infty}^{\infty} g[n] z^{-n}
$$

where $\mathrm{z}=\operatorname{Re}(\mathrm{z})+j \operatorname{Im}(\mathrm{z})$ is a complex variable.

$$
g[n] \stackrel{z}{\longleftrightarrow} G(z)=\mathbb{Z}(g[n])
$$

1. 1 Definition of z-Transform

- Geometrical interpretation - considering the location of the point z in the complex z-plane.
- For fixed r and ω, the point $z=r e^{j \omega}$ in the complex z-plane is at the tip of a vector of length r originating at the point $z=0$ and subtending an angle ω with respect to the real axis.

1. 1 Definition of z-Transform

- Contour $|z|=1:$ a circle in the z-plane of unity radius and is called the unit circle.

1. 1 Definition of z-Transform

- For $r=1$ (i.e., $|z|=1$), the z-transform $G(z)$ of $g[n]$ reduces to its Fourier transform $G\left(e^{j \omega}\right)$, providing the latter exists.
- Evaluate $G(z)$ on the unit circle
- Counterclockwise:

$$
\begin{gathered}
z: 1 \rightarrow j \rightarrow-1 \rightarrow-j \rightarrow 1 \\
\omega: 0 \rightarrow \pi / 2 \rightarrow \pi \rightarrow 3 \pi / 2 \rightarrow 0
\end{gathered}
$$

- Clockwise:

$$
\begin{gathered}
z: 1 \rightarrow-j \rightarrow-1 \rightarrow j \rightarrow 1 \\
\omega:-2 \pi \rightarrow-\pi / 2 \rightarrow-\pi \rightarrow-3 \pi / 2 \rightarrow 0
\end{gathered}
$$

1. 1 Definition of z-Transform

- It follows: by traversing the unit circle either clockwise or counterclockwise, we can evaluate the Fourier transform $G\left(e^{j \omega}\right)$ at all values of the frequency $-\infty<\omega<\infty$ with Fourier transform exhibiting a periodic response with a period 2π.

1. 2 Region of Convergence (ROC)

- Conditions on the convergence of the infinite series

$$
\sum_{n=-\infty}^{\infty} g[n] z^{-n}
$$

For a given sequence, the set R of values of z for which its z-transform converges is called the Region of convergence (ROC).
※ ZT may exist for many sequences for which the DTFT does not exist

1. 2 Region of Convergence (ROC)

- From the DTFT, it follows that the series

$$
G\left(r e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} g[n] r^{-n} e^{-j \omega n}
$$

converges if $g[n] r^{-n}$ is absolutely summable, i.e., if

$$
\sum_{n=-\infty}^{\infty}\left|g[n] r^{-n}\right|<\infty
$$

- ROC R is an annular region of the z-plane:

$$
R_{g_{-}}<|z|<R_{g_{+}}
$$

where

$$
0 \leq R_{g_{-}}<R_{g_{+}} \leq \infty
$$

- Note: The z-transform is a form of a Laurent series and is an analytic function at every point in the ROC.
- $R_{g_{-}}$maybe $0 ; R_{g_{+}}$maybe ∞.

1. 2 Region of Convergence (ROC)

Example 1:

Calculate the ZT of $x[n]=a^{n} u[n]$

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty} x[n] z^{-n}=\sum_{n=0}^{\infty} a^{n} z^{-n}=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n} \\
& =\frac{1}{1-a z^{-1}}=\frac{z}{z-a}
\end{aligned}
$$

Note that the above equation holds only for $\left|a z^{-1}\right|<1$, i.e. $|z|>|a|$

Example of ROC

If $R_{g_{+}}<R_{g_{-}}, \mathrm{ROC}$ is a null space : ZT does not exist. 18

1. 2 Region of Convergence (ROC)

Example 2:

Calculate the ZT of $\quad x[n]=-a^{n} u[-n-1]$

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{-1}-a^{n} z^{-n}=\sum_{n=-\infty}^{-1}\left(a z^{-1}\right)^{n} \\
& =\sum_{n=1}^{\infty}\left(a z^{-1}\right)^{-n}=\sum_{n=1}^{\infty}\left(a^{-1} z\right)^{n}=\frac{z}{z-a}
\end{aligned}
$$

Note that the above equation holds only for $\left|a^{-1} z\right|<1$, i.e. $|z|<|a|$

From the above two examples, we find that

- Very different time functions can have the same z-transform expressions.
- ROC plays an important role in computing the z transform or inverse z-transform.
- Unique sequence can be associated with a ztransform is by specifying its ROC

1. 2 Region of Convergence (ROC)

Example 3:

Note: The unit step sequence $\mu[n]$ is not absolutely summable, and hence its DTFT does not converge uniformly.

