

Finite-Length Discrete

 Transforms
Discrete Fourier Transform

- It is convenient to map a finite-length sequence from the time domain into a finitelength sequence of the same length in a different domain, and vice-versa.
- Such transformations are usually collectively called finite-length transforms.
- Orthogonal Transforms
- The Definition of DFT
- Relation between DTFT and DFT and their inverses
- Operations on Finite-Length Sequences
- Circular Time-Reversal
- Circular Shifting
- Circular Convolution
- Classifications of Finite-Length Sequences

1. Orthogonal Transforms

1. Orthogonal Transforms

 :\% $\because \because:$Definition: with basis sequences $\psi[k, n]$

$$
\frac{1}{N} \sum_{n=0}^{N-1} \psi[k, n] \psi^{*}[l, n]= \begin{cases}1, & l=k \\ 0, & l \neq k\end{cases}
$$

For length- N sequence $x[n], 0 \leq n \leq N-1$, with $X[k]$ denoting the coefficients of its N-point orthogonal transform :

$$
\begin{aligned}
& X[k]=\sum_{n=0}^{N-1} x[n] \psi^{*}[k, n] \quad 0 \leq k \leq N-1 \\
& x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X(k) \psi[k, n] \quad 0 \leq n \leq N-1
\end{aligned}
$$

2.1 Definition

Definition

- DFT $X[k]$ is obtained by uniformly sampling the DTFT $X\left(e^{j \omega}\right)$ over one principal value interval $0 \leq \omega \leq 2 \pi$ at $\omega_{k}=2 \pi k / N, 0 \leq k \leq N-1$ in the frequency domain.

Sampling the DTFT $X\left(e^{j \omega}\right)$ of $x[n], 0 \leq n \leq N-1$

$$
X[k]=\left.X\left(e^{j \omega}\right)\right|_{\omega=\frac{2 \alpha k}{N}}
$$

2.1 Definition

$$
\begin{aligned}
X[k] & =\left.X\left(e^{j \omega}\right)\right|_{\omega=\frac{2 \pi k}{N}} ^{N} \\
& =\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k}{N} n}, \quad 0 \leq k \leq N-1
\end{aligned}
$$

- Length- N sequence $X[k]$: discrete Fourier transform (DFT) of the sequence $x[n]$ in the frequency domain

2.1 Definition

- Using the notation $W_{N}=e^{-j 2 z / N}$ the DFT is usually expressed as:

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n} \quad 0 \leq k \leq N-1
$$

- Inverse discrete Fourier transform (IDFT)

$$
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{-k n} \quad 0 \leq k \leq N-1
$$

Proof

2.1 Definition

Example 1

- Consider the length $-N$ sequence

$$
x[n]= \begin{cases}1, & n=0 \\ 0, & 1 \leq n \leq N-1\end{cases}
$$

Its N-point DFT is given by

$$
\begin{array}{r}
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}=x[0] W_{N}^{0}=1, \\
0 \leq k \leq N-1
\end{array}
$$

2.1 Definition

- $W_{N}=e^{-j 2 \pi / N}$: twiddle factor
- $\left|W_{N}\right|=1$
- One of the $N N$-th roots of unity $W_{\mathrm{N}}^{0}=W_{\mathrm{N}}^{N}=1$
- $W_{N}^{N / 2}=-1$
$W_{N}^{k}=W_{N}^{k+N} \quad W_{N}^{k+N / 2}=-W_{N}^{k} \quad \sum_{k=0}^{N-1} W_{N}^{k}=0$ $\sum_{k=0}^{N-1} W_{N}^{-(k-l) n}= \begin{cases}N, & \text { for } k-l=r N, r \text { is aninterger } \\ 0 & \text { otherwise }\end{cases}$

2.1 Definition

Example 2

- Consider the length- N sequence defined for

$$
x[n]=\cos (2 \pi r n / N) \quad 0 \leq n \leq N-1
$$

where r is an integer in the range $0 \leq r \leq N-1$

- Using the Euler's function we can write

$$
\begin{aligned}
x[n] & =\frac{1}{2}\left(e^{j 2 \pi r / / N}+e^{-j 2 \pi r / N}\right) \\
& =\frac{1}{2}\left(W_{N}^{-r n}+W_{N}^{r n}\right)
\end{aligned}
$$

