Chapter 6 z-Transform

- **Definition: z-Transform**
- **Rational z-Transform**
- Region of Convergence (ROC) of a Rational z-**Transform**

- DTFT provides a frequency-domain representation of discrete-time signals and LTI discrete-time systems.
- DTFT of a sequence may not exist because of the convergence condition.

1. 1 Definition of z-Transform

• Recall: DTFT of a sequence g(n)

$$G(e^{j\omega}) = \sum_{n=-\infty}^{\infty} g[n]e^{-j\omega n}$$

 $G(e^{j\omega})$ can be viewed as a Fourier series and g[n] is the coefficients of this series.

• Building block in DTFT: *e^{jω}*□ One dimensional (single-variable) function

1. z-Transform

- z-Transform(ZT)
 - □ Generalization of the DTFT in complex frequency domain.
 - * ZT for discrete-time systems
 - **** Laplace-transform(LT)** for continuous-time systems
 - Existing for many sequences whose DTFT does not exist.
 - □ Permitting simple algebraic manipulations.
 - □ Providing a great deal of insight into system design and behavior.

6

1. 1 Definition of z-Transform

• Define a new two dimensional variable

$$z=re^{j\omega}$$

- \Box z is called the complex frequency
 - $\checkmark r$: attenuation
 - ✓ ω: real frequency
- $\ \ \square \ \ simple \ algebraic \ manipulations.$

1. 1 Definition of z-Transform

• For a given sequence g[n], its z-transform G(z) is defined as

$$G(z) = \sum_{n=-\infty}^{\infty} g[n]z^{-n}$$

where z = Re(z) + jIm(z) is a complex variable.

$$g[n] \stackrel{z}{\longleftrightarrow} G(z) = \mathbb{Z}(g[n])$$

11

1. 1 Definition of z-Transform

- Geometrical interpretation considering the location of the point z in the complex z-plane.
- For fixed r and ω , the point $z = re^{j\omega}$ in the complex z-plane is at the tip of a vector of length r originating at the point z = 0 and subtending an angle ω with respect to the real axis.

1. 1 Definition of z-Transform

• Let $z = re^{j\omega}$, then the z-transform

$$G(z) = \sum_{n=-\infty}^{\infty} g[n] r^{-n} e^{-j\omega n}$$

□ DTFT of the **modified sequence** $\{g(n)r^{-n}\}$

$$G(z) = \sum_{n=-\infty}^{\infty} (g[n]r^{-n})e^{-j\omega n} = \mathscr{F}(g[n]r^{-n})$$

□ For r = 1 (i.e., |z| = 1, *unit circle*.), reduces to its DTFT,

$$\left. G(z) \right|_{z=e^{j\omega}} = G\!\!\left(\!e^{j\omega}\right)$$
 provided the DTFT exists!

1. 1 Definition of z-Transform

• Contour |z| = 1: a circle in the z-plane of unity radius and is called the *unit circle*.

1. 1 Definition of z-Transform

- For r=1 (i.e., |z|=1), the z-transform G(z) of g[n] reduces to its Fourier transform $G(e^{j\omega})$, providing the latter exists.
- Evaluate G(z) on the unit circle
 - □ Counterclockwise:

$$z: 1 \rightarrow j \rightarrow -1 \rightarrow -j \rightarrow 1$$

 $\omega: 0 \rightarrow \pi/2 \rightarrow \pi \rightarrow 3\pi/2 \rightarrow 0$

□ Clockwise:

$$z: 1 \rightarrow -j \rightarrow -1 \rightarrow j \rightarrow 1$$

 $\omega: -2\pi \rightarrow -\pi/2 \rightarrow -\pi \rightarrow -3\pi/2 \rightarrow 0$

15

1. 2 Region of Convergence (ROC)

• Conditions on the convergence of the infinite series

$$\sum_{n=-\infty}^{\infty} g[n]z^{-n}$$

For a given sequence, the set *R* of values of *z* for which its *z*-transform converges is called the *Region of convergence* (ROC).

