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Chapter 5

Finite Length 
Discrete Transforms

Part A

The  Discrete Fourier 
Transform (DFT)
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Finite-Length Discrete 
Transforms

 It is convenient to map a finite-length 
sequence from the time domain into a finite-
length sequence of the same length in a 
different domain, and vice-versa. 

 Such transformations are usually collectively 
called finite-length transforms. 
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Discrete Fourier Transform 

 Orthogonal Transforms
 The Definition of DFT
 Relation between DTFT and DFT and 

their inverses
 Operations on Finite-Length Sequences

 Circular Time-Reversal 
 Circular Shifting 
 Circular Convolution

 Classifications of Finite-Length 
Sequences
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1. Orthogonal Transforms
Definition: with basis sequences 

For length-N sequence x[n], 0≤n≤N－1, with 
X[k] denoting the coefficients of its N-point 
orthogonal transform :
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1. Orthogonal Transforms

 Proof: 
 Important consequence--Parseval’s relation

 Transforms with good energy compaction 
properties: 
 most of the signal energy is concentrated in a subset of

the transform coefficients
 remaining coefficients with very low energy to be set to

zero values
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2.1 Definition

Definition

 DFT X[k] is obtained by uniformly sampling 
the DTFT X(ejω) over one principal value 
interval 0≤ω≤ 2π at ωk= 2π k/N, 0≤k≤ N－1 
in the frequency domain.

Sampling the DTFT X(ejω) of x[n], 0≤n≤N－1
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2.1 Definition

 Length-N sequence X[k] : discrete Fourier 
transform (DFT) of the sequence x[n] in the 
frequency domain
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2.1 Definition

 Using the notation the  DFT is 
usually expressed as:

 Inverse discrete Fourier transform (IDFT)
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2.1 Definition

 WN=e- j2π /N  : twiddle factor
 |WN|=1

 One of the N N-th roots of unity



Nk
N

k
N WW 

10  N
NN WW

12/ N
NW

k
N

Nk
N WW  2/ 0

1

0






N

k

k
NW



 








otherwise
intergeran  is   ,for 

0
,1

0

)( rrNlkN
W

N

k

nlk
N

11

2.1 Definition

Example 1
 Consider the length-N sequence

Its N-point DFT is given by
1
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2.1 Definition

Example 2 
 Consider the length-N sequence defined for

where r is an integer in the range
 Using the Euler’s function we can write
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2.1 Definition

 The N-point DFT of g[n] is thus given by
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2.1 Definition

Example 3
 Rectangular Pulse RN [n], width N

N-point DFT is given by
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2.1 Definition

 2N-point DFT is given by

 Length of DFT plays a very important role 
in DFT 

2 1 1

2 2
0 0

1
2 2

2

[ ] [ ]

1 sin( / 2)
1 sin( / 2 )

N N
kn kn
N N

n n
NkN j kN N

k
N

X k x n W W

W ke
W k N

 


 

 




 


 



 

16

2.1 Definition
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2.1 Definition

 Mapping Relations between time-domain and 
frequency-domain transforms

(Time-domain) (Frequency-domain)
Continuous                 Aperiodical
Discrete                       Periodical

Periodical                    Discrete
Aperiodical Continuous             

18

2.1 Definition

 Type 1: Continuous-Time Fourier Transform
(CTFT)

( )ax t ( )aX jContinuous
Aperiodical

Aperiodical
Continuous

( ) ( ) j t
a aX j x t e dt

  


  

1( ) ( )
2

j t
a ax t X j e d


 


  

19

2.1 Definition

 Type 2: Continuous-Time Fourier Series
(CTFS)
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2.1 Definition

 Type 3: Discrete-Time Fourier Transform
(DTFT)
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2.1 Definition

 Type 4: Discrete Fourier Transform (DFT)
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2.1 Definition

 The computation of the DFT and the IDFT 
requires, respectively, approximately N2

complex multiplications and N(N-1) complex 
additions.

 However, elegant methods have been 
developed to reduce the computational 
complexity to about N(log2N) operations. 

