Ch5 Finite-Length Discrete Transforms

- (Optional) Let $\widetilde{x}[n]$ be a periodic sequence with period N, i.e., $\widetilde{x}[n]=\widetilde{x}[n+l N]$, where l is any integer. The sequence $x[n]$ can be presented by Fourier series given by a weighted sum of periodic complex exponential sequences $\tilde{\psi}_{k}[n]=e^{j 2 \pi k n / N}$. Show that, unlike the Fourier series representation of a periodic continuous-time signal, the Fourier series representation of a periodic discrete-time sequence requires only N of the periodic complex exponential sequences $\widetilde{\psi}_{k}[n], k=0,1, \ldots, N-1$, and is of the form

$$
\widetilde{X}[n]=\frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}[k] e^{j 2 \pi k n / N}
$$

where the Fourier coefficients $\tilde{X}[k]$ are given by

$$
\widetilde{X}[k]=\sum_{n=0}^{N-1} \widetilde{x}[n] e^{-j 2 \pi k n / N}
$$

Show that $\tilde{X}[k]$ is also a periodic sequence in k with a period N. The set of sequences represent the discrete Fourier series pair.

- (Optional) Let $x[n]$ be an aperiodic sequence with a DTFT $X\left(e^{j \omega}\right)$. Define

$$
\tilde{X}[k]=\left.X\left(e^{j \omega}\right)\right|_{\omega=2 \pi k / N}=X\left(e^{j 2 \pi k / N}\right), \quad-\infty<k<\infty
$$

Show that $\tilde{X}[k]$ is a periodic sequence in k with a period N. Let $\tilde{X}[k]$ be the discrete Fourier series coefficients, defined in optional question before, of the periodic sequence $\tilde{x}[n]$. Shown with the equations in optional question before, that

$$
\tilde{x}[n]=\sum_{r=-\infty}^{\infty} x[n+r N]
$$

5.1 Determine the N-point DFTs of the following length- N sequences defined for $0 \leq n \leq N-1$:
a) $\quad x_{1}[n]=\cos (2 \pi n / N)$
b) $\quad x_{2}[n]=\sin ^{2}(2 \pi n / N)$
c) $x_{3}[n]=\alpha^{n}$
d) $\quad x_{4}[n]= \begin{cases}4, & \text { for } n \text { even } \\ -2, & \text { for } n \text { odd }\end{cases}$
5.2 Determine the N-point DFT $X[k]$ of N-point sequence $x[n]=\cos \left(\omega_{0} n\right), 0 \leq n \leq N-1$, for $\omega_{0} \neq 2 \pi r / N$, where r is an integer in the range $0<r<N-1$.
5.3 Consider a length- N sequence $x[n], 0 \leq n \leq N-1$, with N even. Define two sequences of length- $N / 2$ given by:

$$
\mathrm{g}[n]=\left(x[n]+x\left[\frac{N}{2}+n\right]\right), h[n]=\left(x[n]-x\left[\frac{N}{2}+n\right]\right) W_{N}^{n}, \quad 0 \leq n \leq \frac{N}{2}-1
$$

If $G[k]$ and $H[k], 0 \leq k \leq \frac{N}{2}-1$, denote the $N / 2$-point DFT of $g[n]$ and $h[n]$, respectively. Determine the N-point $\operatorname{DFT} X[k], 0 \leq k \leq N-1$, of $x[n]$, from these two N/2-point DFTs.
5.4 Let $X[k]$ denote the N-point DFT of a length N sequence $X[n]$, with N even. Define two length $-N / 2$ sequences given by:

$$
g[n]=\frac{1}{2}(x[2 n]+x[2 n+1]), \quad h[n]=\frac{1}{2}(x[2 n]-x[2 n+1]), \quad 0 \leq n \leq \frac{N}{2}-1
$$

If $G[k]$ and $H[k], 0 \leq k \leq \frac{N}{2}-1$, denote the $N / 2$-point DFT of $g[n]$ and $h[n]$, respectively. Determine the N-point DFT $X[k]$ from these two $N / 2$-point DFTs.

