

1. DFT Symmetry Relations

- Symmetry Relations

$$
\begin{gathered}
X[k]=X_{\mathrm{re}}[k]+j X_{\mathrm{im}}[k] \\
X_{\mathrm{re}}[k]=\frac{1}{2}\left(X[k]+X^{*}[k]\right) \quad X_{\mathrm{im}}[k]=\frac{1}{2 j}\left(X[k]-X^{*}[k]\right) \\
x[n]=X_{\mathrm{re}}[n]+j x_{\mathrm{im}}[n] \\
x_{\mathrm{re}}[n]=\frac{1}{2}\left(x[n]+x^{*}[n]\right) \quad x_{\mathrm{im}}[n]=\frac{1}{2 j}\left(x[n]-x^{*}[n]\right)
\end{gathered}
$$

1. DFT Symmetry Relations

- From the definition

$$
\begin{gathered}
x[n] \stackrel{\text { DFT }}{\longleftrightarrow} X[k] \\
x\left[\langle-n\rangle_{N}\right] \stackrel{\mathrm{DFT}}{\longleftrightarrow} X\left[\langle-k\rangle_{N}\right] \\
x^{*}[n] \stackrel{\mathrm{DFT}}{\longleftrightarrow} X^{*}\left[\langle-k\rangle_{N}\right] \\
x^{*}\left[\langle-n\rangle_{N}\right] \stackrel{\text { DFT }}{\longleftrightarrow{ }^{*}[k]}
\end{gathered}
$$

1. DFT Symmetry Relations

Symmetry properties of the DFT of a real sequence	
Length- N Sequence	N-point DFT
$X[n]$	$X[k]=X_{\mathrm{re}}[k]+j X_{\mathrm{im}}[k]$
$X_{\mathrm{ev}}[n]$	$X_{\mathrm{re}}[k]$
$X_{\mathrm{od}}[n]$	$j X_{\mathrm{im}}[k]$
	$X[k]=X *\left[\langle-k\rangle_{N}\right]$
$X_{\mathrm{rc}}[k]$	$=X_{\mathrm{re}}\left[\langle-k\rangle_{N}\right]$
$X_{\mathrm{im}}[k]$	$=-X_{\mathrm{im}}\left[\langle-k\rangle_{N}\right]$
$\|X[k]\|$	$=\mid X\left[\langle-k\rangle_{N}\right]$
Symmetry relations	$\arg X[k]=-\arg X\left[\langle-k\rangle_{N}\right]$

1. DFT Symmetry Relations

Length- N Sequence	N-point DFT
$x[n]=x_{\text {re }}[n]+j x_{\text {im }}[n]$	$X[k]=X_{\text {re }}[k]+j X_{\mathrm{im}}[k]$
$x^{*}[n]$	$X *\left[\langle-k\rangle_{N}\right]$
$x^{*}\left[\langle-n\rangle_{N}\right]$	$X *[k]$
$\chi_{\text {re }}[n]$	$X_{\text {pes }}[k]=\frac{1}{2}\left\{X\left[\langle k\rangle_{N}\right]+X *\left[\langle-k\rangle_{N}\right]\right\}$
$j x_{\text {im }}[n]$	$X_{\mathrm{pea}}[k]=\frac{1}{2}\left\{X\left[\langle k\rangle_{N}\right]-X *\left[\langle-k\rangle_{N}\right]\right\}$
$\chi_{\text {pos }}[n]$	$X_{\text {re }}[k]$
$x_{\text {pca }}[n]$	$j X_{\text {im }}[k]$

2. DFT Theorems

General properties of the DFT		
Linearity	$\alpha g[n]+\beta h[n]$	$\alpha G[k]+\beta H[k]$
Circular timeshifting	$\left.g\left[n-n_{0}\right\rangle_{N}\right]$	$\left.W_{*}^{\text {ha }} \mathrm{G} G \mathrm{k}\right]$
Circular frequencyshifting	$W_{*}^{-k+n} g[n]$	$G\left[\left(k-k_{0}\right)_{N}\right]$
Duality	G[n]	$N\left[g\langle-k\rangle_{N}\right]$
N-point circular Convolution	$\left.\sum_{m=0}^{N-1} g[m] h[n-m\rangle_{N}\right]$	$G_{[k] H[k]}$
Modulation	$g[n]\lceil[n]$	$\left.\frac{1}{N} \sum_{m=0}^{N-1} G[m] H[k-m\rangle_{N}\right]$
Parseval's relation		$\left.\left.[n]^{2}=\frac{1}{N} \sum_{k=0}^{1-1} \right\rvert\, X[k]\right]^{2}$

2. DFT Theorems

- Circular Convolution using the DFT

9
3. Fourier-Domain Filtering

- A simple approach to design the filter is to set the Fourier transform $H\left(e^{j \omega}\right)$ to zero in the band containing the components of the signal $x[n]$ that need to be suppressed, and to set $H\left(e^{j o}\right)$ equal to one in the band where the components of the signal $x[n]$ are to be preserved.
- Keep $H\left(e^{j \omega}\right)$ with zero-phase.