2.1 Definition

$\because \because:$
$\because \because:$
$\because \because:$

- The N-point DFT of $g[n]$ is thus given by

$$
\begin{aligned}
X[k] & =\frac{1}{2}\left[\sum_{n=0}^{N-1} W_{N}^{-(r-k) n}+\sum_{n=0}^{N-1} W_{N}^{(r+k) n}\right] \\
& = \begin{cases}N / 2, & \text { for } k=r, \\
N / 2, & \text { for } k=N-r, \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

2.1 Definition

- 2 N -point DFT is given by

$$
\begin{aligned}
X[k] & =\sum_{n=0}^{2 N-1} x[n] W_{2 N}^{k n}=\sum_{n=0}^{N-1} W_{2 N}^{k n} \\
& =\frac{1-W_{2 N}^{k N}}{1-W_{2 N}^{k}}=e^{-j \frac{N-1}{2 N} k \pi} \frac{\sin (k \pi / 2)}{\sin (k \pi / 2 N)}
\end{aligned}
$$

- Length of DFT plays a very important role in DFT

2.1 Definition

Example 3

- Rectangular Pulse $R_{N}[n]$, width N
N-point DFT is given by

$$
\begin{aligned}
X[k] & =\sum_{n=0}^{N-1} x[n] W_{N}^{k n}=\sum_{n=0}^{N-1} W_{N}^{k n}=\frac{1-W_{N}^{k N}}{1-W_{N}^{k}} \\
& =\frac{W_{N}^{k N / 2}}{W_{N}^{k / 2}} \frac{W_{N}^{-k N / 2}-W_{N}^{k N / 2}}{W_{N}^{-k / 2}-W_{N}^{k / 2}} \\
& =\frac{\sin (k \pi)}{\sin (k \pi / N)} e^{-j \frac{N-1}{N} k \pi}
\end{aligned}
$$

2.1 Definition

2.1 Definition

- Mapping Relations between time-domain and frequency-domain transforms
\(\left.\begin{array}{l}\begin{array}{l}Time-domain)

(Frequency-domain)

Continuous \longleftrightarrow Aperiodical

Discrete\end{array} \longleftrightarrow Periodical\end{array}\right\}\)| Periodical \longleftrightarrow Discrete |
| :--- |
| Aperiodical \longleftrightarrow Continuous |

17

2.1 Definition

- Type 2: Continuous-Time Fourier Series (CTFS)

$$
\begin{gathered}
\text { Continuous } \\
\text { Periodical }
\end{gathered} x_{a}(t) \longleftrightarrow X_{a}\left(j k \Omega_{0}\right) \longleftrightarrow \begin{gathered}
\text { Aperiodical } \\
\text { Discrete }
\end{gathered}
$$

$$
\begin{gathered}
X_{a}\left(j k \Omega_{0}\right)=\frac{1}{T_{p}} \int_{-T_{p} / 2}^{T_{p} / 2} x_{a}(t) e^{-j k \Omega_{0} t} d t \\
x_{a}(t)=\sum_{k=-\infty}^{\infty} X_{a}\left(j k \Omega_{0}\right) e^{j k \Omega_{0} t}
\end{gathered}
$$

2.1 Definition

- Type 1: Continuous-Time Fourier Transform (CTFT)

$$
\begin{array}{cc}
\text { Continuous } & x_{a}(t) \longleftrightarrow X_{a}(j \Omega) \begin{array}{l}
\text { Aperiodical } \\
\text { Continuous }
\end{array} \\
& X_{a}(j \Omega)=\int_{-\infty}^{\infty} x_{a}(t) e^{-j \Omega t} d t \\
& x_{a}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X_{a}(j \Omega) e^{j \Omega t} d \Omega
\end{array}
$$

2.1 Definition

- Type 3: Discrete-Time Fourier Transform
(DTFT)

$$
\begin{array}{cl}
\begin{array}{c}
\text { Discrete } \\
\text { Aperiodical }
\end{array} & x[n]<X\left(e^{j \omega}\right) \quad \begin{array}{c}
\text { Periodical } \\
\text { Continuous }
\end{array} \\
& X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x(n) e^{-j \omega n} \\
& x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega
\end{array}
$$

2.1 Definition

- Type 4: Discrete Fourier Transform (DFT)

$$
\begin{aligned}
\begin{array}{c}
\text { Discrete } \\
\text { Periodical }
\end{array} & x[n] \\
X[k] & =\sum_{n=0}^{N-1} x(n) W_{N}^{k n}, \quad 0 \leq k \leq N-1 \\
x[n] & =\frac{1}{N} \sum_{k=0}^{N-1} X(k) W_{N}^{-k n}, \quad 0 \leq n \leq N-1
\end{aligned}
$$

