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Chapter 5

Finite Length 
Discrete Transforms

Part A

The  Discrete Fourier 
Transform (DFT)
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Finite-Length Discrete 
Transforms

 It is convenient to map a finite-length 
sequence from the time domain into a finite-
length sequence of the same length in a 
different domain, and vice-versa. 

 Such transformations are usually collectively 
called finite-length transforms. 
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Discrete Fourier Transform 

 Orthogonal Transforms
 The Definition of DFT
 Relation between DTFT and DFT and 

their inverses
 Operations on Finite-Length Sequences

 Circular Time-Reversal 
 Circular Shifting 
 Circular Convolution

 Classifications of Finite-Length 
Sequences
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1. Orthogonal Transforms
Definition: with basis sequences 

For length-N sequence x[n], 0≤n≤N－1, with 
X[k] denoting the coefficients of its N-point 
orthogonal transform :
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1. Orthogonal Transforms

 Proof: 
 Important consequence--Parseval’s relation

 Transforms with good energy compaction 
properties: 
 most of the signal energy is concentrated in a subset of

the transform coefficients
 remaining coefficients with very low energy to be set to

zero values
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2.1 Definition

Definition

 DFT X[k] is obtained by uniformly sampling 
the DTFT X(ejω) over one principal value 
interval 0≤ω≤ 2π at ωk= 2π k/N, 0≤k≤ N－1 
in the frequency domain.

Sampling the DTFT X(ejω) of x[n], 0≤n≤N－1

N
k

jeXkX 


2)(][




8

2.1 Definition

 Length-N sequence X[k] : discrete Fourier 
transform (DFT) of the sequence x[n] in the 
frequency domain

2

21

0

[ ] ( )

[ ] ,    0 1

j
k

N
kN j n

N

n

X k X e

x n e k N










 





   



2017/11/15

3

9

2.1 Definition

 Using the notation the  DFT is 
usually expressed as:

 Inverse discrete Fourier transform (IDFT)
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2.1 Definition

 WN=e- j2π /N  : twiddle factor
 |WN|=1

 One of the N N-th roots of unity
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2.1 Definition

Example 1
 Consider the length-N sequence

Its N-point DFT is given by
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2.1 Definition

Example 2 
 Consider the length-N sequence defined for

where r is an integer in the range
 Using the Euler’s function we can write
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2.1 Definition

 The N-point DFT of g[n] is thus given by
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2.1 Definition

Example 3
 Rectangular Pulse RN [n], width N

N-point DFT is given by
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2.1 Definition

 2N-point DFT is given by

 Length of DFT plays a very important role 
in DFT 

2 1 1

2 2
0 0

1
2 2

2

[ ] [ ]

1 sin( / 2)
1 sin( / 2 )

N N
kn kn
N N

n n
NkN j kN N

k
N

X k x n W W

W ke
W k N

 


 

 




 


 



 

16

2.1 Definition
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2.1 Definition

 Mapping Relations between time-domain and 
frequency-domain transforms

(Time-domain) (Frequency-domain)
Continuous                 Aperiodical
Discrete                       Periodical

Periodical                    Discrete
Aperiodical Continuous             
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2.1 Definition

 Type 1: Continuous-Time Fourier Transform
(CTFT)

( )ax t ( )aX jContinuous
Aperiodical

Aperiodical
Continuous
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2.1 Definition

 Type 2: Continuous-Time Fourier Series
(CTFS)
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2.1 Definition

 Type 3: Discrete-Time Fourier Transform
(DTFT)
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2.1 Definition

 Type 4: Discrete Fourier Transform (DFT)
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2.1 Definition

 The computation of the DFT and the IDFT 
requires, respectively, approximately N2

complex multiplications and N(N-1) complex 
additions.

 However, elegant methods have been 
developed to reduce the computational 
complexity to about N(log2N) operations. 