3. Fourier-Domain Filtering

- Fourier-domain filtering using DFT

Example
Consider the narrow-band lowpass signal

$$
x[n]=0.1 n e^{-0.03 n}, \quad 0 \leq n \leq 255,
$$

The signal $x[n]$ is corrupted with a high-frequency random noise. Try to remove it.
$>$ Take the 256-point DFT of $x_{\mathrm{N}}[n]: X_{\mathrm{N}}[k]$
> Set all samples in the range $50 \leq k \leq 206$ to zero values
3. Fourier-Domain Filtering

4. Computation of the DFT of Real Sequences
4.1 N-Point DFTs of Two Real Sequences Using a Single N-Point DFT

- Length- N real sequences and N-point DFTs

$$
h[n] \longleftrightarrow H[k] \quad g[n] \longleftrightarrow G[k]
$$

- $2 N^{2}$ multiplication, $2 N(N-1)$ additions.
- Define a length- N complex sequence

$$
x[n]=h[n]+j g[n] \longleftrightarrow X[k]
$$

- Hence, $g[n]=\operatorname{Re}\{\chi[n]\}$ and $h[n]=\operatorname{Im}\{\chi[n]\}$
$\square X[k]$ denote the N-point DFT of $x[n]$
4.1 N-Point DFTs of Two Real Sequences Using a Single N-Point DFT
- Then, we arrive at

$$
\begin{aligned}
& H[k]=X_{\mathrm{cs}}[k]=\frac{1}{2}\left\{X[k]+X^{*}\left[\langle-k\rangle_{N}\right]\right\} \\
& G[k]=X_{\mathrm{ca}}[k]=\frac{1}{2 j}\left\{X[k]-X^{*}\left[\langle-k\rangle_{N}\right]\right\}
\end{aligned}
$$

- Note that

$$
X^{*}\left[\langle-k\rangle_{N}\right]=X^{*}\left[\langle N-k\rangle_{N}\right]
$$

4.1 N-Point DFTs of Two Real Sequences Using a Single N-Point DFT

- N-Point DFTs of Two Real Sequences Using a Single N-Point DFT
- $2 N$-Point DFTs of a Real Sequence Using a Single N-Point DFT

Example

- We compute the 4-point DFTs of the two real sequences $g[n]$ and $h[n]$ given below

$$
\{g[n]\}=\left\{\begin{array}{llll}
1 & 2 & 0 & 1
\end{array}\right\},\{h[n]\}=\left\{\begin{array}{llll}
2 & 2 & 1 & 1
\end{array}\right\}
$$

- Then $\{x[n]\}=\{g[n]\}+j\{h[n]\}$ is given by

$$
\{x[n]\}=\{1+j 2 \quad 2+j 2 j 1+j\}
$$

4.1 N-Point DFTs of Two Real Sequences

Using a Single N-Point DFT

- 4-point DFT of $x[n]$

$$
\{X[k]\}=\{4+j 6 \quad 2 \quad-2 j 2\}
$$

- Conjugate sequence

$$
\left\{X^{*}[k]\right\}=\left\{\begin{array}{lll}
4-j 6 & 2 & -2-j 2
\end{array}\right\}
$$

- Circular conjugate sequence

$$
\left\{X^{*}\left[\langle N-k\rangle_{N}\right]\right\}=\{4-j 6-2 j-22\}
$$

4.2 2N-Point DFT of

a Real Sequence Using an N-Point DFT

- Length- $2 N$ real sequence $v[n]$ with an $2 N$ point DFT V[k]

$$
v[n] \longleftrightarrow V[k]
$$

- Define two length- N real sequences:

$$
g[n]=v[2 n], \quad h[n]=v[2 n+1] \quad 0 \leq n \leq N-1
$$

- Let $G[k]$ and $H[k]$ denote their respective N point DFTs

$$
h[n] \longleftrightarrow H[k] \quad g[n] \longleftrightarrow G[k]
$$

4.1 N-Point DFTs of Two Real Sequences Using a Single N-Point DFT

- Therefore

$$
\begin{aligned}
& \{G[k]\}=\left\{\begin{array}{llll}
4 & 1-j & -2 & 1+j
\end{array}\right\} \\
& \{H[k]\}=\left\{\begin{array}{llll}
6 & 1-j & 0 & 1+j
\end{array}\right\}
\end{aligned}
$$