 These techniques are usually called fast Fourier 
transform (FFT) algorithms .
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2.2 Matrix Relations

 Since MATLAB stands for MAtrix
LABoratory, we represent DFT definition in 
terms of matrix form

can be expressed in matrix form as
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2.2 Matrix Relations

 Where

And is the DFT matrix given by
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2.2 Matrix Relations

 Likewise, the IDFT relations can be 
expressed in 

can be expressed in matrix form as

Where is the IDFT matrix
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2.2 Matrix Relations

 where

 Note:
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2.2 Matrix Relations

 Obviously, the relation between the two 
coefficient matrices can be expressed as 
follows

 Therefore, the algorithms designed for DFT 
are applicable to IDFT

1 *1
N NN
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2.3 DFT Computation Using 
MATLAB

 Built-in Functions to compute the DFT and 
the IDFT are fft and ifft

fft(x) ifft(X)
fft(x,M) ifft(x,M)

 These functions make use of FFT algorithms 
which are computationally highly efficient 
compared to the direct computation
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2.3 DFT Computation Using 
MATLAB
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2.3 DFT Computation Using 
MATLAB

 N-point sequence μ[n]

Determine the M-point DFT. 
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2.3 DFT Computation Using 
MATLAB

 N-point sequence μ[n]

Determine the M-point DFT. 
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3. Relations between DTFT and 
DFT and their inverses

 Relations: (for finite x[n] of length N)

is obtained by uniformly sampling on the     
ω-axis between
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3.1 Numerical Computation of the
DTFT Using the DFT

 A practical approach to the numerical 
computation of the DTFT of a finite-length 
sequence. 

 Let be the DTFT of a length-N
sequence x[n]. We wish to evaluate at a 
dense grid of frequencies , where M >> N:
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3.1 Numerical Computation of the
DTFT Using the DFT

 Define a new sequence

 Then
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3.1 Numerical Computation of the
DTFT Using the DFT

 Thus is essentially an M-point DFT
of the length-M sequence

 The DFT can be computed very 
efficiently using the FFT algorithm if M is an 
integer power of 2.
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3.1 Numerical Computation of the
DTFT Using the DFT

Example
 Compute the DFT and the DTFT of the 

sequence, as shown below
cos(6 /16) 0 15n n  
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3.1 Numerical Computation of the
DTFT using DFT

 The function freqz employs this approach 
to evaluate the frequency response at a 
prescribed set of frequencies of a DTFT 
expressed as a rational function in 

38

3.2 DTFT from DFT by interpolation
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3.2 DTFT from DFT by interpolation

 Let                                 and
 Thus
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3.2 DTFT from DFT by interpolation
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3.2 DTFT from DFT by interpolation

 DTFT can be possibly determined by the 
following interpolation formula

1

0

2( ) [ ] ( )
N

j

k

kX e X k
N

 




  

( )jX e( )X k
interpolation

sampling

2 /
( ) [ ]j

N
X e X

 





42

3.3 Sampling the DTFT

 Sequence x[n] ,               with a DTFT X(ejω)

 Uniformly sample X(ejω) at N equally spaced points 
ωk=2π k/N,   0≤k≤ N－1 developing the N frequency 
samples {X(ejωk)}

 Let 
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3.3 Sampling the DTFT

 i.e.

 Making use of the identity
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3.3 Sampling the DTFT

We arrive at the desired relation

 Thus y[n]is obtained from x[n] by adding an 
infinite number of shifted replicas of x[n] , 
with each replica shifted by an integer 
multiple of N sampling instants, and observing 
the sum only for the interval  0≤n≤N－1

[ ] [ ], 0 1
m

y n x n mN n N




    
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3.3 Sampling the DTFT

 For finite length-M sequences x(n)

assume that the samples outside the specified 
range are zeros.
 If M ≤ N, then y[n]=x[n] for 0≤n≤N－1
 If M > N, there is a time-domain aliasing of samples of 

x[n] in generating y[n] , and x[n] cannot be recovered 
from y[n]

[ ] [ ], 0 1
m

y n x n mN n N




    

Sampling Theorem in Frequency-Domain 46

3.3 Sampling the DTFT

 Example Let  x[n]={0  1  2  3  4  5}

Sampling 4 point at its DTFT.
Can we recover x[n] from the sampling?