* ZT may exist for many sequences for which the DTFT does not exist

1. 2 Region of Convergence (ROC)

14

• From the DTFT, it follows that the series

$$G(re^{j\omega}) = \sum_{n=-\infty}^{\infty} g[n]r^{-n}e^{-j\omega n}$$

converges if $g[n]r^{-n}$ is absolutely summable, i.e., if

$$\sum_{n=-\infty}^{\infty} \left| g[n] r^{-n} \right| < \infty$$

1. 2 Region of Convergence (ROC)

• ROC R is an annular region of the z-plane:

$$R_g < |z| < R_{g_+}$$

where

$$0 \le R_g < R_{g_+} \le \infty$$

- Note: The z-transform is a form of a **Laurent series** and is an analytic function at every point in the ROC.
- \square R_g maybe 0; R_{g_\perp} maybe ∞ .

17

19

1. 2 Region of Convergence (ROC)

Example 1:

Calculate the ZT of $x[n] = a^n u[n]$

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} = \sum_{n=0}^{\infty} a^n z^{-n} = \sum_{n=0}^{\infty} \left(az^{-1}\right)^n$$

$$= \frac{1}{1 - az^{-1}} = \frac{z}{z - a}$$

 $\begin{vmatrix}
1 - az^{-1} & \overline{z - a} \\
\text{Note that the above equation holds only for } |az^{-1}| < 1, \\
\text{i.e. } |z| > |a|$

Region of convergence

1. 2 Region of Convergence (ROC)

If $R_{g_{+}} < R_{g_{-}}$, ROC is a null space : ZT does not exist. 18

1. 2 Region of Convergence (ROC)

Example 2:

Calculate the ZT of
$$x[n] = -a^n u[-n-1]$$

 $X(z) = \sum_{n=-\infty}^{-1} -a^n z^{-n} = \sum_{n=-\infty}^{-1} (az^{-1})^n$
 $= \sum_{n=1}^{\infty} (az^{-1})^{-n} = \sum_{n=1}^{\infty} (a^{-1}z)^n = \frac{z}{z-a}$

Note that the above equation holds only for $\begin{vmatrix} z-a \\ a^{-1}z \end{vmatrix} < 1$, i.e. |z| < |a|

Region of convergence

1. 2 Region of Convergence (ROC)

From the above two examples, we find that

- Very different time functions can have the same z-transform expressions.
 - □ ROC plays an important role in computing the z-transform or inverse z-transform.
- Unique sequence can be associated with a ztransform is by specifying its ROC

21

1. 2 Region of Convergence (ROC)

Example 3:

Note: The unit step sequence $\mu[n]$ is not absolutely summable, and hence its DTFT does not converge uniformly.

1. 2 Region of Convergence (ROC)

Example 3:

Calculate the ZT $\mu(z)$ of $\mu[n]$

$$X(z) = \frac{1}{1 - \alpha z^{-1}} \quad \text{for } \left| \alpha z^{-1} \right| < 1$$

by setting $\alpha = 1$

$$\mu(z) = \frac{1}{1 - z^{-1}}$$
 for $|z^{-1}| < 1$

Region of convergence

••

22

1. 2 Region of Convergence (ROC)

Example 4: Calculate the ZT of finite-length sequence

$$g[n] = \begin{cases} \alpha^n, & M \le n \le N - 1 \\ 0, & \text{otherwise} \end{cases}$$

$$G(z) = \sum_{n=M}^{N-1} \alpha^n z^{-n} = z^{-M} \sum_{n=0}^{N-M-1} (\alpha z^{-1})^n$$

$$= z^{-M} \left(\frac{1 - \alpha^{N-M} z^{-(N-M)}}{1 - \alpha z^{-1}} \right) = \frac{z^{-M} - \alpha^{N-M} z^{-N}}{1 - \alpha z^{-1}}$$

1. 2 Region of Convergence (ROC)

Since the sum involves a finite number of terms, the sum is finite everywhere in the z-plane except possibly z = 0 and/or $z = \infty$, provided $|\alpha|$ is finite.

- $N > M \ge 0$, the ROC is the entire z-plane excluding the origin z = 0.
- > M < 0 and N > 0, the ROC is the entire z-plane excluding z = 0 and $z = \infty$.
- M < N < 0, the ROC is the entire z-plane excluding $z = \infty$.

25

1. 2 Region of Convergence (ROC)

- The DTFT $H(e^{j\omega})$ of a sequence h[n] converges uniformly if and only if the ROC of the z-transform H(z) of h[n] includes the unit circle.
- The existence of the DTFT does not always imply the existence of the z-transform.

