Ch5 Finite-Length Discrete Transforms

Optional) Let $\widetilde{x}[n]$ be a periodic sequence with period N, i.e., $\widetilde{x}[n] = \widetilde{x}[n+lN]$, where l is any integer. The sequence x[n] can be presented by Fourier series given by a weighted sum of periodic complex exponential sequences $\widetilde{\psi}_k[n] = e^{j2\pi kn/N}$. Show that, unlike the Fourier series representation of a periodic continuous-time signal, the Fourier series representation of a periodic discrete-time sequence requires only N of the periodic complex exponential sequences $\widetilde{\psi}_k[n]$, $k=0,1,\ldots,N-1$, and is of the form

$$\widetilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}[k] e^{j2\pi kn/N}$$

where the Fourier coefficients $\widetilde{X}[k]$ are given by

$$\widetilde{X}[k] = \sum_{n=0}^{N-1} \widetilde{x}[n] e^{-j2\pi kn/N}$$

Show that $\widetilde{X}[k]$ is also a periodic sequence in k with a period N. The set of sequences represent the discrete Fourier series pair.

• (Optional) Let x[n] be an aperiodic sequence with a DTFT $X(e^{j\omega})$. Define

$$\tilde{X}[k] = X(e^{j\omega})\Big|_{\omega=2\pi k/N} = X(e^{j2\pi k/N}), \quad -\infty < k < \infty$$

Show that $\tilde{X}[k]$ is a periodic sequence in k with a period N. Let $\tilde{X}[k]$ be the discrete Fourier series coefficients, defined in optional question before, of the periodic sequence $\tilde{x}[n]$. Shown with the equations in optional question before, that

$$\tilde{x}[n] = \sum_{r=-\infty}^{\infty} x[n+rN]$$

- 5.1 Determine the *N*-point DFTs of the following length-*N* sequences defined for $0 \le n \le N-1$:
 - a) $x_1[n] = \cos(2\pi n/N)$
 - b) $x_2[n] = \sin^2(2\pi n/N)$

c)
$$x_3[n] = \alpha^n$$

d)
$$x_4[n] = \begin{cases} 4, & \text{for } n \text{ even} \\ -2, & \text{for } n \text{ odd} \end{cases}$$

- 5.2 Determine the *N*-point DFT X[k] of *N*-point sequence $x[n] = \cos(\omega_0 n)$, $0 \le n \le N-1$, for $\omega_0 \ne 2\pi r/N$, where r is an integer in the range 0 < r < N-1.
- 5.3 Consider a length-N sequence x[n], $0 \le n \le N-1$, with N even. Define two sequences of length-N/2 given by:

$$g[n] = (x[n] + x[\frac{N}{2} + n]), \quad h[n] = (x[n] - x[\frac{N}{2} + n])W_N^n, \quad 0 \le n \le \frac{N}{2} - 1.$$
 If $G[k]$ and $H[k]$, $0 \le k \le \frac{N}{2} - 1$, denote the N/2-point DFT of $g[n]$ and $h[n]$, respectively. Determine the N-point DFT $X[k]$, $0 \le k \le N - 1$, of $x[n]$, from these two N/2-point DFTs.

5.4 Let X[k] denote the N-point DFT of a length-N sequence x[n], with N even. Define two length-N/2 sequences given by:

$$g[n] = \frac{1}{2}(x[2n] + x[2n+1]), \quad h[n] = \frac{1}{2}(x[2n] - x[2n+1]), \quad 0 \le n \le \frac{N}{2} - 1.$$
 If $G[k]$ and $H[k]$, $0 \le k \le \frac{N}{2} - 1$, denote the N/2-point DFT of $g[n]$ and $h[n]$, respectively. Determine the N-point DFT $X[k]$ from these two N/2-point DFTs.

• (Optional) Let X[k], $0 \le k \le N-1$, denote the *N*-point DFT of a length-*N* sequence x[n], with *N* even. Define two sequences of length-*N*/2 given by:

$$g[n] = a_1x[2n] + a_2x[2n+1], \quad h[n] = (a_3x[2n] + a_4x[2n+1]), \quad 0 \le n \le \frac{N}{2} - 1.$$
 where $a_1a_4 \ne a_2a_3$. If $G[k]$ and $H[k]$, $0 \le k \le \frac{N}{2} - 1$, denote N/2-point DFTs of $g[n]$ and $h[n]$, respectively. Determine the N-point DFT $X[k]$ from these two N/2-point DFTs.