- (Optional) Let $X[k], 0 \leq k \leq N-1$, denote the N-point DFT of a length- N sequence $x[n]$, with N even. Define two sequences of length- $N / 2$ given by:

$$
g[n]=a_{1} x[2 n]+a_{2} x[2 n+1], \quad h[n]=\left(a_{3} x[2 n]+a_{4} x[2 n+1]\right), \quad 0 \leq n \leq \frac{N}{2}-1 .
$$

where $a_{1} a_{4} \neq a_{2} a_{3}$. If $G[k]$ and $H[k], 0 \leq k \leq \frac{N}{2}-1$, denote $N / 2$-point DFTs of $g[n]$ and $h[n]$, respectively. Determine the N-point DFT $X[k]$ from these two $N / 2$-point DFTs.
a) Let $x[n], 0 \leq n \leq N-1$, be a length- N sequence with an N-point DFT given by $X[k]$, $0 \leq k \leq N-1$. Determine the $2 N$-point DFTs of the following length- $2 N$ sequences in terms of $X[k]$.
i. $g[n]= \begin{cases}x[n], & 0 \leq n \leq N-1 \\ 0, & N \leq n \leq 2 N-1\end{cases}$
ii. $\quad h[n]= \begin{cases}0, & 0 \leq n \leq N-1 \\ x[n-N], N \leq n \leq 2 N-1\end{cases}$
b) Let $G[k]$ and $H[k], 0 \leq k \leq 2 N-1$, denote, respectively the $2 N$-point DFTs of the length $2 N$ sequences $g[n]$ and $h[n]$ in Question a). Define a new length- $2 N$ sequence by $y[n]=g[n]+h[n]$, with a $2 N$-point $\operatorname{DFT} Y[k] \quad 0 \leq k \leq 2 N-1$. Develop the relation between $Y[k], H[k], G[k]$ and $X[k]$.

- Let $x[n]$ be a length- N sequence with $X[k]$ denoting its N-point DFT. We present the DFT operation as $X[k]=\mathscr{F}\{x[n]\}$. Determine the sequence $y[n]$ obtained by applying the DFT operation 4 times to $x[n]$, i.e.,

$$
y[n]=\mathscr{F}\{\mathscr{F}\{\mathscr{F}\{\mathscr{F}\{x[n]\}\}\}\}
$$

5.6 Consider a length- N sequence $x[n], 0 \leq n \leq N-1$, with an N-point DFT $X[k]$, $0 \leq k \leq N-1$.
a) Let $Y[k]$ denote the $M N$-point DFT of the sequence $x[n]$ appended with $(M-1) N$ zeros. Show that the N-point DFT $X[k]$ can be simply obtained from $Y[k]$ as follows:

$$
X[k]=Y[k M], \quad 0 \leq k \leq N-1
$$

b) Define a sequence $y[n]$ of length $N / 3$, , given by:

$$
y[n]=x[3 n], \quad 0 \leq n \leq N / 3-1
$$

Express the $N / 3$-point DFT $Y[k]$ in terms of $X[k]$.
c) Define a sequence $y[n]$ of length $L N, 0 \leq n \leq L N-1$, given by:

$$
y[n]= \begin{cases}x[n / L], & n=0, L, 2 L, \ldots,(N-1) L \\ 0, & \text { otherwise }\end{cases}
$$

where L is a positive integer. Express the $N L$-point DFT $Y[k]$ in terms of $X[k]$.
5.7 Let $x[n], 0 \leq n \leq N-1$ be a length- N sequence with an N-point DFT $X[k]$, denoting its N-point DFT. Define a length- $3 N$ sequence by

$$
y[n]= \begin{cases}x[n], & 0 \leq n \leq N-1 \\ 0, & N \leq n \leq 3 N-1\end{cases}
$$

with $Y[k], 0 \leq k \leq 3 N-1$, denoting its $3 N$-point DFT. Let $W[\ell]=Y[3 \ell+2]$, $0 \leq \ell \leq N-1$, with $w[n]$ denoting its N-point DFT. Express $w[n]$ in terms of $x[n]$.