4.2 2N-Point DFT of

a Real Sequence Using an N-Point DFT

$$
\begin{aligned}
V[k] & =\sum_{n=0}^{2 N-1} v[n] W_{2 N}^{n k} \\
& =\sum_{n=0}^{N-1} v[2 n] W_{2 N}^{2 n k}+\sum_{n=0}^{N-1} v[2 n+1] W_{2 N}^{(2 n+1) k} \\
& =\sum_{n=0}^{N-1} g[n] W_{N}^{n k}+\sum_{n=0}^{N-1} h[n] W_{N}^{n k} W_{2 N}^{k} \\
& =\sum_{n=0}^{N-1} g[n] W_{N}^{n k}+W_{2 N}^{k} \sum_{n=0}^{N-1} h[n] W_{N}^{n k} \quad 0 \leq k \leq 2 N-1
\end{aligned}
$$

4.2 2N-Point DFT of

a Real Sequence Using an N-Point DFT
$V[k]=\sum_{n=0}^{N-1} g[n] W_{N}^{n k}+W_{2 N}^{k} \sum_{n=0}^{N-1} h[n] W_{N}^{n k}, \quad 0 \leq k \leq 2 N-1$
i.e.
$V[k]=G\left[\langle k\rangle_{N}\right]+W_{2 N}^{k} H\left[\langle k\rangle_{N}\right], \quad k=0,1,2, \ldots, 2 N-1$
where the DFTs of $G[k]$ and $H[k]$ can be computed by means of the method discussed in 4.1

21
4.2 2N-Point DFT of
a Real Sequence Using an N-Point DFT

- Example

Determine the 8 -point DFT $V[k]$ of the length 8 real sequence

$$
\{v[n]\}=\left\{\begin{array}{llllllll}
1 & 2 & 2 & 2 & 0 & 1 & 1 & 1
\end{array}\right\},
$$

- We form two length-4 real sequences as follows $\{g[n]\}=\{v[2 n]\}=\left\{\begin{array}{llll}1 & 2 & 0 & 1\end{array}\right\} \quad\{h[n]\}=\{v[2 n+1]\}=\left\{\begin{array}{llll}2 & 2 & 1 & 1\end{array}\right\}$

4.2 2N-Point DFT of

a Real Sequence Using an N-Point DFT

- Example
- Now we have

$$
V[k]=G\left[\langle k\rangle_{4}\right]+W_{8}^{\mathrm{k}} H\left[\langle k\rangle_{4}\right], \quad 0 \leq k \leq 7
$$

- Substituting the values of the 4-point DFTs $G[k]$ and $H[k]$

$$
\begin{aligned}
& G[k]=\left\{\begin{array}{llll}
4 & 1-j & -2 & 1+j
\end{array}\right\} \\
& H[k]=\left\{\begin{array}{llll}
6 & 1-j & 0 & 1+j
\end{array}\right\}
\end{aligned}
$$

4.2 2N-Point DFT of

a Real Sequence Using an N-Point DFT

$$
\begin{aligned}
& V[0]=G[0]+H[0]=4+6=10 \\
& V[1]=G[1]+W_{8}^{1} H[1]=(1-j)+e^{-j \pi / 4}(1-j)=1-j 2.4142 \\
& V[2]=G[2]+W_{8}^{2} H[2]=-2+e^{-j \pi / 2} \cdot 0=-2 \\
& V[3]=G[3]+W_{8}^{3} H[3]=(1+j)+e^{-j 3 \pi / 4} \cdot(1+j)=1-j 0.4142 \\
& V[4]=G[0]+W_{8}^{4} H[0]=4-6=2 \\
& V[5]=G[1]+W_{8}^{5} H[1]=(1-j)-e^{-j \pi / 4}(1-j)=1+j 2.4142 \\
& V[6]=G[2]+W_{8}^{6} H[2]=-2-e^{-j \pi / 2} \cdot 0=-2 \\
& V[7]=G[3]+W_{8}^{7} H[3]=(1+j)-e^{-j 3 \pi / 4} \cdot(1+j)=1-j 0.4142
\end{aligned}
$$