- a) Let x[n], $0 \le n \le N-1$, be a length-N sequence with an N-point DFT given by X[k], $0 \le k \le N-1$. Determine the 2N-point DFTs of the following length-2N sequences in terms of X[k].
 - i. $g[n] = \begin{cases} x[n], & 0 \le n \le N 1 \\ 0, & N \le n \le 2N 1 \end{cases}$

ii.
$$h[n] = \begin{cases} 0, & 0 \le n \le N - 1 \\ x[n - N], & N \le n \le 2N - 1 \end{cases}$$

- b) Let G[k] and H[k], $0 \le k \le 2N-1$, denote, respectively the 2N-point DFTs of the length-2N sequences g[n] and h[n] in Question a). Define a new length-2N sequence by y[n] = g[n] + h[n], with a 2N-point DFT Y[k] $0 \le k \le 2N-1$. Develop the relation between Y[k], H[k], G[k] and X[k].
- Let x[n] be a length-N sequence with X[k] denoting its N-point DFT. We present the DFT operation as $X[k] = \mathcal{F}\{x[n]\}$. Determine the sequence y[n] obtained by applying the DFT operation 4 times to x[n], i.e.,

$$y[n] = \mathcal{F} \{ \mathcal{F} \{ \mathcal{F} \{ \mathcal{F} \{ x[n] \} \} \} \}$$

- 5.6 Consider a length-N sequence x[n], $0 \le n \le N-1$, with an N-point DFT X[k], $0 \le k \le N-1$.
 - a) Let Y[k] denote the MN-point DFT of the sequence x[n] appended with (M-1)N zeros. Show that the N-point DFT X[k] can be simply obtained from Y[k] as follows:

$$X[k] = Y[kM], \quad 0 \le k \le N-1$$

b) Define a sequence y[n] of length N/3, given by:

$$y[n] = x[3n], 0 \le n \le N/3-1$$

Express the N/3-point DFT Y[k] in terms of X[k].

c) Define a sequence y[n] of length LN, $0 \le n \le LN - 1$, given by:

$$y[n] = \begin{cases} x[n/L], & n = 0, L, 2L, ..., (N-1)L \\ 0, & \text{otherwise} \end{cases}$$

where L is a positive integer. Express the NL-point DFT Y[k] in terms of X[k].

5.7 Let x[n], $0 \le n \le N-1$ be a length-N sequence with an N-point DFT. X[k], denoting its N-point DFT. Define a length-3N sequence by

$$y[n] = \begin{cases} x[n], & 0 \le n \le N - 1 \\ 0, & N \le n \le 3N - 1 \end{cases}$$

with Y[k], $0 \le k \le 3N-1$, denoting its 3N-point DFT. Let $W[\ell] = Y[3\ell+2]$, $0 \le \ell \le N-1$, with w[n] denoting its N-point DFT. Express w[n] in terms of x[n].

- Let x[n], $0 \le n \le N-1$ be a even length sequence with an N-point DFT X[k], $0 \le k \le N-1$. If x[2m] = 0 for $0 \le m \le \frac{N}{2} 1$, show that $x[n] = -x[< n + \frac{N}{2} >_N]$.
- 5.8 Let x[n], $0 \le n \le N-1$ be a even length sequence with an N-point DFT X[k], $0 \le k \le N-1$. Determine the N-point DFTs of the following N-point sequences in terms of X[k].

a)
$$u[n] = x[n] - x[\left\langle n - \frac{N}{2} \right\rangle_N]$$

b)
$$v[n] = x[n] + x[\left\langle n - \frac{N}{2} \right\rangle_N]$$

- c) $w[n] = (-1)^n x[n]$
- ullet (Optional) Consider a rational discrete-time Fourier transform $X(e^{j\omega})$ with real

coefficients of the form of

$$X(e^{j\omega}) = \frac{P(e^{j\omega})}{D(e^{j\omega})} = \frac{p_0 + p_1 e^{-j\omega} + \dots + p_{M-1} e^{-j\omega(M-1)}}{d_0 + d_1 e^{-j\omega} + \dots + d_{M-1} e^{-j\omega(N-1)}}$$

Let P[k] denote the M-point DFT of the numerator coefficients $\{p_i\}$ and D[k] denote the N-point DFT of the denominate coefficients $\{d_i\}$. Determine the exact expressions of the DTFT $X(e^{j\omega})$ for M=N=4 if the 4-point DFTs of its numerator and denominator coefficients are given by

$$P[k] = \{3.5, -0.5 - j9.5, 2.5, -0.5 + j9.5\}$$

$$D[k] = \{17, 7.4 + j12, 17.8, 7.4 - j12\}$$

Verify your result using MATLAB.