2.2 Matrix Relations

- Since MATLAB stands for MAtrix

LABoratory, we represent DFT definition in terms of matrix form

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}, \quad 0 \leq k \leq N-1
$$

can be expressed in matrix form as

$$
\mathbf{X}=\mathbf{D}_{N} \mathbf{x}
$$

2.1 Definition

- The computation of the DFT and the IDFT requires, respectively, approximately N^{2} complex multiplications and $N(N-1)$ complex additions.
- However, elegant methods have been developed to reduce the computational complexity to about $N\left(\log _{2} N\right)$ operations.
- These techniques are usually called fast Fourier transform (FFT) algorithms .

2.2 Matrix Relations

- Where

$$
\begin{aligned}
& \mathbf{X}=\left[\begin{array}{llll}
X[0] & X[1] & \cdots & X[N-1
\end{array}\right]^{T} \\
& \mathbf{x}=\left[\begin{array}{llll}
x[0] & x[1] & \cdots & x[N-1]
\end{array}\right]^{T}
\end{aligned}
$$

And \mathbf{D}_{N} is the $N \times N$ DFT matrix given by

$$
\mathbf{D}_{N}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & W_{N}^{1} & W_{N}^{2} & \cdots & W_{N}^{N-1} \\
1 & W_{N}^{2} & W_{N}^{4} & \cdots & W_{N}^{2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & W_{N}^{N-1} & W_{N}^{2(N-1)} & \cdots & W_{N}^{(N-1)(N-1)}
\end{array}\right]_{N \times N}{ }^{24}
$$

2.2 Matrix Relations

- Likewise, the IDFT relations can be expressed in

$$
x[n]=\sum_{k=0}^{N-1} X[k] W_{N}^{-k n}, \quad 0 \leq n \leq N-1
$$

can be expressed in matrix form as

$$
\mathbf{x}=\mathbf{D}_{N}^{-1} \mathbf{X}
$$

Where \mathbf{D}_{N}^{-1} is the $N \times N$ IDFT matrix

2.2 Matrix Relations

- Obviously, the relation between the two coefficient matrices can be expressed as follows

$$
\mathbf{D}_{N}^{-1}=\frac{1}{N} \mathbf{D}_{N}^{*}
$$

- Therefore, the algorithms designed for DFT are applicable to IDFT

2.2 Matrix Relations

- where
$\mathbf{D}_{N}^{-1}=\frac{1}{N}\left[\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\ 1 & W_{N}^{-1} & W_{N}^{-2} & \cdots & W_{N}^{-(N-1)} \\ 1 & W_{N}^{-2} & W_{N}^{-4} & \cdots & W_{N}^{-2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & W_{N}^{-(N-1)} & W_{N}^{-2(N-1)} & \cdots & W_{N}^{-(N-1)(N-1)}\end{array}\right]_{N \times N}$
- Note:

$$
D_{N}^{-1}=\frac{1}{N} D_{N}^{*}
$$

2.3 DFT Computation Using MATLAB

- Built-in Functions to compute the DFT and the IDFT are fft and ifft

```
fft(x) ifft(X)
fft(x,M) ifft(x,M)
```

- These functions make use of FFT algorithms which are computationally highly efficient compared to the direct computation

2.3 DFT Computation Using MATLAB

- Sequence $\cos (6 \pi n / 16) \quad 0 \leq n \leq 15$

2.3 DFT Computation Using MATLAB

- N-point sequence $\mu[n]$

$$
u[n]= \begin{cases}1, & 0 \leq n \leq N-1 \\ 0, & \text { otherwise }\end{cases}
$$

Determine the M-point DFT.

2.3 DFT Computation Using MATLAB

- N-point sequence $\mu[n]$

$$
V[k]=\left\{\begin{array}{cc}
k / K, & 0 \leq k \leq N-1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Determine the M-point DFT.