27

1. 2 Region of Convergence (ROC)

Example 5: The finite energy sequence

$$h_{LP}[n] = \frac{\sin \omega_c n}{\pi n}, -\infty < n < \infty$$

has a DTFT given by

$$H_{LP}(e^{j\omega}) = \begin{cases} 1, & 0 \le |\omega| \le \omega_c \\ 0, & \omega < |\omega| \le \pi \end{cases}$$

which converges in the mean-square sense.

• However, $h_{LP}[n]$ does not have a z-transform as it is not absolutely summable for any value of r.

26

1. 2 Region of Convergence (ROC)

Some commonly used z-transform pairs.

Sequence	z-Transform	ROC
$\delta[n]$	1	All values of z
μ [n]	$\frac{1}{1-z^{-1}}$	z > 1
$\alpha^{n}\mu[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
$(r^n cos \omega_0 n) \mu[n]$	$\frac{1 - (r \cos \omega_0) z^{-1}}{1 - (2r \cos \omega_0) z^{-1} + r^2 z^{-2}}$	z > r
$(r^n \sin \omega_0 n) \mu[n]$	$\frac{1 - (r \sin \omega_0) z^{-1}}{1 - (2r \cos \omega_0) z^{-1} + r^2 z^{-2}}$	z > r

2 Rational z-Transform

- LTI discrete-time systems, all involved ZT are rational functions of z^{-1}
- Ratios of two polynomials in z^{-1} :

(Form I)

$$G(z) = \frac{P(z)}{D(z)} = \frac{p_0 + p_1 z^{-1} + \dots + p_{M-1} z^{-(M-1)} + p_M z^{-M}}{d_0 + d_1 z^{-1} + \dots + d_{N-1} z^{-(N-1)} + d_{N-1} z^{-N}}$$

- \square Degree of numerator polynomial P(z): M
- □ Degree of denominator polynomial D(z): N

29

31

2 Rational z-Transform

• A rational z-transform can be alternatively written in factored form as

$$G(z) = \frac{p_0}{d_0} \frac{\prod_{l=1}^{M} (1 - \xi_l z^{-1})}{\prod_{l=1}^{N} (1 - \lambda_l z^{-1})}$$
 (Form III)

$$G(z) = z^{(N-M)} \frac{p_0}{d_0} \frac{\prod_{l=1}^{M} (z - \xi_l)}{\prod_{l=1}^{N} (z - \lambda_l)}$$
 (Form IV)

2 Rational z-Transform

• Alternate representation of a rational z-transform is as a ratio of two polynomials in z:

$$G(z) = z^{(N-M)} \frac{p_0 z^M + p_1 z^{M-1} + \dots + p_{M-1} z + p_M}{d_0 z^N + d_1 z^{N-1} + \dots + d_{N-1} z + d_{N-1}}$$

(Form II)

30

2 Rational z-Transform

- Roots $z = \xi_i$ of the numerator polynomial, $G(\xi_i) = 0$, known as the zeros of G(z)
- Roots $z = \lambda_l$ of the denominator polynomial, $G(\lambda_l) = \infty$, known as the poles of G(z)

2 Rational z-Transform

Consider:
$$G(z) = \frac{p_0}{d_0} \frac{\prod_{l=1}^{M} (1 - \xi_l z^{-1})}{\prod_{l=1}^{N} (1 - \lambda_l z^{-1})}$$

• Rational z-transform can be represented completely by:

the locations of its poles $\{\,\lambda_l\,\}\,$, zeros $\{\,\xi_l\,\}$ and the gain constant $\frac{p_0}{d_0}$.