- 5.9 Let x[n], $0 \le n \le N-1$ be a length-N real sequence with an N-point DFT X[k], $0 \le k \le N-1$.
 - a) Show that $X[\langle N-k \rangle_N] = X^*[k]$;
 - b) Show that X[0] is real;
 - c) If N is even, show that X[N/2] is real.
- 5.10 Without computing the DFT, determine which one of the following length-9 sequences defined for $0 \le n \le 8$ has a real-valued 9-point DFT and which one has an imaginary-valued 9-point DFT. Justify your answer.
 - a) $x_1[n] = \{5, -9, 4, 7, -8, -8, 7, 4, -9\},$
 - b) $x_2[n] = \{0, -4, 3, 7, -5, 5, -7, -3, 4\}$
- 5.11 Let G[k] and H[k], $0 \le k \le 7$ denote the 8-point DFTs of two length-8 sequences g[n] and h[n], $0 \le n \le 7$, respectively.
 - a) If $G[k] = \{3 + j4, 2 j7, -4 + j, 5 j2, 5, 4 + j3, 4 j6, -3 + j2\}$ and $h[n] = g[\langle n 3 \rangle_g]$, determine H[k] without forming h[n] and computing its DFT.
 - b) If $g[n] = \{-1 j7, 3 + j, 2 + j7, 2 + j2, -8 + j2, 4 j, -1 + j3, j1.5\}$

and $H[k] = G[\langle k+5 \rangle_8]$, determine h[n] without computing the DFT G[k], forming H[k] and then finding its inverse DFT.

• (Optional) Consider two length-N real-valued sequences x[n] and y[n] defined for $0 \le n \le N-1$, with N-point DFTs X[k] and Y[k], $0 \le k \le N-1$, respectively. The circular correlation of x[n] and y[n] is given by

$$r_{xy}[\ell] = \sum_{n=0}^{N-1} x[n]x[\langle \ell + n \rangle_N], \quad 0 \le \ell \le N-1$$

Express the DFT of $r_{xy}[\ell]$ in terms of X[k] and Y[k].

5.12 Let x[n], $0 \le n \le N-1$ be a length-N sequence with an MN-point DFT X[k], $0 \le k \le MN-1$. Define

$$y[n] = x[\langle n \rangle_N], \ 0 \le n \le MN - 1$$

How would you compute the MN-point DFT Y[k] of y[n] knowing only X[k]?

5.13 Consider the length-10 sequence, defined for $0 \le n \le 9$,

$$x[n] = \{-3, 5, -7, 8 2, -8, -4, 1, -9, 9\}$$

with a 10-point DFT given by X[k], $0 \le k \le 9$. Evaluate the following functions of X[k] without computing the DFT:

- a) X[0],
- b) X[5],
- c) $\sum_{k=0}^{9} X[k],$
- d) $\sum_{k=0}^{9} e^{-j3\pi k/5} X[k]$,
- e) $\sum_{k=0}^{9} |X[k]|^2$.

5.14 Let X[k], $0 \le k \le 11$, be a 12-point DFT of a length-12 real sequence x[n] with the first seven samples of X[k] given by:

$$X[k] = \{11, 8-j2, -1+j4, -6+j3, 3+j2, 2-j4, 4\}, 0 \le k \le 6$$

Determine remaining samples of X[k]. Evaluate the following function of x[n] without computing the IDFT of X[k]:

- a) x[0],
- b) x[6],
- c) $\sum_{n=0}^{11} x[n]$,
- d) $\sum_{n=0}^{11} e^{j2\pi n/3} x[n]$,
- $e) \qquad \sum_{n=0}^{11} \left| x[n] \right|^2$
- 5.15 The following 5 samples of 9-point DFT X[k] of a real length-9 sequence x[n] are given by: X[0]=11, X[2]=1.2-j2.3, X[3]=-7.2-j4.1, X[5]=-3.1+j8.2, X[8]=4.5+j1.6. Determine the remaining 4 samples of the DFT.
- 5.16 The first 7 samples of a length-12 real sequence x[n] with an imaginary-valued 12-point DFT X[k] are given by: x[0] = 0, x[1] = 0.7, x[2] = -3.25, x[3] = 4.1, x[4] = 2.87, x[5] = -9.3 and x[6] = 0. Determine the remaining 5 samples of x[n].
- (Optional) 158-point DFT X[k] of a real-valued sequence x[n] has the following DFT samples: X[0]=31, X[15]=4.13-j8.27, $X[k_1]=6.1+j2.8$, X[41]=-3.15-j2.04, $X[k_2]=-7.3-j9.5$, X[80]=9.08, X[119]=6.1-j2.8, $X[k_3]=4.13+j8.27$, X[151]=-7.3+j9.5, and $X[k_4]=-3.15+j2.04$. Remaining DFT samples are assumed to

be of zero value.