47

3.3 Sampling the DTFT

 By sampling its DTFT X(ejω) at ωk=2π k/4, 
0≤k≤3, and then applying a 4-point IDFT to 
these samples, we arrive at the sequence y[n] 
given by 

y[n]= x[n] + x[n+4] + x[n－4] , 0≤k≤3
i.e.     y[n]= {4  6  2  3}

{x[n] } cannot be recovered from {y[n]}
48

4. Operations on Finite-length 
Sequences

 Let x[n] be a sequence of lengthN defined for 
0≤n≤N－1, the time-reversal and time-shift of 
the sequence is no longer defined in 0≤n≤N－1.

 We thus need to define another type of 
operations that will keep the reversed and 
shifted sequences in the range 0≤n≤N－1.

 Similarly, another type of convolution needs to 
be defined that ensure the convoluted sequence 
is in the range 0≤n≤N－1.
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4.1 Circular Time-Reversal 
Operation

 The time-reversal operation on a finite-length 
sequence that develops a sequence also 
defined for the same range of the time index n, 
is obtained by using the modulo operation.

 Let 0, 1,…, N-1 be a set of N positive integers, 
and let m be any integer. The integer r
obtained by evaluating m modulo N is called 
the residue and is an integer with a value 
between 0 and N-1.

r =<m>N= m modulo N r=m+N
50

4.1 Circular Time-Reversal 
Operation

 Thus, the time-reversal version {y[n]} of the 
length-N sequence{x[n]} defined for 0≤n≤N－1 
is given by 

{ [ ]} [ ], 0 1
N

y n x n n N    

[ ], 0,
[ ], otherwise.

x n n
x N n


  

[ ] [ ]NN
x n N R n   

51

4.2 Circular Time-Shifting
Operation

 The time-shifting operation on a finite-length 
sequence that results in another sequence of 
the same length and defined for the same range 
of value of n, is referred to as the circular time-
shifting operation.

 Such a shifting operation is achieved by using 
the modulo operation.

52

4.2 Circular Time-Shifting
Operation

 The circular time-shifting operation of a 
length-N sequence x[n] by an arbitrary amount 
n0 sample period is defined by the equation

where          is also a length-N sequence.
 If            (right circular shift)

0[ ]c N
x n x n n   

[ ]cx n

0 0n 

0 0

0 0

[ ], for  1,
[ ]

[ ], for  0 .c

x n n n n N
x n

x N n n n n
   

     
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4.2 Circular Time-Shifting
Operation

 Given a length-6 sequence x[n], its circularly 
shifted versions are shown

[ ]x n 6 6
1 5x n x n         6 6

4 2x n x n        

54

4.2 Circular Time-Shifting
Operation

 As can be seen from the figures, a right circular 
shift by n0 is equivalent to a left circular shift 
by N-n0 sample periods. 

 A circular shift by an integer number n0
greater than N is equivalent to a circular shift 
by         .

N0n

55

4.2 Circular Time-Shifting
Operation

 In the frequency domain, the circular shifting 
operation by k0 samples on the length-N DFT 
sequence X[k] is defined by

where Xc[k] is also a length-N DFT. 

0[ ]c N
X k X k k   

56

4.2 Circular Time-Shifting
Operation

Steps to get a circular shift of an M-point 
sequence x[n]
 Periodize 

 Time-shifting

 Principal value

[ ] [ ]
N

y n x n

   1 0 0 N
y n y n n x n n     

   1[ ]C Nx n y n R n 



2017/11/15

15

57

4.2 Circular Time-Shifting
Operation

 DFT of the circular shift sequence

 
1

0

1

0

[ ] [ ] [ ]

[ ] DFT [ ]

[ ] [ ]

[ ]

NN N

N
kn

N NN
n

N
kn

NN
n

y n x n m R n m

Y k y n

x n m R n W

x n m W









  



 

 




58

4.2 Circular Time-Shifting
Operation

 

'

1
'

'
1

'

'
1 1 1

' 0 ' 0 '
1

'

' 0
1

'

0

[ ] [ ' ]

[ ' ]

(.) (.) (.)

[ ' ]

[ '] [ ]

N m
k n m

NN
n m

N m
km kn

N NN
n m

N m N m
km

N
n n n N

N
km kn

N NN
n
N

km kn km
N N N

n

Y k x n W

W x n W

W

W x n W

W x n W W X k

 




 



   



  







 







 
   

 



 





  





59

4.3 Circular Convolution

 Analogous to linear convolution, but with a 
subtle difference

 Comparison of linear convolution with circular 
convolution
 Consider two length-N sequences, g[n] and h[n]

respectively. Their linear convolution results in a 
length-(2N-1) sequence             given by  Ly n

1

0
[ ] [ ] [ ], 0 2 2

N

L
m

y n g m h n m n N




    
60

4.3 Circular Convolution

linear convolution circular convolution
Length of 

convolution 2N－1 to be specified

Convolution 
Formulas

Convolution 
Signs or 

Condition of 
equivalence ?