- Let $x[n], 0 \leq n \leq N-1$ be a even length sequence with an N-point DFT $X[k]$, $0 \leq k \leq N-1$. If $x[2 m]=0$ for $0 \leq m \leq \frac{N}{2}-1$, show that $x[n]=-x\left[<n+\frac{N}{2}>_{N}\right]$.
5.8 Let $x[n], 0 \leq n \leq N-1$ be a even length sequence with an N-point DFT $X[k]$, $0 \leq k \leq N-1$. Determine the N-point DFTs of the following N-point sequences in terms of $X[k]$.
a) $u[n]=x[n]-x\left[\left(n-\frac{N}{2}\right\rangle_{N}\right]$
b) $v[n]=x[n]+x\left[\left\langle n-\frac{N}{2}\right\rangle_{N}\right]$
c) $\quad w[n]=(-1)^{n} x[n]$
- (Optional) Consider a rational discrete-time Fourier transform $X\left(e^{j \omega}\right)$ with real
coefficients of the form of

$$
X\left(e^{j \omega}\right)=\frac{P\left(e^{j \omega}\right)}{D\left(e^{j \omega}\right)}=\frac{p_{0}+p_{1} e^{-j \omega}+\cdots+p_{M-1} e^{-j \omega(M-1)}}{d_{0}+d_{1} e^{-j \omega}+\cdots+d_{N-1} e^{-j \omega(N-1)}}
$$

Let $P[k]$ denote the M-point DFT of the numerator coefficients $\left\{p_{i}\right\}$ and $D[k]$ denote the N-point DFT of the denominate coefficients $\left\{d_{i}\right\}$. Determine the exact expressions of the DTFT $X\left(e^{j \omega}\right)$ for $M=N=4$ if the 4-point DFTs of its numerator and denominator coefficients are given by

$$
\begin{aligned}
& P[k]=\{3.5,-0.5-j 9.5,2.5,-0.5+j 9.5\} \\
& D[k]=\{17,7.4+j 12,17.8,7.4-j 12\}
\end{aligned}
$$

Verify your result using MATLAB.
5.9 Let $x[n], 0 \leq n \leq N-1$ be a length- N real sequence with an N-point DFT $X[k]$, $0 \leq k \leq N-1$.
a) Show that $X\left[\langle N-k\rangle_{N}\right]=X^{*}[k]$;
b) Show that $X[0]$ is real;
c) If N is even, show that $X[N / 2]$ is real.
5.10 Without computing the DFT, determine which one of the following length-9 sequences defined for $0 \leq n \leq 8$ has a real-valued 9-point DFT and which one has an imaginary-valued 9-point DFT. Justify your answer.
a) $x_{1}[n]=\{5,-9,4,7,-8,-8,7,4,-9\}$,
b) $\left.x_{2}[n]=\left\{\begin{array}{llllll}0, & -4, & 3, & 7, & -5, & 5,\end{array}\right],-3,4\right\}$
5.11 Let $G[k]$ and $H[k], 0 \leq k \leq 7$ denote the 8 -point DFTs of two length- 8 sequences $g[n]$ and $h[n], 0 \leq n \leq 7$, respectively.
a) If $G[k]=\{3+j 4,2-j 7,-4+j, \quad 5-j 2, \quad 5,4+j 3,4-j 6,-3+j 2\}$ and $h[n]=g\left[\langle n-3\rangle_{8}\right]$, determine $H[k]$ without forming $h[n]$ and computing its DFT.
b) If $g[n]=\{-1-j 7, \quad 3+j, \quad 2+j 7, \quad 2+j 2, \quad-8+j 2, \quad 4-j, \quad-1+j 3, \quad j 1.5\}$
and $H[k]=G\left[\langle k+5\rangle_{8}\right]$, determine $h[n]$ without computing the DFT $G[k]$, forming $H[k]$ and then finding its inverse DFT.

- (Optional) Consider two length- N real-valued sequences $x[n]$ and $y[n]$ defined for $0 \leq n \leq N-1$, with N-point DFTs $X[k]$ and $Y[k], 0 \leq k \leq N-1$, respectively. The circular correlation of $x[n]$ and $y[n]$ is given by

$$
r_{x y}[\ell]=\sum_{n=0}^{N-1} x[n] x\left[\langle\ell+n\rangle_{N}\right], \quad 0 \leq \ell \leq N-1
$$