 These techniques are usually called fast Fourier 
transform (FFT) algorithms .
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2.2 Matrix Relations

 Since MATLAB stands for MAtrix
LABoratory, we represent DFT definition in 
terms of matrix form

can be expressed in matrix form as
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2.2 Matrix Relations

 Where

And is the DFT matrix given by

 [0] [1] [ 1] TX X X N X 

 [0] [1] [ 1] Tx x x N x 

1 2 1

2 4 2( 1)

1 2( 1) ( 1)( 1)

1 1 1 1
1
1

1

N
N N N

N
N N N N

N N N N
N N N N N

W W W
W W W

W W W





   


 
 
 
 
 
 
  







    



D

ND N N



2017/11/15

7

25

2.2 Matrix Relations

 Likewise, the IDFT relations can be 
expressed in 

can be expressed in matrix form as

Where is the IDFT matrix
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2.2 Matrix Relations

 where

 Note:
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2.2 Matrix Relations

 Obviously, the relation between the two 
coefficient matrices can be expressed as 
follows

 Therefore, the algorithms designed for DFT 
are applicable to IDFT

1 *1
N NN
 D D
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2.3 DFT Computation Using 
MATLAB

 Built-in Functions to compute the DFT and 
the IDFT are fft and ifft

fft(x) ifft(X)
fft(x,M) ifft(x,M)

 These functions make use of FFT algorithms 
which are computationally highly efficient 
compared to the direct computation
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2.3 DFT Computation Using 
MATLAB
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2.3 DFT Computation Using 
MATLAB

 N-point sequence μ[n]

Determine the M-point DFT. 
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2.3 DFT Computation Using 
MATLAB

 N-point sequence μ[n]

Determine the M-point DFT. 
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3. Relations between DTFT and 
DFT and their inverses

 Relations: (for finite x[n] of length N)

is obtained by uniformly sampling on the     
ω-axis between
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3.1 Numerical Computation of the
DTFT Using the DFT

 A practical approach to the numerical 
computation of the DTFT of a finite-length 
sequence. 

 Let be the DTFT of a length-N
sequence x[n]. We wish to evaluate at a 
dense grid of frequencies , where M >> N:

2 / ,    0 1k k M k M    

( )jX e 

( )jX e 
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3.1 Numerical Computation of the
DTFT Using the DFT

 Define a new sequence

 Then
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3.1 Numerical Computation of the
DTFT Using the DFT

 Thus is essentially an M-point DFT
of the length-M sequence

 The DFT can be computed very 
efficiently using the FFT algorithm if M is an 
integer power of 2.
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3.1 Numerical Computation of the
DTFT Using the DFT

Example
 Compute the DFT and the DTFT of the 

sequence, as shown below
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3.1 Numerical Computation of the
DTFT using DFT

 The function freqz employs this approach 
to evaluate the frequency response at a 
prescribed set of frequencies of a DTFT 
expressed as a rational function in 
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3.2 DTFT from DFT by interpolation
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3.2 DTFT from DFT by interpolation

 Let                                 and
 Thus
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3.2 DTFT from DFT by interpolation
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3.2 DTFT from DFT by interpolation

 DTFT can be possibly determined by the 
following interpolation formula
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3.3 Sampling the DTFT

 Sequence x[n] ,               with a DTFT X(ejω)

 Uniformly sample X(ejω) at N equally spaced points 
ωk=2π k/N,   0≤k≤ N－1 developing the N frequency 
samples {X(ejωk)}

 Let 

 IDFT of 
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3.3 Sampling the DTFT

 i.e.

 Making use of the identity
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3.3 Sampling the DTFT

We arrive at the desired relation

 Thus y[n]is obtained from x[n] by adding an 
infinite number of shifted replicas of x[n] , 
with each replica shifted by an integer 
multiple of N sampling instants, and observing 
the sum only for the interval  0≤n≤N－1
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3.3 Sampling the DTFT

 For finite length-M sequences x(n)

assume that the samples outside the specified 
range are zeros.
 If M ≤ N, then y[n]=x[n] for 0≤n≤N－1
 If M > N, there is a time-domain aliasing of samples of 

x[n] in generating y[n] , and x[n] cannot be recovered 
from y[n]

[ ] [ ], 0 1
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Sampling Theorem in Frequency-Domain 46

3.3 Sampling the DTFT

 Example Let  x[n]={0  1  2  3  4  5}

Sampling 4 point at its DTFT.
Can we recover x[n] from the sampling?