3. Relations between DTFT and DFT and their inverses

- Relations: (for finite $x[n]$ of length N)

$$
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}=\sum_{n=0}^{N-1} x[n] e^{-j \omega n}
$$

$X[k]$ is obtained by uniformly sampling on the ω-axis between

$$
\begin{gathered}
X[k]=\left.X\left(e^{j \omega}\right)\right|_{\omega=2 \pi k / N}=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / N}, 0 \leq k \leq N-1 \\
X[k] \underset{\text { sampling }}{\longleftrightarrow} X\left(e^{j \omega}\right)
\end{gathered}
$$

3.1 Numerical Computation of the DTFT Using the DFT

- A practical approach to the numerical computation of the DTFT of a finite-length sequence.
- Let $X\left(e^{j \omega}\right)$ be the DTFT of a length- N sequence $x[n]$. We wish to evaluate $X\left(e^{j \omega}\right)$ at a dense grid of frequencies, where $M \gg N$:

$$
\omega_{k}=2 \pi k / M, \quad 0 \leq k \leq M-1
$$

3.1 Numerical Computation of the

 DTFT Using the DFT- Thus $X_{e}\left(e^{j \omega_{k}}\right)$ is essentially an M-point DFT $X_{e}[k]$ of the length $-M$ sequence $x_{e}[n]$
- The DFT $X_{e}[k]$ can be computed very efficiently using the FFT algorithm if M is an integer power of 2 .
3.1 Numerical Computation of the DTFT Using the DFT

$$
X\left(e^{j \omega_{k}}\right)=\sum_{n=0}^{M-1} x[n] e^{-j \omega_{k} n}=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / M}
$$

- Define a new sequence

$$
X_{e}[n]=\left\{\begin{array}{c}
x[n], \quad 0 \leq n \leq N-1 \\
0, N \leq n \leq M-1
\end{array}\right.
$$

- Then

$$
X_{e}\left(e^{j \omega_{k}}\right)=\sum_{n=0}^{M-1} x_{e}[n] e^{-j 2 \pi k n / M}
$$

3.1 Numerical Computation of the

 DTFT Using the DFT
Example

- Compute the DFT and the DTFT of the sequence, as shown below

$$
\cos (6 \pi n / 16) \quad 0 \leq n \leq 15
$$

3.1 Numerical Computation of the

 DTFT using DFT- The function freqz employs this approach to evaluate the frequency response at a prescribed set of frequencies of a DTFT expressed as a rational function in

3.2 DTFT from DFT by interpolation

- Let $S=\sum_{n=0}^{N-1} e^{-j[\omega-(2 \pi k / N)]^{n}}$ and $r=e^{-j[\omega-(2 \pi k / N)]}$
- Thus

$$
\begin{aligned}
S & =\sum_{n=0}^{N-1} r^{n}=\frac{1-r^{N}}{1-r}=\frac{1-e^{-j(\omega N-2 \pi k)}}{1-e^{-j[\omega-(2 \pi k / N)]}} \\
& =\frac{\sin \left(\frac{\omega N-2 \pi k}{2}\right)}{\sin \left(\frac{\omega N-2 \pi k}{2 N}\right)} \cdot e^{-j[\omega-(2 \pi k / N)][(N-1) / 2]}
\end{aligned}
$$

3.2 DTFT from DFT by interpolation
$X\left(e^{j \omega}\right)=\frac{1}{N} \sum_{k=0}^{N-1} X[k] \frac{\sin \left(\frac{\omega N-2 \pi k}{2}\right)}{\sin \left(\frac{\omega N-2 \pi k}{2 N}\right)} \cdot e^{-j[\omega-(2 \pi k / N)][(N-1) / 2]}$
$X\left(e^{j \omega}\right)=\sum_{k=0}^{N-1} X[k] \Phi\left(\omega-\frac{2 \pi k}{N}\right)$ interpolation formula

$$
\Phi(\omega)=\frac{\sin \left(\frac{\omega N}{2}\right)}{N \sin \left(\frac{\omega}{2}\right)} \cdot e^{-j \omega[(N-1) / 2]}
$$

- Sequence $x[n], 0 \leq k \leq N-1$ with a DTFT $X\left(e^{j \omega}\right)$

$$
X\left(e^{j \omega}\right)=\sum_{\ell=-\infty}^{\infty} x[\ell] e^{-j \omega \ell}
$$

- Uniformly sample $X\left(e^{i \omega}\right)$ at N equally spaced points $\omega_{k}=2 \pi k / N, \quad 0 \leq k \leq N-1$ developing the N frequency samples $\left\{X\left(e^{j \omega_{0}}\right)\right\}$
- Let $Y[k]=X\left(e^{i q q}\right), 0 \leq k \leq N-1$
$Y[k]=\left.X\left(e^{j \omega_{k}}\right)\right|_{0_{i}=2 \pi k / N}=\sum_{\ell=-\infty}^{\infty} x[\ell] W_{N}^{k \ell}, \quad 0 \leq k \leq N-1$
- IDFT of $Y[k] \quad y[n]=\frac{1}{N} \sum_{k=0}^{N=1} Y[k] W_{N}^{-k n}, \quad 0 \leq n \leq N-1$