Express the DFT of $r_{x y}[\ell]$ in terms of $X[k]$ and $Y[k]$.
5.12 Let $x[n], \quad 0 \leq n \leq N-1$ be a length- N sequence with an $M N$-point DFT $X[k]$, $0 \leq k \leq M N-1$. Define

$$
y[n]=x\left[\langle n\rangle_{N}\right], \quad 0 \leq n \leq M N-1
$$

How would you compute the $M N$-point DFT $Y[k]$ of $y[n]$ knowing only $X[k]$?
5.13 Consider the length- 10 sequence, defined for $0 \leq n \leq 9$,

$$
x[n]=\left\{\begin{array}{llllllllll}
-3, & 5, & -7, & 8 & 2, & -8, & -4, & 1, & -9, & 9
\end{array}\right\}
$$

with a 10 -point DFT given by $X[k], 0 \leq k \leq 9$. Evaluate the following functions of $X[k]$ without computing the DFT:
a) $X[0]$,
b) $X[5]$,
c) $\quad \sum_{k=0}^{9} X[k]$,
d) $\sum_{k=0}^{9} e^{-j 3 \pi k / 5} X[k]$,
e) $\quad \sum_{k=0}^{9}|X[k]|^{2}$.
5.14 Let $X[k], 0 \leq k \leq 11$, be a 12-point DFT of a length-12 real sequence $x[n]$ with the first seven samples of $X[k]$ given by:

$$
X[k]=\{11, \quad 8-j 2, \quad-1+j 4, \quad-6+j 3, \quad 3+j 2, \quad 2-j 4, \quad 4\}, \quad 0 \leq k \leq 6
$$

Determine remaining samples of $X[k]$. Evaluate the following function of $x[n]$ without computing the IDFT of $X[k]$:
a) $x[0]$,
b) $x[6]$,
c) $\quad \sum_{n=0}^{11} x[n]$,
d) $\sum_{n=0}^{11} e^{j 2 \pi n / 3} x[n]$,
e) $\quad \sum_{n=0}^{11}|x[n]|^{2}$
5.15 The following 5 samples of 9-point DFT $X[k]$ of a real length-9 sequence $x[n]$ are given by: $X[0]=11, X[2]=1.2-j 2.3, X[3]=-7.2-j 4.1, X[5]=-3.1+j 8.2, X[8]=4.5+j 1.6$. Determine the remaining 4 samples of the DFT.
5.16 The first 7 samples of a length-12 real sequence $x[n]$ with an imaginary-valued 12 -point DFT $X[k]$ are given by: $x[0]=0, x[1]=0.7, x[2]=-3.25, x[3]=4.1, x[4]=2.87, x[5]=-9.3$ and $x[6]=0$. Determine the remaining 5 samples of $x[n]$.

- (Optional) 158-point DFT $X[k]$ of a real-valued sequence $x[n]$ has the following DFT samples: $X[0]=31, X[15]=4.13-j 8.27, X\left[k_{1}\right]=6.1+j 2.8, X[41]=-3.15-j 2.04$, $X\left[k_{2}\right]=-7.3-j 9.5 \quad, \quad X[80]=9.08 \quad, \quad X[119]=6.1-j 2.8 \quad, \quad X\left[k_{3}\right]=4.13+j 8.27$, $X[151]=-7.3+j 9.5$, and $X\left[k_{4}\right]=-3.15+j 2.04$. Remaining DFT samples are assumed to
be of zero value.
a) Determine the values of the indices k_{1}, k_{2}, k_{3} and k_{4}.
b) What is the dc value of $\{x[n]\}$?
c) What is the energy of $\{x[n]\}$?
5.17 Let $X\left(e^{j \omega}\right)$ denote the DTFT of the length-9 sequence

$$
x[n]=\{1, \quad-3, \quad 4, \quad-5, \quad 7, \quad-5, \quad 4, \quad-3, \quad 1\}
$$

a) For the DFT sequence $X_{1}[k]$, obtained by sampling $X\left(e^{j \omega}\right)$ at uniformly intervals of $\pi / 6$ starting from $\omega=0$, determine the IDFT $x_{1}[n]$ of $X_{1}[k]$ without computing $X\left(e^{j \omega}\right)$ and $X_{1}[k]$. Can you recover $x[n]$ from $X_{1}[n]$?
b) For the DFT sequence $X_{2}[k]$, obtained by sampling $X\left(e^{j \omega}\right)$ at uniformly intervals of $\pi / 4$ starting from $\omega=0$, determine the IDFT $x_{2}[n]$ of $X_{2}[k]$ without computing $X\left(e^{j \omega}\right)$ and $X_{2}[k]$. Can you recover $x[n]$ from $x_{2}[n]$?

