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1. DFT Symmetry Relations

 Symmetry Relations
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 From the definition
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1. DFT Symmetry Relations
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1. DFT Symmetry Relations

Length-N Sequence N-point DFT
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Symmetry properties of the DFT of a complex sequence
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1. DFT Symmetry Relations

Length-N Sequence N-point DFT

Symmetry relations
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Symmetry properties of the DFT of a real sequence

Linearity

Circular time-
shifting

Circular  frequency-
shifting

Duality

N-point circular 
Convolution

Modulation

Parseval’s relation 
8

2. DFT Theorems
General properties of the DFT
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 Circular Convolution using the DFT

N-point circular 
Convolution
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2. DFT Theorems
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 A simple approach to design the filter is to set 
the Fourier transform          to zero in the band 
containing the components of the signal x[n] 
that need to be suppressed, and to set           
equal to one in the band where the components 
of the signal x[n] are to be preserved. 

 Keep with zero-phase.
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3. Fourier-Domain Filtering

( )jH e 
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 Fourier-domain filtering using DFT
Example
Consider the narrow-band lowpass signal

The signal x[n] is corrupted with a high-frequency 
random noise. Try to remove it.
 Take the 256-point DFT of xN [n]: XN[k]
 Set all samples in the range to zero 
values  

11

3. Fourier-Domain Filtering
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3. Fourier-Domain Filtering
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4. Computation of the 
DFT of Real Sequences

 N-Point DFTs of Two Real Sequences Using 
a Single N-Point DFT

 2N-Point DFTs of a Real Sequence Using a 
Single N-Point DFT
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4.1  N-Point DFTs of Two Real  Sequences 
Using a Single N-Point DFT 

 Length-N real sequences and N-point DFTs

 2N2 multiplication, 2N(N-1) additions.

 Define a length-N complex sequence

 Hence, g[n]=Re{x[n]} and h[n]=Im{x[n]}
 X[k]denote the N-point DFT of x[n]
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4.1  N-Point DFTs of Two Real Sequences 
Using a Single N-Point DFT

 Then, we arrive at
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4.1  N-Point DFTs of Two Real Sequences 
Using a Single N-Point DFT

Example
 We compute the 4-point DFTs of  the two real 

sequences g[n] and h[n] given below
{g[n]}={1  2  0  1}, {h[n]}={2  2  1  1}

 Then {x[n]}＝{g[n]}＋j{h[n]} is given by
{x[n]}={1+j2  2+j2  j 1+j}
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4.1  N-Point DFTs of Two Real Sequences 
Using a Single N-Point DFT

 4-point DFT of x[n]

{X[k]}={4+j6  2  –2  j2}

 Conjugate sequence

{X*[k]}={4–j6  2  –2 –j2}

 Circular conjugate sequence
*{ [ ]} {4 6 2 2 2}

N
X N k j j    
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4.1  N-Point DFTs of Two Real Sequences 
Using a Single N-Point DFT

 Therefore

{G[k]}={4  1–j –2 1+j}

{H[k]}={6  1–j 0  1+j}

19

4.2  2N-Point DFT of 
a Real Sequence Using an N-Point DFT

 Length-2N real sequence v[n] with an 2N-
point DFT V[k]

 Define two length-N real sequences:
g[n]=v[2n],    h[n]=v[2n+1]  0≤n≤N－1

 Let G[k] and H[k] denote their respective N
point DFTs
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4.2  2N-Point DFT of 
a Real Sequence Using an N-Point DFT
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4.2  2N-Point DFT of 
a Real Sequence Using an N-Point DFT

i.e.

where the DFTs of G[k] and H[k] can be 
computed by means of the method discussed in 
4.1
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4.2  2N-Point DFT of 
a Real Sequence Using an N-Point DFT

 Example
Determine the 8-point DFT V[k] of the length-
8 real sequence

{v[n]}={1  2 2 2  0  1 1 1},

 We form two length-4 real sequences as follows
{g[n]}={v[2n]}={1 2 0 1} {h[n]}={v[2n+1]}= {2 2 1 1}
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4.2  2N-Point DFT of 
a Real Sequence Using an N-Point DFT

 Example
 Now we have 

 Substituting the values of the 4-point DFTs G[k] and 
H[k]
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4.2  2N-Point DFT of 
a Real Sequence Using an N-Point DFT
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5. Linear Convolution Using the 
DFT

 Linear convolution is a key operation in many 
signal processing applications

 Implementation of linear convolution using the 
DFT-----which can be efficiently implemented
using FFT algorithms.
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5. Linear Convolution Using the 
DFT

 Linear Convolution of Two Finite-Length 
Sequences 

 Linear Convolution of a Finite-Length 
Sequence with an Infinite-Length Sequence
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5.1 Linear Convolution of Two Finite-Length 
Sequences