3.3 Sampling the DTFT

- i.e. $y[n]=\frac{1}{N} \sum_{k=0}^{N-1} \sum_{\ell=-\infty}^{\infty} x[\ell] W_{N}^{k \ell} W_{N}^{-k n}$

$$
=\sum_{\ell=-\infty}^{\infty} x[\ell]\left[\frac{1}{N} \sum_{k=0}^{N-1} W_{N}^{-k(n-\ell)}\right]
$$

- Making use of the identity

$$
\frac{1}{N} \sum_{k=0}^{N-1} W_{N}^{-k(n-\ell)}= \begin{cases}1, & \text { for } \ell=n+m N \\ 0, & \text { otherwise }\end{cases}
$$

3.3 Sampling the DTFT

We arrive at the desired relation

$$
y[n]=\sum_{m=-\infty}^{\infty} x[n+m N], \quad 0 \leq n \leq N-1
$$

- Thus $y[n]$ is obtained from $x[n]$ by adding an infinite number of shifted replicas of $x[n]$, with each replica shifted by an integer multiple of N sampling instants, and observing the sum only for the interval $0 \leq n \leq N-1$

3.3 Sampling the DTFT

- For finite length- M sequences $x(n)$

$$
y[n]=\sum_{m=-\infty}^{\infty} x[n+m N], \quad 0 \leq n \leq N-1
$$

assume that the samples outside the specified range are zeros.

- If $M \leq N$, then $y[n]=x[n]$ for $0 \leq n \leq N-1$
- If $M>N$, there is a time-domain aliasing of samples of $x[n]$ in generating $y[n]$, and $x[n]$ cannot be recovered from $y[n]$

Sampling Theorem in Frequency-Domain

3.3 Sampling the DTFT

- By sampling its DTFT $X\left(e^{j \omega}\right)$ at $\omega_{k}=2 \pi k / 4$, $0 \leq k \leq 3$, and then applying a 4 -point IDFT to these samples, we arrive at the sequence $y[n]$ given by

$$
\begin{aligned}
& y[n]=x[n]+x[n+4]+x[n-4], 0 \leq k \leq 3 \\
& \text { i.e. } \quad y[n]=\left\{\begin{array}{llll}
4 & 6 & 2 & 3
\end{array}\right\}
\end{aligned}
$$

$\Longrightarrow\{x[n]\}$ cannot be recovered from $\{y[n]\}$

- Example Let $x[n]=\left\{\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & 5\end{array}\right\}$

Sampling 4 point at its DTFT.
Can we recover $x[n]$ from the sampling?

4. Operations on Finite-length Sequences

- Let $x[n]$ be a sequence of length N defined for $0 \leq n \leq N-1$, the time-reversal and time-shift of the sequence is no longer defined in $0 \leq n \leq N-1$.
- We thus need to define another type of operations that will keep the reversed and shifted sequences in the range $0 \leq n \leq N-1$.
- Similarly, another type of convolution needs to be defined that ensure the convoluted sequence is in the range $0 \leq n \leq N-1$.

4.1 Circular Time-Reversal Operation

- The time-reversal operation on a finite-length sequence that develops a sequence also defined for the same range of the time index n, is obtained by using the modulo operation.
- Let $0,1, \ldots, N-1$ be a set of N positive integers, and let m be any integer. The integer r obtained by evaluating m modulo N is called the residue and is an integer with a value between 0 and $N-1$.

$$
r=\langle m\rangle_{N}=m \text { modulo } N \quad r=m+\ell N
$$

4.2 Circular Time-Shifting Operation

- The time-shifting operation on a finite-length sequence that results in another sequence of the same length and defined for the same range of value of n, is referred to as the circular timeshifting operation.
- Such a shifting operation is achieved by using the modulo operation.