- (Optional) Let $X[n]$ and $h[n]$ be two length-51 sequences defined for $0 \leq n \leq 50$. It is known that $h[n]=0$ for $0 \leq n \leq 16$ and $37 \leq n \leq 50$. Denote the 51-point circular convolution of these sequences as $y_{C}[n]$ and the linear convolution as $y_{L}[n]$. Determine the range of n for which $y_{L}[n]=y_{C}[n]$.
5.18
a) Let $g[n]$ and $h[n]$ be two finite-length sequences of length 6 each. If $y_{L}[n]$ and $y_{C}[n]$ denote the linear and 6-point circular convolutions of $g[n]$ and $h[n]$, respectively, develop a method to determine $y_{C}[n]$ in terms of $y_{L}[n]$.
b) Let $y_{C}[n]$ denote the 6-point circular convolutions of two length-6 sequences

$$
x[n]=\{-3, \quad 0, \quad 7, \quad 4, \quad-5, \quad 8\}
$$

$$
h[n]=\left\{\begin{array}{llllll}
7, & -2, & 4, & -5, & 0, & 6
\end{array}\right\}
$$

Determine the $y_{L}[n]$ obtained by a linear convolution of $x[n]$ and $h[n]$. Determine the sample value $y_{C}[3]$ using the method developed in Part a) without carrying out the circular convolution.

- (Optional) Show that the circular convolution is
c) Commutative;
d) Associative.
5.19 A length-9 sequence is given by $x[n]=\{3,5,1,4,-3,5,-2,-2,4\}$, $0 \leq n \leq 8$, with an 9-point DFT given by $X[k], 0 \leq k \leq 8$. Without computing the IDFT, determine the sequence $y[n]$ whose 9-point DFT is given by $Y[k]=W_{3}^{-2 k} X[k]$.
5.20 The first 5 samples of 9-point DFT $X[k] 0 \leq k \leq 8$ is given by

$$
X[k]=\{15, \quad 7-j 6, \quad 6-j 2, \quad j 8, \quad-6-j 11\},
$$

Without computing the IDFT, determine the 9-point DFT $Y[k]$ of the length-9 sequence $y[n]=e^{j 2 \pi n / 3} x[n]$
5.21 Consider the two finite-length sequences $h[n]=\{4,-3,1,-4\}, 0 \leq n \leq 3$, and $g[n]=\{-3, \quad 2, \quad 5\}, 0 \leq n \leq 2$.
a) Determine $y_{L}[n]=g[n] * h[n]$;
b) Extend $g[n]$ to a length-4 sequence $g_{e}[n]$ by zero-padding and compute

$$
y_{C}[n]=g[n](4) h[n] ;
$$

c) Determine $y_{C}[n]$ using the DFT-based approach;
d) Extend $g[n]$ and $h[n]$ to length- 6 sequences by zero-padding and compute the 6-point circular convolution $y[n]$ of the extended sequences. Is $y[n]$ the same as
$y_{L}[n]$ determined in Part a).

- (Optional) Let $x[n], \quad 0 \leq n \leq N-1$ be a length- N sequence with an N-point DFT $X[k]$, $0 \leq k \leq N-1$.
a) If $x[n]$ is a symmetric sequence satisfying the condition $x[n]=x\left[\langle N-1-n\rangle_{N}\right]$, show that $X[N / 2]=0$ for N even.
b) If $x[n]$ is an antisymmetric sequence satisfying the condition $x[n]=-x\left[\langle N-1-n\rangle_{N}\right]$, show that $X[0]=0$.
c) If $x[n]$ is a sequence satisfying the condition $x[n]=-x\left[\langle n+M\rangle_{N}\right]$ with $N=2 M$, show that $X[2 \ell]=0$ for $\ell=0,1, \ldots, M-1$.
- (Optional) Consider two real, symmetric length N sequences, $x[n]$ and $y[n]$, $0 \leq n \leq N-1$ with N even. Define the length- $N / 2$ sequences:

$$
\begin{array}{ll}
x_{0}[n]=x[2 n+1]+x[2 n] & x_{1}[n]=x[2 n+1]-x[2 n] \\
y_{0}[n]=y[2 n+1]+y[2 n] & y_{1}[n]=y[2 n+1]-y[2 n]
\end{array}
$$