1. 2 Region of Convergence (ROC)

Example 3:

Calculate the ZT $\mu(z)$ of $\mu[n]$

$$
X(z)=\frac{1}{1-o z^{-1}} \quad \text { for }\left|\alpha z^{-1}\right|<1
$$

by setting $\alpha=1$

$$
\mu(z)=\frac{1}{1-z^{-1}} \quad \text { for }\left|z^{-1}\right|<1
$$

1. 2 Region of Convergence (ROC)

Since the sum involves a finite number of terms, the sum is finite everywhere in the z-plane except possibly $\mathrm{z}=0$ and/or $\mathrm{z}=\infty$, provided $|\alpha|$ is finite.
$>\boldsymbol{N}>\boldsymbol{M} \geq \mathbf{0}$, the ROC is the entire z-plane excluding the origin $\mathrm{z}=0$.
$>M<\mathbf{0}$ and $\boldsymbol{N}>\mathbf{0}$, the ROC is the entire z-plane excluding $\mathrm{z}=0$ and $\mathrm{z}=\infty$.
$>\boldsymbol{M}<\boldsymbol{N}<\mathbf{0}$, the ROC is the entire z-plane excluding $\mathrm{z}=\infty$.

1. 2 Region of Convergence (ROC)

- The DTFT $H\left(e^{j \omega}\right)$ of a sequence $h[n]$ converges uniformly if and only if the ROC of the z-transform $H(z)$ of $h[n]$ includes the unit circle.
- The existence of the DTFT does not always imply the existence of the z-transform.

1. 2 Region of Convergence (ROC)

Example 5: The finite energy sequence

$$
h_{L P}[n]=\frac{\sin \omega_{c} n}{\pi n}, \quad-\infty<n<\infty
$$

has a DTFT given by

$$
H_{L P}\left(e^{j \omega}\right)= \begin{cases}1, & 0 \leq|\omega| \leq \omega_{c} \\ 0, & \omega<|\omega| \leq \pi\end{cases}
$$

which converges in the mean-square sense.

- However, $h_{L P}[n]$ does not have a z-transform as it is not absolutely summable for any value of r.

1. 2 Region of Convergence (ROC)

Some commonly used z-transform pairs.

Some commonly used z-transform pairs.		
Sequence	z-Transform	ROC
$\delta[\mathrm{n}]$	1	All values of z
$\mu[\mathrm{n}]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
$\alpha^{\mathrm{n}} \mu[\mathrm{n}]$	$\frac{1}{1-\alpha z^{-1}}$	$\|z\|>\|\alpha\|$
$\left(r^{n} \cos \omega_{0} n\right) \mu[n]$	$\frac{1-\left(r \cos \omega_{0}\right) z^{-1}}{1-\left(2 r \cos \omega_{0}\right) z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$
$\left(r^{n} \sin \omega_{0} n\right) \mu[n]$	$\frac{1-\left(r \sin \omega_{0}\right) z^{-1}}{1-\left(2 r \cos \omega_{0}\right) z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$

2 Rational z-Transform

- LTI discrete-time systems, all involved $Z T$ are rational functions of z^{-1}
- Ratios of two polynomials in z^{-1} :
(Form I)
$G(z)=\frac{P(z)}{D(z)}=\frac{p_{0}+p_{1} z^{-1}+\cdots+p_{M-1} z^{-(M-1)}+p_{M} z^{-M}}{d_{0}+d_{1} z^{-1}+\cdots d_{N-1} z^{-(N-1)}+d_{N-1} z^{-N}}$
- Degree of numerator polynomial $P(z)$: M
- Degree of denominator polynomial $D(z)$: N