33

35

2 Rational z-Transform

Example: The z-transform $H(z) = \frac{1}{1-z^{-1}}$, for |z| > 1 has zero at z=0 and a pole at z=1

2 Rational z-Transform

Consider: $G(z) = z^{(N-M)} \frac{p_0}{d_0} \frac{\prod_{l=1}^{M} (z - \xi_l)}{\prod_{l=1}^{N} (z - \lambda_l)}$

- Note G(z) has M finite zeros and N finite poles
 - □ If N > M there are additional N M zeros at z = 0 (the origin in the z-plane)
 - □ If N < M there are additional M N poles at z = 0

34

2 Rational z-Transform

• A physical interpretation of the concepts of poles and zeros can be given by plotting the $\frac{\log - \max |G(z)|}{|G(z)|}$ as shown on next slide for

$$G(z) = \frac{1 - 2.4z^{-1} + 2.88z^{-2}}{1 - 0.8z^{-1} + 0.64z^{-2}}$$

2 Rational z-Transform

3 General Form of ROC of a Rational z-Transform

39

37

- There is a relationship between the ROC of the z-transform of the impulse response of a causal LTI discrete-time system and its BIBO stability.
- The **ROC** of a rational z-transform is **bounded by the locations of its poles.** It is instructive to examine the pole-zero plot of a z-transform.

3 General Form of ROC of a Rational z-Transform

- Without the knowledge of the ROC, there is no unique relationship between a sequence and its z-transform. Hence, the z-transform must always be specified with its ROC.
- If the ROC of a z-transform includes the unit circle, the DTFT of the sequence is obtained by simply evaluating the z-transform on the unit circle.

38

3 General Form of ROC

Example Consider again the pole-zero plot of the z-transform $\mu(z)$

• the ROC is the region of the z-plane just outside the circle centered at the origin and going through the pole at z = 1

3 General Form of ROC

Example

The z-transform the sequence $h[n] = (-0.6)^n \mu[n]$ is given by

$$H(z) = \frac{1}{1 + 0.6z^{-1}},$$

$$|z| > 0.6$$
Re [z]

Zero at z=0

• Here the ROC is just outside the circle going through the point z = -0.6

43

41

3.1 General Form of ROC

- Finite-length Sequence

A finite-length sequence g[n] is defined for $M \le n \le N$ with $|g[n]| < \infty$.

Example:
$$g[n] = \begin{cases} \alpha^n, & M \le n \le N \\ 0, & \text{otherwise} \end{cases}$$

$$G(z) = \sum_{n=M}^{N} g[n]z^{-n} = \sum_{n=0}^{N-M} g[n+M] \frac{z^{N-M-n}}{z^{N}}$$

3 General Form of ROC of a Rational z-Transform

- In general, there are four types of ROCs for *z*-transforms, and they depend on the type of the corresponding time functions.
 - Finite-length sequence
 - Right-sided sequence
 - Left-sided sequence
 - Two-sided (infinite duration) sequence

42

3.1 General Form of ROC

- ●A finite-length sequence is bounded sequence with converge everywhere in the z-plane except possible z = 0 and/or $z = \infty$
- N > M > 0, the ROC is the entire z-plane excluding the origin z = 0.
- > M < 0 and N > 0, the ROC is the entire z-plane excluding z =0 and z = ∞ .
- M < N < 0, the ROC is the entire z-plane excluding $z = \infty$.

3.1 General Form of ROC

- Right-sided Sequence

A **right-sided sequence** u[n] with nonzero sample values only for $n \ge M$

3.1 General Form of ROC

- Left-sided Sequence

A **left-sided sequence** v[n] with nonzero sample values only for $n \le N$

3.1 General Form of ROC

If
$$M \ge 0$$
, $R_{g^-} < |z| \le \infty$ $R_{g^+} = \infty$

If
$$M < 0$$
, $R_{g^{-}} < |z| < \infty$ $R_{g^{+}} < \infty$

If M = 0, u[n] is called a **causal sequence**

Comment

All causal sequences (or the impulse responses of LTI systems) are right-sided, while not all right-sided sequences correspond to causal systems.

46

3.1 General Form of ROC

If
$$N > 0$$
, $0 < |z| < R_{g+} R_{g-} > 0$

If
$$N \le 0$$
, $0 \le |z| < R_{g+}$ $R_{g-} = 0$

If N=0, v[n] is called a **anticausal sequence**

3.1 General Form of ROC

- Two-sided Sequence

The z-Transform of a **two-sided sequence** w[n] can be expressed as

$$W(z) = \sum_{n=-\infty}^{\infty} w[n]z^{-n} = \sum_{n=0}^{\infty} w[n]z^{-n} + \sum_{n=-\infty}^{-1} w[n]z^{-n}$$

$$A \text{ right-sided sequence}$$

$$|z| > R_{g-}$$

$$|z| < R_{g+}$$

49

3.1 General Form of ROC

Example

Consider the sequences for $|\alpha| < |\beta|$ where α and β can be either complex or real