- a) Determine the values of the indices k_1, k_2, k_3 and k_4 .
- b) What is the dc value of $\{x[n]\}$?
- c) What is the energy of $\{x[n]\}$?
- 5.17 Let $X(e^{j\omega})$ denote the DTFT of the length-9 sequence

$$x[n] = \{1, -3, 4, -5, 7, -5, 4, -3, 1\}$$

- a) For the DFT sequence $X_1[k]$, obtained by sampling $X(e^{j\omega})$ at uniformly intervals of $\pi/6$ starting from $\omega=0$, determine the IDFT $x_1[n]$ of $X_1[k]$ without computing $X(e^{j\omega})$ and $X_1[k]$. Can you recover x[n] from $x_1[n]$?
- b) For the DFT sequence $X_2[k]$, obtained by sampling $X(e^{j\omega})$ at uniformly intervals of $\pi/4$ starting from $\omega=0$, determine the IDFT $x_2[n]$ of $X_2[k]$ without computing $X(e^{j\omega})$ and $X_2[k]$. Can you recover x[n] from $x_2[n]$?
- Optional) Let x[n] and h[n] be two length-51 sequences defined for $0 \le n \le 50$. It is known that h[n] = 0 for $0 \le n \le 16$ and $37 \le n \le 50$. Denote the 51-point circular convolution of these sequences as $y_C[n]$ and the linear convolution as $y_L[n]$. Determine the range of n for which $y_L[n] = y_C[n]$.

5.18

- a) Let g[n] and h[n] be two finite-length sequences of length 6 each. If $y_L[n]$ and $y_C[n]$ denote the linear and 6-point circular convolutions of g[n] and h[n], respectively, develop a method to determine $y_C[n]$ in terms of $y_L[n]$.
- b) Let $y_C[n]$ denote the 6-point circular convolutions of two length-6 sequences

$$x[n] = \{-3, 0, 7, 4, -5, 8\}$$

$$h[n] = \{7, -2, 4, -5, 0, 6\}$$

Determine the $y_L[n]$ obtained by a linear convolution of x[n] and h[n]. Determine the sample value $y_C[3]$ using the method developed in Part a) without carrying out the circular convolution.

- (Optional) Show that the circular convolution is
 - c) Commutative;
 - d) Associative.
- 5.19 A length-9 sequence is given by $x[n] = \{3, 5, 1, 4, -3, 5, -2, -2, 4\}$, $0 \le n \le 8$, with an 9-point DFT given by X[k], $0 \le k \le 8$. Without computing the IDFT, determine the sequence y[n] whose 9-point DFT is given by $Y[k] = W_3^{-2k} X[k]$.
- 5.20 The first 5 samples of 9-point DFT X[k] $0 \le k \le 8$ is given by

$$X[k] = \{15, 7-j6, 6-j2, j8, -6-j11\},\$$

Without computing the IDFT, determine the 9-point DFT Y[k] of the length-9 sequence $y[n] = e^{j2\pi n/3}x[n]$

- 5.21 Consider the two finite-length sequences $h[n] = \{4, -3, 1, -4\}$, $0 \le n \le 3$, and $g[n] = \{-3, 2, 5\}$, $0 \le n \le 2$.
 - a) Determine $y_L[n] = g[n] * h[n];$
 - b) Extend g[n] to a length-4 sequence $g_e[n]$ by zero-padding and compute $y_c[n] = g[n] \circledast h[n];$
 - c) Determine $y_C[n]$ using the DFT-based approach;
 - d) Extend g[n] and h[n] to length-6 sequences by zero-padding and compute the 6-point circular convolution y[n] of the extended sequences. Is y[n] the same as

 $y_L[n]$ determined in Part a).