47

3.3 Sampling the DTFT

 By sampling its DTFT X(ejω) at ωk=2π k/4, 
0≤k≤3, and then applying a 4-point IDFT to 
these samples, we arrive at the sequence y[n] 
given by 

y[n]= x[n] + x[n+4] + x[n－4] , 0≤k≤3
i.e.     y[n]= {4  6  2  3}

{x[n] } cannot be recovered from {y[n]}
48

4. Operations on Finite-length 
Sequences

 Let x[n] be a sequence of lengthN defined for 
0≤n≤N－1, the time-reversal and time-shift of 
the sequence is no longer defined in 0≤n≤N－1.

 We thus need to define another type of 
operations that will keep the reversed and 
shifted sequences in the range 0≤n≤N－1.

 Similarly, another type of convolution needs to 
be defined that ensure the convoluted sequence 
is in the range 0≤n≤N－1.
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4.1 Circular Time-Reversal 
Operation

 The time-reversal operation on a finite-length 
sequence that develops a sequence also 
defined for the same range of the time index n, 
is obtained by using the modulo operation.

 Let 0, 1,…, N-1 be a set of N positive integers, 
and let m be any integer. The integer r
obtained by evaluating m modulo N is called 
the residue and is an integer with a value 
between 0 and N-1.

r =<m>N= m modulo N r=m+N
50

4.1 Circular Time-Reversal 
Operation

 Thus, the time-reversal version {y[n]} of the 
length-N sequence{x[n]} defined for 0≤n≤N－1 
is given by 

{ [ ]} [ ], 0 1
N

y n x n n N    

[ ], 0,
[ ], otherwise.

x n n
x N n


  

[ ] [ ]NN
x n N R n   
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4.2 Circular Time-Shifting
Operation

 The time-shifting operation on a finite-length 
sequence that results in another sequence of 
the same length and defined for the same range 
of value of n, is referred to as the circular time-
shifting operation.

 Such a shifting operation is achieved by using 
the modulo operation.
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4.2 Circular Time-Shifting
Operation

 The circular time-shifting operation of a 
length-N sequence x[n] by an arbitrary amount 
n0 sample period is defined by the equation

where          is also a length-N sequence.
 If            (right circular shift)

0[ ]c N
x n x n n   

[ ]cx n

0 0n 

0 0

0 0
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x n n n n N
x n
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4.2 Circular Time-Shifting
Operation

 Given a length-6 sequence x[n], its circularly 
shifted versions are shown

[ ]x n 6 6
1 5x n x n         6 6

4 2x n x n        
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4.2 Circular Time-Shifting
Operation

 As can be seen from the figures, a right circular 
shift by n0 is equivalent to a left circular shift 
by N-n0 sample periods. 

 A circular shift by an integer number n0
greater than N is equivalent to a circular shift 
by         .

N0n

55

4.2 Circular Time-Shifting
Operation

 In the frequency domain, the circular shifting 
operation by k0 samples on the length-N DFT 
sequence X[k] is defined by

where Xc[k] is also a length-N DFT. 

0[ ]c N
X k X k k   
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4.2 Circular Time-Shifting
Operation

Steps to get a circular shift of an M-point 
sequence x[n]
 Periodize 

 Time-shifting

 Principal value

[ ] [ ]
N

y n x n

   1 0 0 N
y n y n n x n n     

   1[ ]C Nx n y n R n 
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4.2 Circular Time-Shifting
Operation

 DFT of the circular shift sequence
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4.2 Circular Time-Shifting
Operation
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4.3 Circular Convolution

 Analogous to linear convolution, but with a 
subtle difference

 Comparison of linear convolution with circular 
convolution
 Consider two length-N sequences, g[n] and h[n]

respectively. Their linear convolution results in a 
length-(2N-1) sequence             given by  Ly n

1

0
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4.3 Circular Convolution

linear convolution circular convolution
Length of 

convolution 2N－1 to be specified

Convolution 
Formulas

Convolution 
Signs or 

Condition of 
equivalence ?
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4.3 Circular Convolution

 To develop a convolution-like operation 
resulting in a length-N sequence yC[n], we 
need to utilize a circular time-reversal, and 
then apply a circular time-shift.