4.1 Circular Time-Reversal Operation

- Thus, the time-reversal version $\{y[n]\}$ of the length $-N$ sequence $\{x[n]\}$ defined for $0 \leq n \leq N-1$ is given by

$$
\left.\begin{array}{rl}
\{y[n]\} & =x\left[\langle-n\rangle_{N}\right], \\
& =x\left[\langle-n+\ell N\rangle_{N}\right] R_{N}[n]
\end{array}\right\} \begin{array}{ll}
x[n], & n=0, \\
x[N-n], & \text { otherwise. }
\end{array}
$$

4.2 Circular Time-Shifting Operation

- The circular time-shifting operation of a length $-N$ sequence $x[n]$ by an arbitrary amount n_{0} sample period is defined by the equation

$$
x_{c}[n]=x\left[\left\langle n-n_{0}\right\rangle_{N}\right]
$$

where $x_{c}[n]$ is also a length $-N$ sequence.

- If $n_{0}>0$ (right circular shift)

$$
x_{c}[n]= \begin{cases}x\left[n-n_{0}\right], & \text { for } n_{0} \leq n \leq N-1, \\ x\left[N-n_{0}+n\right], & \text { for } 0 \leq n<n_{0} .\end{cases}
$$

4.2 Circular Time-Shifting Operation

- Given a length- 6 sequence $x[n]$, its circularly shifted versions are shown

(a)

(b)

123
(c)
$x\left[\langle n-1\rangle_{6}\right]=x\left[\langle n+5\rangle_{6}\right] \quad x\left[\langle n-4\rangle_{6}\right]=x\left[\langle n+2\rangle_{6}\right]$

4.2 Circular Time-Shifting Operation

- As can be seen from the figures, a right circular shift by n_{0} is equivalent to a left circular shift by $N-n_{0}$ sample periods.
- A circular shift by an integer number n_{0} greater than N is equivalent to a circular shift by $\left\langle n_{0}\right\rangle_{N}$.

4.2 Circular Time-Shifting Operation

- In the frequency domain, the circular shifting operation by k_{0} samples on the length- N DFT sequence $X[k]$ is defined by

$$
X_{c}[k]=X\left[\left\langle k-k_{0}\right\rangle_{N}\right]
$$

where $X_{c}[k]$ is also a length- N DFT.

4.2 Circular Time-Shifting Operation

Steps to get a circular shift of an M-point sequence $x[n]$

- Periodize

$$
y[n]=x\left[\langle n\rangle_{N}\right]
$$

- Time-shifting

$$
y_{1}[n]=y\left[n-n_{0}\right]=x\left[\left\langle n-n_{0}\right\rangle_{N}\right]
$$

- Principal value

$$
x_{C}[n]=y_{1}[n] \cdot R_{N}[n]
$$

4.2 Circular Time-Shifting Operation

- DFT of the circular shift sequence

$$
\begin{aligned}
y[n] & =x\left[\langle n+m\rangle_{N}\right] R_{N}\left[\langle n+m\rangle_{N}\right] \\
Y[k] & =\operatorname{DFT}[y[n]] \\
& =\sum_{n=0}^{N-1} x\left[\langle n+m\rangle_{N}\right] R_{N}[n] W_{N}^{k n} \\
& =\sum_{n=0}^{N-1} x\left[\langle n+m\rangle_{N}\right] W_{N}^{k n}
\end{aligned}
$$

4.3 Circular Convolution

- Analogous to linear convolution, but with a subtle difference
- Comparison of linear convolution with circular convolution
- Consider two length $-N$ sequences, $g[n]$ and $h[n]$ respectively. Their linear convolution results in a length-($2 N-1$) sequence $y_{L}[n]$ given by

$$
y_{L}[n]=\sum_{m=0}^{N-1} g[m] h[n-m], \quad 0 \leq n \leq 2 N-2
$$

4.2 Circular Time-Shifting Operation

$$
\begin{aligned}
& Y[k]=\sum_{n=m}^{N-1+m} x\left[\left\langle n^{\prime}\right\rangle_{N}\right] W_{N}^{k\left(n^{\prime}-m\right)} \\
& =W_{N}^{-k m} \sum_{n=m}^{N-1+m} x\left[\left\langle n^{\prime}\right\rangle_{N}\right] W_{N}^{k n} \\
& =W_{N}^{-k n}\left(\sum_{n=0}^{n=-1}(.)-\sum_{n=0}^{m-1}(.)+\sum_{n=N}^{N-1+m}(.)\right) \\
& =W_{N}^{-k n} \sum_{n=0}^{n-1} x\left[\left\langle n^{\prime}\right\rangle_{N}\right\rangle_{N}^{k n^{\prime}} \\
& =W_{N}^{-k n} \sum_{n=0}^{N-1} x[n\rceil W_{N}^{k n^{\prime}}=W_{N}^{-k m} X[k]
\end{aligned}
$$