$$x[n] = (\alpha^n + \beta^n)\mu[n] \qquad |\beta| < |z| \le \infty$$

$$x[n] = -(\alpha^n + \beta^n)\mu[-n-1] \qquad 0 \le |z| < |\alpha|$$

$$x[n] = -(\alpha^{n} + \beta^{n})\mu[-n-1] \qquad \qquad 0 \le |z| < |\alpha|$$

$$x[n] = \alpha^{n}\mu[n] - \beta^{n}\mu[-n-1] \qquad \qquad |\alpha| < |z| < |\beta|$$

$$x[n] = -\alpha^{n}\mu[-n-1] + \beta^{n}\mu[n] \qquad \qquad |z| < |\alpha| \cap |\beta| < |z| = \emptyset$$

3.1 General Form of ROC

Obviously, the ROC of W(z) is the intersection of $|z| > R_{g-}$ and $|z| < R_{g+}$. If $R_{g+} > R_{g-}$, its ROC has the following form

But, if $R_{g+} < R_{g-}$, its ROC is a null space, i.e., the transform does not exist

50

3.1 General Form of ROC

Finally, for a two-sided sequence, some of the poles contribute to terms in the parent sequence for n < 0 and the other poles contribute to terms n > 0.

• ROC is thus bounded

- \Box on the outside by the pole with the smallest magnitude that contributes for n < 0
- \Box on the inside by the pole with the largest magnitude that contributes for n > 0

3.1 General Form of ROC

Example

Consider the two-sided sequence $x[n]=a^n$, where a can be either complex or real. Its z-Transform is given by

$$X(z) = \sum_{n=0}^{\infty} a^{n} z^{-n} + \sum_{n=-\infty}^{-1} a^{n} z^{-n}$$

$$|z| > |a| \qquad |z| < |a|$$

There is no overlap between these two regions. Hence, its *z*-transform does not exist

53

55

3. 2 ROC of Rational z-Transform

Recall

ZT
$$\mu(z)$$
 of $\mu[n]$

$$\mu(z) = \frac{1}{1 - z^{-1}}$$
 for $|z^{-1}| < 1$

$$1 < |z^{-1}| \le \infty$$

Region of convergence

3.1 General Form of ROC

Summary

- In general, if the rational z-transform has N poles with R distinct magnitudes, then it has R+1 possible ROCs
- Thus, there are *R*+1 distinct sequences with the same *z*-transform

Hence, a rational *z*-transform with a specified ROC has a unique sequence as its inverse *z*-transform.

54

3. 2 ROC of Rational z-Transform

- The ROC of a rational z transform is bounded by the locations of its poles
- ROC:
 - □ unique relationship between a sequence and its *z*-transform.
 - ROC includes the unit circle:
 - ✓ DTFT exists
 → BIBO Stable
 - ROC outside circular:
 - ✓ Causal

3.3 Determine the ROC by MATLAB

• To understand the relationship between the poles and the ROC, it is instructive to examine the pole-zero plot of a z transform

57

59

3.3 Determine the ROC by MATLAB

- [num,den] = zp2tf(z,p,k) implements the reverse process
- The factored form of the z-transform can be obtained using sos = zp2sos(z,p,k) where sos stands for second-order section
- The above statement computes the coefficients of each second-order factor given as an $L \times 6$ matrix sos

3.3 Determine the ROC by MATLAB

• The pole-zero can be easily determined using MATLAB

$$[z,p,k] = tf2zp(num,den)$$

determines the zeros, poles, and the gain constant of a rational z-transform with the numerator coefficients specified by the vector **num** and the denominator coefficients specified by the vector den.

58

3.3 Determine the ROC by MATLAB

where

$$G(z) = \prod_{k=1}^{L} \frac{b_{0k} + b_{1k}z^{-1} + b_{2k}z^{-2}}{a_{0k} + a_{1k}z^{-1} + a_{2k}z^{-2}}$$

3.3 Determine the ROC by MATLAB

- The pole-zero plot is determined using the function zplane
- The z-transform can be either described in terms of its zeros and poles:

 zplane(zeros,poles)

or, it can be described in terms of its numerator and denominator coefficients:

zplane(num,den)