 Resulting operation, called a circular 
convolution, is defined by

1

0
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N
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4.3 Circular Convolution

 Since the operation defined involves two 
length-N sequences, it is often referred to as an 
N-point circular convolution, denoted as

yC[n]=g[n]    h[n]
 The circular convolution is commutative, i.e.

g[n]    h[n]=h[n]    g[n]

N

N N

63

4.3 Circular Convolution

Example 1 Length of Circular Convolution is 4

g[n] h[n]

Step 1:  Perform Circular time-reversal operation on 
h[m] (or g[m])

4
[ ]h m

These seven samples are enough to calculate the 
circular convolution because of the periodicity of DFT 64

4.3 Circular Convolution

Step 2:  Perform Circular time-shift operation

Red                                    {2  1  1  2}44
[ ] [ ]h m R m

Blue                                   {2  2  1  1}44
[ 1 ] ( )h m R m

Green                                 {1  2  2  1} 44
[ 2 ] ( )h m R m

Purple                                {1  1  2  2}44
[ 3 ] ( )h m R m
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4.3 Circular Convolution

Step 3:  Perform multiplication and summation of 
sequences over the region of 0≤m≤3 for n=0,n=1,n=2
and n=3 respectively

y(0)=

1  2  0  1
2  1  1  2
2+2+0+2= 6 y(1)=

1  2  0  1
2  2  1  1
2+4+0+1= 7

y(2)=

1  2  0  1
1  2  2  1
1+4+0+1= 6 y(3)=

1  2  0  1
1  1  2  2
1+2+0+2= 5

66

4.3 Circular Convolution

Example 2 Length of Circular Convolution is 7
 In order to develop the 7-point circular convolution 

on the sequences in the former example, we 
extended these two sequences to length 7 by 
appending each with 3 zero-valued samples, i.e.

[ ], 0 3
[ ]

0, 4 6e

g n n
g n

n
 

   

[ ], 0 3
[ ]

0, 4 6e

h n n
h n

n
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4.3 Circular Convolution

ge[n] he[n]

Perform Circular time-reversal operation on he[m]

7
[ ]eh m

ge[m]

These three 
samples are 
not involved in 
the circular 
convolution 
operation

68

4.3 Circular Convolution

 In this case, the procedure of circular convolution is 
equivalent to that of linear convolution over the region of 
principle value.
 Obviously, this conclusion always holds when the 
length of Circular Convolution is not less than 7

Summary
Provided that the length of Circular Convolution is not less 
than N+M－1 where N and M are the lengths of the two 
sequences involved, the procedure of circular convolution is 
equivalent to that of linear convolution
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5.1 Classification Based on 
Conjugate Symmetry

 Based on Conjugate Symmetry
It has been discussed in Ch.2 of 4th edition.
 Circular Conjugate Symmetry

A length-N circular conjugate-symmetric
sequence x[n]

A length-N circular conjugate-antisymmetric
sequence

* *[ ] [ ] [ ], 0 1
N

x n x n x N n n N      

* *[ ] [ ] [ ], 0 1
N

x n x n x N n n N        
70

5.1 Classification Based on 
Conjugate Symmetry

A length-N sequence x[n] can be expressed as

where
circular (periodic) conjugate-symmetric part

circular (periodic) conjugate-antisymmetric part

[ ] [ ] [ ] 0 1pcs pcax n x n x n n N    

 *1[ ] [ ] [ ] , 0 1
2pcs N

x n x n x n n N     

 *1[ ] [ ] [ ] , 0 1
2pca N

x n x n x n n N     

[ ] [ ] [ ], 0 1pcs pcaX k X k X k k N    

71

5.1 Classification Based on 
Conjugate Symmetry

*[ ]Nx n 
*[ ]x N n

x[n]
Conjugating

x*[n]
Folding

x*[－ n] Periodical 
Extension

× RN[n](0 1)n N  

x*(n)

n 

x*[—n]

n 

n 

 