 
1

0

( ) ( )
N

C N
m

y n g m h n m




 
1

0

( ) ( ) ( )
N

L
m

y n g m h n m




 

N
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4.3 Circular Convolution

 To develop a convolution-like operation 
resulting in a length-N sequence yC[n], we 
need to utilize a circular time-reversal, and 
then apply a circular time-shift.

 Resulting operation, called a circular 
convolution, is defined by

1

0
[ ] [ ] [ ], 0 1

N

C N
m

y n g m h n m n N




    
62

4.3 Circular Convolution

 Since the operation defined involves two 
length-N sequences, it is often referred to as an 
N-point circular convolution, denoted as

yC[n]=g[n]    h[n]
 The circular convolution is commutative, i.e.

g[n]    h[n]=h[n]    g[n]

N

N N

63

4.3 Circular Convolution

Example 1 Length of Circular Convolution is 4

g[n] h[n]

Step 1:  Perform Circular time-reversal operation on 
h[m] (or g[m])

4
[ ]h m

These seven samples are enough to calculate the 
circular convolution because of the periodicity of DFT 64

4.3 Circular Convolution

Step 2:  Perform Circular time-shift operation

Red                                    {2  1  1  2}44
[ ] [ ]h m R m

Blue                                   {2  2  1  1}44
[ 1 ] ( )h m R m

Green                                 {1  2  2  1} 44
[ 2 ] ( )h m R m

Purple                                {1  1  2  2}44
[ 3 ] ( )h m R m
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4.3 Circular Convolution

Step 3:  Perform multiplication and summation of 
sequences over the region of 0≤m≤3 for n=0,n=1,n=2
and n=3 respectively

y(0)=

1  2  0  1
2  1  1  2
2+2+0+2= 6 y(1)=

1  2  0  1
2  2  1  1
2+4+0+1= 7

y(2)=

1  2  0  1
1  2  2  1
1+4+0+1= 6 y(3)=

1  2  0  1
1  1  2  2
1+2+0+2= 5

66

4.3 Circular Convolution

Example 2 Length of Circular Convolution is 7
 In order to develop the 7-point circular convolution 

on the sequences in the former example, we 
extended these two sequences to length 7 by 
appending each with 3 zero-valued samples, i.e.

[ ], 0 3
[ ]

0, 4 6e

g n n
g n

n
 

   

[ ], 0 3
[ ]

0, 4 6e

h n n
h n

n
 

   

67

4.3 Circular Convolution

ge[n] he[n]

Perform Circular time-reversal operation on he[m]

7
[ ]eh m

ge[m]

These three 
samples are 
not involved in 
the circular 
convolution 
operation

68

4.3 Circular Convolution

 In this case, the procedure of circular convolution is 
equivalent to that of linear convolution over the region of 
principle value.
 Obviously, this conclusion always holds when the 
length of Circular Convolution is not less than 7

Summary
Provided that the length of Circular Convolution is not less 
than N+M－1 where N and M are the lengths of the two 
sequences involved, the procedure of circular convolution is 
equivalent to that of linear convolution
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5.1 Classification Based on 
Conjugate Symmetry

 Based on Conjugate Symmetry
It has been discussed in Ch.2 of 4th edition.
 Circular Conjugate Symmetry

A length-N circular conjugate-symmetric
sequence x[n]

A length-N circular conjugate-antisymmetric
sequence

* *[ ] [ ] [ ], 0 1
N

x n x n x N n n N      

* *[ ] [ ] [ ], 0 1
N

x n x n x N n n N        
70

5.1 Classification Based on 
Conjugate Symmetry

A length-N sequence x[n] can be expressed as

where
circular (periodic) conjugate-symmetric part

circular (periodic) conjugate-antisymmetric part

[ ] [ ] [ ] 0 1pcs pcax n x n x n n N    

 *1[ ] [ ] [ ] , 0 1
2pcs N

x n x n x n n N     

 *1[ ] [ ] [ ] , 0 1
2pca N

x n x n x n n N     

[ ] [ ] [ ], 0 1pcs pcaX k X k X k k N    

71

5.1 Classification Based on 
Conjugate Symmetry

*[ ]Nx n 
*[ ]x N n

x[n]
Conjugating

x*[n]
Folding

x*[－ n] Periodical 
Extension

× RN[n](0 1)n N  

x*(n)

n 

x*[—n]

n 

n 

 