2 Rational z-Transform

- A rational z-transform can be alternatively written in factored form as

$$
\begin{aligned}
& G(z)=\frac{p_{0}}{d_{0}} \frac{\prod_{l=1}^{M}\left(1-\xi_{l} z^{-1}\right)}{\prod_{l=1}^{N}\left(1-\lambda_{l} z^{-1}\right)} \quad \text { (Form III) } \\
& G(z)=z^{(N-M)} \frac{p_{0}}{d_{0}} \frac{\prod_{l=1}^{M}\left(z-\xi_{l}\right)}{\prod_{l=1}^{N}\left(z-\lambda_{l}\right)} \quad \text { (Form IV) }
\end{aligned}
$$

- Alternate representation of a rational z transform is as a ratio of two polynomials in z :

$$
G(z)=z^{(N-M)} \frac{p_{0} z^{M}+p_{1} z^{M-1}+\cdots+p_{M-1} z+p_{M}}{d_{0} z^{N}+d_{1} z^{N-1}+\cdots d_{N-1} z+d_{N-1}}
$$

(Form II)

2 Rational z-Transform

Consider: $\quad G(z)=\frac{p_{0}}{d_{0}} \frac{\prod_{l=1}^{M}\left(1-\xi_{l} z^{-1}\right)}{\prod_{l=1}^{N}\left(1-\lambda_{l} z^{-1}\right)}$

- Rational z-transform can be represented completely by :
the locations of its poles $\left\{\lambda_{l}\right\}$, zeros $\left\{\xi_{l}\right\}$
and the gain constant $\frac{p_{0}}{d_{0}}$.

2 Rational z-Transform

Example: The z-transform $H(z)=\frac{1}{1-z^{-1}}$, for $|z|>1$ has zero at $z=0$ and a pole at $z=1$

Unit circle $|z|=1$

2 Rational z-Transform
Consider: $\quad G(z)=z^{(N-M)} \frac{p_{0}}{d_{0}} \frac{\prod_{l=1}^{M}\left(z-\xi_{l}\right)}{\prod_{l=1}^{N}\left(z-\lambda_{l}\right)}$

- Note $G(z)$ has M finite zeros and N finite poles
- If $N>M$ there are additional $N-M$ zeros at $\mathbf{z}=\mathbf{0}$ (the origin in the z-plane)
\square If $N<M$ there are additional $M-N$ poles at $\mathbf{z}=\mathbf{0}$

2 Rational z-Transform

- A physical interpretation of the concepts of poles and zeros can be given by plotting the log-magnitude $20 \log _{10}|G(z)|$ as shown on next slide for

$$
G(z)=\frac{1-2.4 z^{-1}+2.88 z^{-2}}{1-0.8 z^{-1}+0.64 z^{-2}}
$$

3 General Form of ROC of a Rational z- Transform

- Without the knowledge of the ROC, there is no unique relationship between a sequence and its z-transform. Hence, the z -transform must always be specified with its ROC.
- If the ROC of a z transform includes the unit circle, the DTFT of the sequence is obtained by simply evaluating the z^{-} transform on the unit circle.

3 General Form of ROC of a Rational z- Transform

- There is a relationship between the ROC of the z-transform of the impulse response of a causal LTI discrete-time system and its BIBO stability.
- The ROC of a rational z-transform is bounded by the locations of its poles. It is instructive to examine the pole-zero plot of a z-transform.

3 General Form of ROC
Example Consider again the pole-zero plot of the z-transform $\mu(z)$

- the ROC is the region of the z-plane just outside the circle centered at the origin and going through the pole at $z=1$

3 General Form of ROC

Example

The z-transform the sequence $h[n]=(-0.6)^{n} \mu[n]$
is given by

$$
\begin{array}{r}
H(\mathrm{z})=\frac{1}{1+0.6 z^{-1}}, \\
|z|>0.6
\end{array}
$$

- Here the ROC is just outside the circle going through the point $z=-0.6$

3.1 General Form of ROC

- Finite-length Sequence

A finite-length sequence $g[n]$ is defined for $M \leq n \leq N$ with $|g[n]|<\infty$.
Example : $g[n]=\left\{\begin{array}{lr}\alpha^{n}, & M \leq n \leq N \\ 0, & \text { otherwise }\end{array}\right.$

$$
G(z)=\sum_{n=M}^{N} g[n] z^{-n}=\sum_{n=0}^{N-M} g[n+M] \frac{z^{N-M-n}}{z^{N}}
$$