4.3 Circular Convolution

	linear convolution	circular convolution
Length of convolution	$2 N-1$	to be specified
Convolution Formulas	$y_{L}(n)=\sum_{m=0}^{N-1} g(m) h(n-m)$	$y_{C}(n)=\sum_{m=0}^{N-1} g(m) h\left(\langle n-m\rangle_{N}\right)$
Convolution Signs	\circledast or $*$	\otimes
Condition of equivalence	$?$	

4.3 Circular Convolution

- To develop a convolution-like operation resulting in a length $-N$ sequence $y_{C}[n]$, we need to utilize a circular time-reversal, and then apply a circular time-shift.
- Resulting operation, called a circular convolution, is defined by

$$
y_{C}[n]=\sum_{m=0}^{N-1} g[m] h\left[\langle n-m\rangle_{N}\right], \quad 0 \leq n \leq N-1
$$

4.3 Circular Convolution

Example 1 Length of Circular Convolution is 4

Step 1: Perform Circular time-reversal operation on $h[m]$ (or $g[m]$)

These seven samples are enough to calculate the circular convolution because of the periodicity of DFT

4.3 Circular Convolution

- Since the operation defined involves two length- N sequences, it is often referred to as an N-point circular convolution, denoted as

$$
y_{C}[n]=g[n] \oplus h[n]
$$

- The circular convolution is commutative, i.e.

$$
g[n] \otimes h[n]=h[n] \otimes g[n]
$$

4.3 Circular Convolution

Step 2: Perform Circular time-shift operation

4.3 Circular Convolution

Step 3: Perform multiplication and summation of sequences over the region of $0 \leq m \leq 3$ for $n=0, n=1, n=2$ and $n=3$ respectively

$$
\begin{aligned}
& y(0)=\begin{array}{llll}
1 & 2 & 0 & 1 \\
2 & 1 & 1 & 2 \\
2+2+0+2
\end{array}=6 \\
& y(1)=\frac{\begin{array}{llll}
1 & 2 & 0 & 1 \\
2 & 2 & 1 & 1 \\
2+4+0+1
\end{array}}{2+7} \\
& y(2)=\frac{\begin{array}{llll}
1 & 2 & 0 & 1 \\
1 & 2 & 2 & 1 \\
1+4+0+1
\end{array}}{}=6 \\
& \left.y(3)=\begin{array}{llll}
1 & 2 & 0 & 1 \\
1 & 1 & 2 & 2
\end{array} \right\rvert\, \begin{array}{ll}
1+2+0+2 & =5
\end{array}
\end{aligned}
$$

4.3 Circular Convolution

Perform Circular time-reversal operation on $h_{e}[m]$

4.3 Circular Convolution

Example 2 Length of Circular Convolution is 7

- In order to develop the 7-point circular convolution on the sequences in the former example, we extended these two sequences to length 7 by appending each with 3 zero-valued samples, i.e.

$$
\begin{aligned}
& g_{e}[n]=\left\{\begin{array}{cc}
g[n], & 0 \leq n \leq 3 \\
0, & 4 \leq n \leq 6
\end{array}\right. \\
& h_{e}[n]=\left\{\begin{array}{cc}
h[n], & 0 \leq n \leq 3 \\
0, & 4 \leq n \leq 6
\end{array}\right.
\end{aligned}
$$

4.3 Circular Convolution

- In this case, the procedure of circular convolution is equivalent to that of linear convolution over the region of principle value.
- Obviously, this conclusion always holds when the
length of Circular Convolution is not less than 7

Summary

Provided that the length of Circular Convolution is not less than $N+M-1$ where N and M are the lengths of the two sequences involved, the procedure of circular convolution is equivalent to that of linear convolution

5.1 Classification Based on Conjugate Symmetry

- Based on Conjugate Symmetry

It has been discussed in Ch. 2 of $4^{\text {th }}$ edition.