5. Linear Convolution Using the DFT

- Linear convolution is a key operation in many signal processing applications
- Implementation of linear convolution using the DFT-----which can be efficiently implemented using FFT algorithms.
5.1 Linear Convolution of Two Finite-Length Sequences
- Let $g[n]$ and $h[n]$ be two finite-length sequences of length N and M, respectively \square Denote $L=N+M-1$
- Define two length $-L$ sequences

$$
\begin{aligned}
& g_{e}[n]=\left\{\begin{array}{cc}
g[n], & 0 \leq n \leq N-1 \\
0, & N \leq n \leq L-1
\end{array}\right. \\
& h_{e}[n]=\left\{\begin{array}{cc}
h[n], & 0 \leq n \leq M-1 \\
0, & M \leq n \leq L-1
\end{array}\right.
\end{aligned}
$$

5. Linear Convolution Using the DFT

- Linear Convolution of Two Finite-Length Sequences
- Linear Convolution of a Finite-Length

Sequence with an Infinite-Length Sequence
5.1 Linear Convolution of Two Finite-Length Sequences

- Then

$$
y_{L}[n]=g[n] \circledast h[n]=g[n] \otimes h[n]
$$

- The corresponding implementation scheme is illustrated below

*5.2 Linear Convolution of a Finite-Length Sequence with an Infinite-Length Sequence
- We first segment $x[n]$, assumed to be a causal sequence here without (any) loss of generality, into a set of contiguous finite-length subsequences of length N each:
where

$$
x[n]=\sum_{m=0}^{\infty} x_{m}[n-m N]
$$

$$
x_{m}[n]=\left\{\begin{array}{cc}
x[n+m N], & 0 \leq n \leq N-1 \\
0, & \text { otherwise }
\end{array}\right.
$$

*5.2.1 Overlap-Add Method

- Thus we can write
where

$$
\begin{gathered}
y[n]=h[n] * x[n]=\sum_{m=0}^{\infty} y_{m}[n-m N] \\
y_{m}[n]=h[n] * x_{m}[n]
\end{gathered}
$$

- Since $h[n]$ is of length M and $x_{m}[n]$ is of length N, the linear convolution $h[n] * x_{m}[n]$ is of length $N+M-1$
- As a result, the desired linear convolution $y[n]=h[n] * x[n]$ has been broken up into a sum of infinite number of short-length linear convolutions of length $N+M-1$ each:

$$
y_{m}[n]=h[n] * x_{m}[n]
$$

- Each of these short convolutions can be implemented using the DFT-based method discussed earlier, where the DFTs (and the IDFT) are computed on the basis of $(N+M-1)$ points
- The second short convolution $y_{1}[n]=h[n] * x_{1}[n]$ is also of length $N+M-1$ but is defined for $N \leq n \leq 2 N+M-2$
\longrightarrow There is an overlap of $M-1$ samples between these two short linear convolutions
- Likewise, the third short convolution $y_{2}[n]=h[n] * x_{2}[n]$, is also of length $N+M-1$ but is defined for $2 N \leq n \leq 3 N+M-2$
*5.2.1 Overlap-Add Method

- Therefore, $y[n]$ is obtained by a linear convolution of $h[n]$ and $x[n]$ is given by

$$
\begin{aligned}
& y[n]=y_{0}[n], \quad 0 \leq n \leq 6 \\
& y[n]=y_{0}[n]+y_{1}[n-7] \quad 7 \leq n \leq 10 \\
& y[n]=y_{1}[n-7] \quad 11 \leq n \leq 13 \\
& y[n]=y_{1}[n-7]+y_{2}[n-14] \quad 14 \leq n \leq 17 \\
& y[n]=y_{2}[n-14] \\
& 18 \leq n \leq 20
\end{aligned}
$$

*5.2.1 Overlap-Add Method

- Overlap add method : since the results of the short linear convolutions overlap and the overlapped portions are added to get the correct final result.
- Function fftfilt can be used to implement the above method.
- Program 55 illustrates the use of fftfilt in the filtering of a noise-corrupted signal using a length-3 moving average filter

- Let $h[n]$ be a length- M sequence
- We first segment $x[n]$, into a set of contiguous finite-length subsequences of smaller length N

$$
x_{m}[n]=x[n+m(N-M+1)] \quad 0 \leq n \leq N-1
$$

with $M \leq N$
*5.2.1 Overlap-Save Method

- Then

$$
y_{L}[n+m(N-M+1)]=y_{m}[n], \quad M-1 \leq n \leq N-1
$$

- Input is segmented into overlapping sections
- Parts of the results of the circular convolutions are saved and abutted to determine the linear convolution.
*5.2.1 Overlap-Save Method