*[ ]Nx n 
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5.1 Classification Based on 
Conjugate Symmetry

Example
 Consider the length-4 sequence defined for

Conjugate sequence

Circular conjugate sequence 

   *
4

[ ] 1 4, 5 6, 4 2, 2 3u n j j j j       

   *[ ] 1 4, 2 3, 4 2, 5 6u n j j j j      

   [ ] 1 4, 2 3, 4 2, 5 6u n j j j j       0 3n 
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5.1 Classification Based on 
Conjugate Symmetry

Conjugate-symmetric part

Circular conjugate-antisymmetric part

   
 

*
4

1[ ] [ ] [ ]
2

1, 3.5 4.5, 4, 3.5 4.5

PCSu n u n u n

j j

  

    

   
 

*
4

1[ ] [ ] [ ]
2

4, 1.5 1.5, 2, 1.5 1.5

pcau n u n u n

j j j j
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5.2 Classification Based on 
Geometric Symmetry

 Based on Geometric Symmetry
A length-N symmetry sequence x[n] satisfies 
the condition 

A length-N antisymmetry sequence x[n]
satisfies the condition 

[ ] [ 1 ]x n x N n  

[ ] [ 1 ]x n x N n   

75

5.2 Classification Based on 
Geometric Symmetry

Center of 
symmetry

Center of 
symmetry

Center of 
symmetry

Center of 
symmetry

[ ]h n

n
0 1

2

74 5

6

83

Type 1
N=9

[ ]h n

n
0 1

2 74
5

6
3

Type 4
N=8

[ ]h n

n
0 1

2 7

4

5
6

8
3

Type 3
N=9

[ ]h n

n
0 1

2
74

5
63

Type 2
N=8
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5.2 Classification Based on 
Geometric Symmetry

[ ]h n

n
0 1

2

74 5

6

83

Center of 
symmetry

Type 1
N=9

1
2

( 1) /2

1

1 1( ) 2 cos( )
2 2

N

j j N

n

N NX e e x x n nw w w



 



 
                



( 1)/2
( 1) /

1

1 1 2[ ] 2 cos
2 2

N
j N k N

n

N N knX k e x x n
N

p p
 



                    


Symmetric Sequence with Odd Length

1( ) ,    =0 or 
2

N     
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5.2 Classification Based on 
Geometric Symmetry

[ ]h n

n
0 1

2
74

5
63

Center of 
symmetry

Type 2
N=8

Symmetric Sequence with Even Length

 
/2

( 1) /2

1

12 cos
2 2

N
j j N

n

NX e e x n nw w w 



                


 /2
( 1) /

1

2 1
[ ] 2 cos

2

N
j N k N

n

k nNX k e x n
N

p p 



            


1( ) ,    =0 or 
2

N     
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5.2 Classification Based on 
Geometric Symmetry

[ ]h n

n
0 1

2 7

4

5
6

8
3

Center of 
symmetry

Type 3
N=9

Antisymmetric Sequence with Odd Length

 












 


 





 )sin(
2

12
2/)1(

1

2/)1( nnNxjeeX
N

n

Njj 





















 


 






2/)1(

1

/)1( 2sin
2

12][
N

n

NkNj

N
knnNxjekX 

1( ) ,    =0 or 
2 2

N      
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5.2 Classification Based on 
Geometric Symmetry

[ ]h n

n
0 1

2 74
5

6
3

Center of 
symmetry

Type 4
N=8

 






















 



  




2/

1

2/)1(

2
1sin

2
2

N

n

Njj nnNxjeeX 















 





  




2/

1

/)1( )12(sin
2

2][
N

n

NkNj

N
nknNxjekX 

Antisymmetric Sequence with Even Length

1( ) ,    =0 or 
2 2

N      
 

     