where $0 \leq n \leq \frac{N}{2}-1$. It can be easily shown that $x_{0}[n]$ and $y_{0}[n]$ are real, symmetric sequences of length-N/2 each. Likewise, $x_{1}[n]$ and $y_{1}[n]$ are real, antisymmetric sequences of length- $N / 2$ each. Denote the $\frac{N}{2}$-point DFTs of $x_{0}[n], y_{0}[n], x_{1}[n]$ and $y_{1}[n]$ by $X_{0}[k], Y_{0}[k], X_{1}[k]$ and $Y_{1}[k]$, respectively. Define a length $\frac{N}{2}$ sequence:

$$
u[n]=x_{0}[n]+y_{1}[n]+j\left(x_{1}[n]+y_{0}[n]\right)
$$

Determine $X_{0}[k], Y_{0}[k], X_{1}[k]$ and $Y_{1}[k]$ in terms of the $\frac{N}{2}$-point DFT $U[k]$.

- (Optional) Let $x[n], 0 \leq n \leq N-1$ be a length- N sequence with an N-point DFT $X[k]$, $0 \leq k \leq N-1$.
e) Show that if N is even and $x[n]=-x\left[\left(n+\frac{N}{2}\right\rangle_{N}\right]$ for all n, then $X[k]=0$ for k even;
f) Show that if N is an integer of 4 and $x[n]=-x\left[\left\langle n+\frac{N}{2}\right\rangle_{N}\right]$ for all n, then $X[k]=0$ for $k=4 \ell, \quad 0 \leq \ell \leq \frac{N}{4}-1$
5.22 Let $X[n], \quad 0 \leq n \leq N-1$ be a length- N sequence with an N-point DFT $X[k], 0 \leq k \leq N-1$.

Determine the N-point DFTs of the following length- N sequences in terms of $X[k]$.
a) $\quad w[n]=\alpha x\left[\left\langle n-m_{1}\right\rangle_{N}\right]+\beta x\left[\left\langle n-m_{2}\right\rangle_{N}\right]$, where m_{1} and m_{2} are positive integers less than N,
b) $g[n]=\left\{\begin{array}{ll}x[n], & \text { for } k \text { even } \\ 0, & \text { for } k \text { odd }\end{array}\right.$,
c) $y[n]=x[n] \oplus x[n]$
5.23 Let $x[n], 0 \leq n \leq N-1$ be a length- N sequence with an N-point DFT $X[k], 0 \leq k \leq N-1$.

Determine the N-point inverse DFTs of the following length- N DFTs in terms of $x[n]$.
a) $W[k]=\alpha X\left[\left\langle k-m_{1}\right\rangle_{N}\right]+\beta X\left[\left\langle k-m_{2}\right\rangle_{N}\right]$, where m_{1} and m_{2} are positive integers less than N,
b) $G[k]=\left\{\begin{array}{ll}X[k], & \text { for } k \text { even } \\ 0, & \text { for } k \text { odd }\end{array}\right.$,
c) $\quad Y[k]=X[k] \oplus X[k]$
5.24 The first seven samples of the 12-point DFT $H[k], 0 \leq k \leq 11$, of a length12 real sequence $h[n], 0 \leq n \leq 11$, are given by $H[k]=\{4, \quad 17.19+j 1.46, \quad-9+j 3.46, \quad-9+j 5, \quad 1+j 24.25, \quad 6.8-j 5.46, \quad 6\}$, $0 \leq k \leq 6$. Determine the 12-point DFT $G[k]$ of the length-12 sequence $g[n]=h\left[\langle n-17\rangle_{N}\right]$ without computing $h[n]$, forming the sequence $g[n]$, and then taking its DFT.
5.25 Let $x[n], \quad 0 \leq n \leq N-1$ be a length- 8 sequence given by

$$
\{x[n]\}=\{2, \quad 4, \quad 6, \quad 8, \quad 1, \quad 3, \quad 5, \quad 7\}, 0 \leq n \leq 7
$$

with $X\left(e^{j \omega}\right)$ denoting its DTFT. Define $Y[k]=X\left(e^{j 2 k \pi / 5}\right), 0 \leq k \leq 4$, with $y[n]$ denoting its 5-point IDFT. Determine $y[n]$ without computing $Y[k]$ of $y[n]$ in terms of $x[n]$.