- Circular Conjugate Symmetry

A length- N circular conjugate-symmetric sequence $x[n]$

$$
x[n]=x^{*}\left[\langle-n\rangle_{N}\right]=x^{*}[N-n], \quad 0 \leq n \leq N-1
$$

A length- N circular conjugate-antisymmetric sequence

$$
x[n]=-x^{*}\left[\langle-n\rangle_{N}\right]=-x^{*}[N-n], \quad 0 \leq n \leq N-1 \quad{ }_{69}
$$

5.1 Classification Based on Conjugate Symmetry

5.1 Classification Based on Conjugate Symmetry

A length $-N$ sequence $x[n]$ can be expressed as

$$
x[n]=x_{p c s}[n]+x_{p c a}[n] \quad 0 \leq n \leq N-1
$$

where
circular (periodic) conjugate-symmetric part

$$
x_{p c s}[n]=\frac{1}{2}\left(x[n]+x^{*}\left[\langle-n\rangle_{N}\right]\right), \quad 0 \leq n \leq N-1
$$

circular (periodic) conjugate-antisymmetric part

$$
\begin{array}{cr}
x_{p c a}[n]=\frac{1}{2}\left(x[n]-x^{*}\left[\langle-n\rangle_{N}\right]\right), & 0 \leq n \leq N-1 \\
X[k]=X_{p c s}[k]+X_{p c a}[k], & 0 \leq k \leq N-1
\end{array}
$$

5.1 Classification Based on Conjugate Symmetry

Example

- Consider the length-4 sequence defined for
$\{u[n]\}=\{1+j 4,-2+j 3,4-j 2,-5-j 6\} \quad 0 \leq n \leq 3$
Conjugate sequence

$$
\left\{u^{*}[n]\right\}=\{1-j 4,-2-j 3,4+j 2,-5+j 6\}
$$

Circular conjugate sequence

$$
\left\{u^{*}\left[\langle-n\rangle_{4}\right]\right\}=\{1-j 4,-5+j 6,4+j 2,-2-j 3\}
$$

5.1 Classification Based on Conjugate Symmetry

Conjugate-symmetric part

$$
\begin{aligned}
& \left\{u_{P C S}[n]\right\}=\frac{1}{2}\left\{u[n]+u^{*}\left[\langle-n\rangle_{4}\right]\right\} \\
& =\{1,-3.5+j 4.5,4,-3.5-j 4.5\}
\end{aligned}
$$

Circular conjugate-antisymmetric part

$$
\begin{aligned}
& \left\{u_{p c a}[n]\right\}=\frac{1}{2}\left\{u[n]-u^{*}\left[\langle-n\rangle_{4}\right]\right\} \\
& =\{j 4,1.5-j 1.5,-j 2,-1.5-j 1.5\}
\end{aligned}
$$

5.2 Classification Based on Geometric Symmetry

- Based on Geometric Symmetry

A length- N symmetry sequence $x[n]$ satisfies the condition

$$
x[n]=x[N-1-n]
$$

A length- N antisymmetry sequence $x[n]$ satisfies the condition

$$
x[n]=-x[N-1-n]
$$

5.2 Classification Based on Geometric Symmetry

$$
X\left(e^{j \omega}\right)=e^{-j(N-1) \omega / 2}\left\{x\left[\frac{N-1}{2}\right]+2 \sum_{n=1}^{\frac{N-1}{2}} x\left[\frac{N-1}{2}-n\right] \cos (\omega n)\right\}
$$

$$
X[k]=e^{-j(N-1) \pi k / N}\left\{x\left[\frac{N-1}{2}\right]+2 \sum_{n=1}^{(N-1) / 2} x\left[\frac{N-1}{2}-n\right] \cos \left(\frac{2 \pi k n}{N}\right)\right\}_{76}
$$

5.2 Classification Based on Geometric Symmetry

$$
\begin{aligned}
& X\left(e^{j \omega}\right)=j e^{-j(N-1) \omega / 2}\left\{2 \sum_{n=1}^{(N-1) / 2} x\left[\frac{N-1}{2}-n\right] \sin (\omega n)\right\} \\
& X[k]=j e^{-j(N-1) \pi k / N}\left\{2 \sum_{n=1}^{(N-1) / 2} x\left[\frac{N-1}{2}-n\right] \sin \left(\frac{2 \pi k n}{N}\right)\right\}
\end{aligned}
$$

5.2 Classification Based on Geometric Symmetry

$$
\begin{aligned}
& X\left(e^{j \omega}\right)=j e^{-j(N-1) \omega / 2}\left\{2 \sum_{n=1}^{N / 2} x\left[\frac{N}{2}-n\right] \sin \left(\omega\left(n-\frac{1}{2}\right)\right)\right\} \\
& X[k]=j e^{-j(N-1) z / N}\left\{2 \sum_{n=1}^{N / 2} x\left[\frac{N}{2}-n\right] \sin \left(\frac{\pi k(2 n-1)}{N}\right)\right\}
\end{aligned}
$$