*[ ]Nx n 

72

5.1 Classification Based on 
Conjugate Symmetry

Example
 Consider the length-4 sequence defined for

Conjugate sequence

Circular conjugate sequence 

   *
4

[ ] 1 4, 5 6, 4 2, 2 3u n j j j j       

   *[ ] 1 4, 2 3, 4 2, 5 6u n j j j j      

   [ ] 1 4, 2 3, 4 2, 5 6u n j j j j       0 3n 
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5.1 Classification Based on 
Conjugate Symmetry

Conjugate-symmetric part

Circular conjugate-antisymmetric part

   
 

*
4

1[ ] [ ] [ ]
2

1, 3.5 4.5, 4, 3.5 4.5

PCSu n u n u n

j j

  

    

   
 

*
4

1[ ] [ ] [ ]
2

4, 1.5 1.5, 2, 1.5 1.5

pcau n u n u n

j j j j

  

    

74

5.2 Classification Based on 
Geometric Symmetry

 Based on Geometric Symmetry
A length-N symmetry sequence x[n] satisfies 
the condition 

A length-N antisymmetry sequence x[n]
satisfies the condition 

[ ] [ 1 ]x n x N n  

[ ] [ 1 ]x n x N n   

75

5.2 Classification Based on 
Geometric Symmetry

Center of 
symmetry

Center of 
symmetry

Center of 
symmetry

Center of 
symmetry

[ ]h n

n
0 1

2

74 5

6

83

Type 1
N=9

[ ]h n

n
0 1

2 74
5

6
3

Type 4
N=8

[ ]h n

n
0 1

2 7

4

5
6

8
3

Type 3
N=9

[ ]h n

n
0 1

2
74

5
63

Type 2
N=8

76

5.2 Classification Based on 
Geometric Symmetry

[ ]h n

n
0 1

2

74 5

6

83

Center of 
symmetry

Type 1
N=9

1
2

( 1) /2

1

1 1( ) 2 cos( )
2 2

N

j j N

n

N NX e e x x n nw w w



 



 
                



( 1)/2
( 1) /

1

1 1 2[ ] 2 cos
2 2

N
j N k N

n

N N knX k e x x n
N

p p
 



                    


Symmetric Sequence with Odd Length

1( ) ,    =0 or 
2

N     
 

     
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5.2 Classification Based on 
Geometric Symmetry

[ ]h n

n
0 1

2
74

5
63

Center of 
symmetry

Type 2
N=8

Symmetric Sequence with Even Length

 
/2

( 1) /2

1

12 cos
2 2

N
j j N

n

NX e e x n nw w w 



                


 /2
( 1) /

1

2 1
[ ] 2 cos

2

N
j N k N

n

k nNX k e x n
N

p p 



            


1( ) ,    =0 or 
2

N     
 

     

78

5.2 Classification Based on 
Geometric Symmetry

[ ]h n

n
0 1

2 7

4

5
6

8
3

Center of 
symmetry

Type 3
N=9

Antisymmetric Sequence with Odd Length

 












 


 





 )sin(
2

12
2/)1(

1

2/)1( nnNxjeeX
N

n

Njj 





















 


 






2/)1(

1

/)1( 2sin
2

12][
N

n

NkNj

N
knnNxjekX 

1( ) ,    =0 or 
2 2

N      
 

     
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5.2 Classification Based on 
Geometric Symmetry

[ ]h n

n
0 1

2 74
5

6
3

Center of 
symmetry

Type 4
N=8

 






















 



  




2/

1

2/)1(

2
1sin

2
2

N

n

Njj nnNxjeeX 















 





  




2/

1

/)1( )12(sin
2

2][
N

n

NkNj

N
nknNxjekX 

Antisymmetric Sequence with Even Length

1( ) ,    =0 or 
2 2

N      
 

     