- (Optional) Let x[n], $0 \le n \le N-1$ be a length-N sequence with an N-point DFT X[k], $0 \le k \le N-1$.
 - a) If x[n] is a symmetric sequence satisfying the condition $x[n] = x[\langle N-1-n\rangle_N]$, show that X[N/2] = 0 for N even.
 - b) If x[n] is an antisymmetric sequence satisfying the condition $x[n] = -x[\langle N-1-n\rangle_N]$, show that X[0] = 0.
 - c) If x[n] is a sequence satisfying the condition $x[n] = -x[\langle n+M \rangle_N]$ with N=2M, show that $X[2\ell] = 0$ for $\ell = 0, 1, \ldots, M-1$.
- (Optional) Consider two real, symmetric length-N sequences, x[n] and y[n], $0 \le n \le N-1$ with N even. Define the length-N/2 sequences:

$$x_0[n] = x[2n+1] + x[2n]$$
 $x_1[n] = x[2n+1] - x[2n]$

$$y_0[n] = y[2n+1] + y[2n]$$
 $y_1[n] = y[2n+1] - y[2n]$

where $0 \le n \le \frac{N}{2} - 1$. It can be easily shown that $x_0[n]$ and $y_0[n]$ are real, symmetric sequences of length-N/2 each. Likewise, $x_1[n]$ and $y_1[n]$ are real, antisymmetric sequences of length-N/2 each. Denote the $\frac{N}{2}$ -point DFTs of $x_0[n]$, $y_0[n]$, $x_1[n]$ and $y_1[n]$ by $X_0[k]$, $Y_0[k]$, $X_1[k]$ and $Y_1[k]$, respectively. Define a length- $\frac{N}{2}$ sequence:

$$u[n] = x_0[n] + y_1[n] + j(x_1[n] + y_0[n])$$

Determine $X_0[k], Y_0[k], X_1[k]$ and $Y_1[k]$ in terms of the $\frac{N}{2}$ -point DFT U[k].

- (Optional) Let x[n], $0 \le n \le N-1$ be a length-N sequence with an N-point DFT X[k], $0 \le k \le N-1$.
 - e) Show that if N is even and $x[n] = -x[\left\langle n + \frac{N}{2} \right\rangle_N]$ for all n, then X[k] = 0 for k even;

- f) Show that if N is an integer of 4 and $x[n] = -x[\left\langle n + \frac{N}{2} \right\rangle_N]$ for all n, then X[k] = 0 for $k=4\ell$, $0 \le \ell \le \frac{N}{4} 1$
- 5.22 Let x[n], $0 \le n \le N-1$ be a length-N sequence with an N-point DFT X[k], $0 \le k \le N-1$.

 Determine the N-point DFTs of the following length-N sequences in terms of X[k].
 - a) $w[n] = \alpha x[\langle n m_1 \rangle_N] + \beta x[\langle n m_2 \rangle_N]$, where m_1 and m_2 are positive integers less than N,
 - b) $g[n] = \begin{cases} x[n], & \text{for } k \text{ even} \\ 0, & \text{for } k \text{ odd} \end{cases}$
 - c) $y[n] = x[n] \otimes x[n]$
- 5.23 Let x[n], $0 \le n \le N-1$ be a length-N sequence with an N-point DFT x[k], $0 \le k \le N-1$.

 Determine the N-point inverse DFTs of the following length-N DFTs in terms of x[n].
 - a) $W[k] = \alpha X[\langle k m_1 \rangle_N] + \beta X[\langle k m_2 \rangle_N]$, where m_1 and m_2 are positive integers less than N,
 - b) $G[k] = \begin{cases} X[k], & \text{for } k \text{ even} \\ 0, & \text{for } k \text{ odd} \end{cases}$
 - c) $Y[k] = X[k] \otimes X[k]$
- 5.24 The first seven samples of the 12-point DFT H[k], $0 \le k \le 11$, of a length12 real sequence h[n], $0 \le n \le 11$, are given by

$$H[k] = \{4, 17.19 + j1.46, -9 + j3.46, -9 + j5, 1 + j24.25, 6.8 - j5.46, 6\},$$
 $0 \le k \le 6$. Determine the 12-point DFT $G[k]$ of the length-12 sequence

 $g[n] = h[\langle n-17 \rangle_N]$ without computing h[n], forming the sequence g[n], and then taking its DFT.

5.25 Let x[n], $0 \le n \le N-1$ be a length-8 sequence given by

$${x[n]} = {2, 4, 6, 8, 1, 3, 5, 7}, 0 \le n \le 7$$

with $X(e^{j\omega})$ denoting its DTFT. Define $Y[k] = X(e^{j2k\pi/5})$, $0 \le k \le 4$, with y[n] denoting its 5-point IDFT. Determine y[n] without computing Y[k] of y[n] in terms of x[n].