3 General Form of ROC of a Rational

 z- Transform- In general, there are four types of ROCs for z-transforms, and they depend on the type of the corresponding time functions.
- Finite-length sequence
- Right-sided sequence
- Left-sided sequence
- Two-sided (infinite duration) sequence

3.1 General Form of ROC

$\because \because:$
$\because \because \because$
$\because \because O$ $\because \because$
3.1 General Form of ROC

If $M \geq 0, R_{g-}<|z| \leq \infty \quad R_{g^{+}}=\infty$
If $M<0, R_{g_{-}}<|z|<\infty \quad R_{g^{+}}<\infty$
If $M=0, u[n]$ is called a causal sequence

Comment
All causal sequences (or the impulse responses of LTI systems) are right-sided, while not all rightsided sequences correspond to causal systems.

3.1 General Form of ROC

- Left-sided Sequence

A left-sided sequence $v[n]$ with nonzero sample values only for $n \leq N$

3.1 General Form of ROC

- Two-sided Sequence

The z-Transform of a two-sided sequence $w[n]$ can be expressed as

$$
\begin{array}{r}
W(z)=\sum_{n=-\infty}^{\infty} w[n] z^{-n}=\sum_{n=0}^{\infty} w[n] z^{-n}+\sum_{n=-\infty}^{-1} w[n] z^{-n} \\
\begin{array}{c}
\text { A right-sided } \\
\text { sequence }
\end{array}+\begin{array}{c}
\text { A left-sided } \\
\text { sequence }
\end{array} \\
|z|>R_{g .}
\end{array}|z|<R_{g+} .
$$

3.1 General Form of ROC

Example

Consider the sequences for $\quad|\alpha|<|\beta|$ where α and β can be either complex or real

$$
\begin{aligned}
& x[n]=\left(\alpha^{n}+\beta^{n}\right) \mu[n] \\
& x[n]=-\left(\alpha^{n}+\beta^{n}\right) \mu[-n-1] \\
& x[n]=\alpha^{n} \mu[n]-\beta^{n} \mu[-n-1] \\
& x[n]=-\alpha^{n} \mu[-n-1]+\beta^{n} \mu[n] \quad \Longrightarrow|z| \leq \infty \\
& x[|z|<|\alpha| \\
& \hline[|z|<|\alpha| \cap|\beta|<|z|=\varnothing
\end{aligned}
$$

3.1 General Form of ROC

Obviously, the ROC of $W(z)$ is the intersection of $|z|>R_{g-}$ and $|z|<R_{g+}$. If $R_{g+}>R_{g-}$, its ROC has the following

But, if $R_{g+}<R_{g-}$, its ROC is a null space, i.e., the transform does not exist

3.1 General Form of ROC

Finally, for a two-sided sequence, some of the poles contribute to terms in the parent sequence for $n<0$ and the other poles contribute to terms $n>0$.

- ROC is thus bounded

\square on the outside by the pole with the smallest magnitude that contributes for $n<0$
\square on the inside by the pole with the largest magnitude that contributes for $n>0$

3.1 General Form of ROC

Summary

- In general, if the rational z-transform has N poles with R distinct magnitudes, then it has $R+1$ possible ROCs
- Thus, there are $R+1$ distinct sequences with the same z-transform

Hence, a rational z-transform with a specified ROC has a unique sequence as its inverse z transform.

3. 2 ROC of Rational z-Transform

- The ROC of a rational z-transform is bounded by the locations of its poles
- ROC:
- unique relationship between a sequence and its z transform.
\square ROC includes the unit circle:
\checkmark DTFT exists \leftrightarrow BIBO Stable
\square ROC outside circular:
\checkmark Causal
- To understand the relationship between the poles and the ROC, it is instructive to examine the pole-zero plot of a Z^{-} transform
- [num,den] $=$ zp2tf($\mathbf{z}, \mathbf{p}, \mathbf{k})$ implements the reverse process
- The factored form of the z-transform can be obtained using sos $=\mathbf{z p} 2 \boldsymbol{s o s}(\mathbf{z}, \mathbf{p}, \mathbf{k})$ where sos stands for second-order section
- The above statement computes the coefficients of each second-order factor given as an $L \times 6$ matrix sos
- The pole-zero plot is determined using the function zplane
- The z transform can be either described in terms of its zeros and poles:
zplane(zeros,poles)
or, it can be described in terms of its numerator and denominator coefficients:
zplane(num,den)