 Let g[n] and h[n] be two finite-length
sequences of length N and M, respectively
 Denote L=N+M－1
 Define two length-L sequences
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5.1 Linear Convolution of Two Finite-Length 
Sequences

 Then
yL[n]=g[n]    h[n]=g[n]    h[n]

 The corresponding implementation scheme is 
illustrated below

N

×
(N+M－1) -
point IDFT

g[n]
Length N

h[n]
Length M

(N+M－1) -
point DFT

Zero-padding 
with M－1 Zeros

ge[n]
yL[n]

(N+M－1) -
point DFT

Zero-padding 
with N－1 Zeros

he[n]
Length-(N+M－1)
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*5.2 Linear Convolution of a Finite-Length 
Sequence with an Infinite-Length 
Sequence

 Consider the DFT-based implementation of

where h[n] is a finite-length sequence of 
length -M and x[n] is an infinite length (or a 
finite length sequence whose length is much 
greater than M)
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*5.2.1   Overlap-Add Method

 We first segment x[n], assumed to be a causal 
sequence here without (any) loss of generality, 
into a set of contiguous finite-length 
subsequences of length N each:

where 0
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m
x n x n mN
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*5.2.1   Overlap-Add Method
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*5.2.1   Overlap-Add Method

 Thus we can write

where

 Since h[n] is of length M and xm[n] is of 
length N, the linear convolution                               
is of length N+M－1

0

[ ]m
m

y n mN




 y[n]= h[n] x[n]

ym[n]= h[n] xm [n]

h[n] xm[n]
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*5.2.1   Overlap-Add Method

 As a result, the desired linear convolution
has been broken up into a

sum of infinite number of short-length linear 
convolutions of length N+M－1 each:

 Each of these short convolutions can be
implemented using the DFT-based method
discussed earlier, where the DFTs (and the 
IDFT) are computed on the basis of (N+M－1)
points

y[n]= h[n] x[n]

ym[n]= h[n] xm [n]
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*5.2.1   Overlap-Add Method

 There is one more subtlety to take care of
before we can implement

using the DFT-based approach
 Now the first short convolution in the above

sum, is of length N+M－1
and is defined for 0≤n≤N+M－2

0
[ ] [ ]m

m
y n y n mN


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y0[n]= h[n] x0[n]
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*5.2.1   Overlap-Add Method

 The second short convolution
is also of length N+M－1 but is defined for 
N≤n≤2N+M－2

There is an overlap of M－1 samples 
between these two short linear convolutions

 Likewise, the third short convolution
, is also of length N+M－1

but is defined for 2N≤n≤3N+M－2

y1[n]= h[n] x1[n]

y2[n]= h[n] x2[n]
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*5.2.1   Overlap-Add Method

 Thus there is an overlap of M－1 samples 
between                     and

 In general, there will be an overlap of M－1
samples between the samples of the short 
convolutions                     and

 This process is illustrated in the figure on the 
next slide for M = 5 and N = 7.

h[n] x1[n] h[n] x2[n]

h[n] xr-1[n] h[n] xr[n]
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*5.2.1   Overlap-Add Method
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*5.2.1   Overlap-Add Method

y0[n]

y0[n]+y1[n-7]

y1[n-7]

y1 [n-7]+y2[n-14]
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*5.2.1   Overlap-Add Method

 Therefore,          is obtained by a linear 
convolution of         and         is given by

y[n]
h[n] x[n]
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1714  n

2018  n
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*5.2.1   Overlap-Add Method

 Overlap add method ：since the results of the
short linear convolutions overlap and the
overlapped portions are added to get the
correct final result.

 Function fftfilt can be used to implement
the above method.

 Program 5_5 illustrates the use of fftfilt in
the filtering of a noise-corrupted signal using a
length-3 moving average filter
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*5.2.1   Overlap-Save Method

 Let h[n] be a length-M sequence
 We first segment x[n], into a set of contiguous

finite-length subsequences of smaller length N

with

   10)]1([][  NnMNmnxnxm

 NM 
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*5.2.1   Overlap-Save Method
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*5.2.1   Overlap-Save Method

 Let
 We reject the first M－ 1 samples of

and abut the remaining N+M－1 samples of
to form the linear convolution yL[n]=

 If ym[n] denotes the saved portion of wm[n],
i.e.

h(n) xm(n)

w m[n]= h[n] xm[n]
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*5.2.1   Overlap-Save Method

 Then

 Input is segmented into overlapping sections
 Parts of the results of the circular convolutions

are saved and abutted to determine the linear
convolution.

11     ],[)]1([  NnMnyMNmny mL
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*5.2.1   Overlap-Save Method


