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Finite-Length Discrete
Transforms

e [t is convenient to map a finite-length
sequence from the time domain into a finite-
length sequence of the same length in a

different domain, and vice-versa.

e Such transformations are usually collectively

called finite-length transforms.
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1. Orthogonal Transforms :
Definition: with basis sequences Y[k,n] |
1 . 1, l=k
ﬁ;ﬂk’"w (1] _{o, 1k
For length-N sequence x[n], 0<n<N-1, with
X[k] denoting the coefficients of its N-point
orthogonal transform :
X[k] =Y An o] 0<k<N-1
n=0
=S X (R)e[kn]  0snsN-1

2.1 Definition

1. Orthogonal Transforms .

Definition

e DFT X[k] is obtained by uniformly sampling
the DTFT X(&®) over one principal value
interval 0<w< 2rn at w,= 2z k/N, 0<k< N—1
in the frequency domain.

Sampling the DTFT X(&/®) of x[n], 0<n<N-1

X[k]=X(e")|

e Proof:

e Important consequence--Parseval’s relation
N-1 ) 1 N-1 2
Sl = L S
n=0 k=0

= Transforms with good energy compaction
properties:

v most of the signal energy is concentrated in a subset of
the transform coefficients

v remaining coefficients with very low energy to be set to
zero values
6

2.1 Definition N

X[k]= X (")

27k
a=""*

e Length-N sequence X[k] : discrete Fourier
transform (DFT) of the sequence x[#] in the
frequency domain

2017/11/15



2.1 Definition

e Using the notation W, =¢”"" the DFT is
usually expressed as:
N-1

X[k]=) nWy 0<k<N-1

n=0

e Inverse discrete Fourier transform (IDFT)

N-1
x[n] =i2X[k]W;‘" 0<k<N-1
Nis

2.1 Definition
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2.1 Definition N

Example 1
e Consider the length-N sequence
I, n=0
x[n]=
0, 1<n<N-1

Its N-point DFT is given by

N-1
x[nWy = {0, =1,

=0

=

0<k<N-1

1"

o W\=e/2*/N : twiddle factor
u |W,|=1
= One of the N N-th roots of unity W, =W, =1
[ WVN/Z =

k

N-1
VZV =va+N I/Z\/kJrN/Zz_I/ZVk ZVVNk:O
k=0

Ni kD)
w, " =

k=0

N, fork—I/=rN, risaninterger
0 otherwise
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2.1 Definition N

Example 2
e Consider the length-N sequence defined for
x[n]=cosRmn/N) 0<n<N-1
where 7 is an integer in the range 0<r <N -1
e Using the Euler’s function we can write
1
x[n]= 5

]' —=rn rn
= E(WN + WN )

(ej27rm/N _+_efj27rrn/N)

12



2.1 Definition

2.1 Definition s
\
e The N-point DFT of g[#] is thus given by
1 & —(r=k)n (r+k)n
X[kl=—=| > Wy +ZW
2 n=0 n=0
N/2, fork=r,
=<N/2, fork=N-r,
0, otherwise.

2.1 Definition

2017/11/15

e 2N-point DFT is given by

? 0 ) I

n=0

Wzkfvv _e A sin(krz /2)

Y

T1- W), sin(kz / 2N)

e Length of DFT plavs a very important role
in DFT

15
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Example 3
e Rectangular Pulse R, [n], width N
N-point DFT is given by
kn kn 1 - W]\]jN
Zx Wi = ZWN = X
— 1-w,
WkN/Z W kN/2 _WkN/Z
Wk/2 W k/2 Wk/Z
. K b -E]Z
_ .sm( ) SN
sin(kz / N) 14
[ X X ]
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[ X XX
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2.1 Definition H
DTFT of R (n) Relation between DFT and DTFT
T O T T T f
‘ ‘ B-p‘oint‘ofRA‘(n) ‘ ‘
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2.1 Definition

e Mapping Relations between time-domain and
frequency-domain transforms
(Time-domain) (Frequency-domain)
Continuous < Aperiodical
{ Discrete = <~ Periodical

{Periodical <~ Discrete
Aperiodical < Continuous

17

2.1 Definition

2.1 Definition .

e Type 2: Continuous-Time Fourier Series
(CTFS)

Continuous

Periodical Xa (t) <:>Xa (]kQO) Ag?sri:c:':itzal
. B 1 ¢1,2 kOt
X, (k) == j_wxa (£)e ™' dt
p

x,(0) = D X, (jky)e" ™
k=—o0

e Type 1: Continuous-Time Fourier Transform
(CTFT)

Continuous

Aperiodical x, (1) <—> X,(jQ) i

Continuous
X, (jQ) = ji x, (e ™™ dt

x. (1) = [" x, (e a0
2w I

18

2.1 Definition e

e Type 3: Discrete-Time Fourier Transform
(DTFT)

Discrete

i Periodical
jo
Aperiodical X[I’l] <:> X(e ) Continuous
o0

X)) = z x(n)e "

xn]= L X(e)e"dw
2o

20
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2.1 Definition

e Type 4: Discrete Fourier Transform (DFT)

Parcaca M) <= XTK] S

Discrete

2

-1

X[k1=Y x(mwy", 0<k<N-1

N-1

ZX(k)WN"‘”, 0<n<N-1
=0

=
i}
[}

2|~

21

2.2 Matrix Relations
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2.1 Definition N

e Since MATLAB stands for MAtrix
LABoratory, we represent DFT definition in
terms of matrix form

Zx Wy, 0<k<N-1

can be expressed in matrix form as

X=D,x

23

|

e The computation of the DFT and the IDFT
requires, respectively, approximately N?
complex multiplications and N(N-1) complex
additions.

e However, elegant methods have been
developed to reduce the computational
complexity to about N(log,/N) operations.

e These techniques are usually called fast Fourier
transform (FFT) algorithms .

22

2.2 Matrix Relations .

e Where
X =[x[0] X[ - X[N-1]]

x=[x[0] 1] - xN-1]]
And D, is the Nx N DFT matrix given by

11 | 1
1w, wy e ow!
D, =1 W, we e W
B W}y—l le(N‘” Wli’N_l)(N_l)_NxN 24




2.2 Matrix Relations

e Likewise, the IDFT relations can be
expressed in

N-1
xn]=> X[kw", 0<n<N-1
k=0
can be expressed in matrix form as
x=D;X
Where D]_vl is the N x N IDFT matrix

25

2.2 Matrix Relations
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e Obviously, the relation between the two
coefficient matrices can be expressed as

follows

R
DN1 :NDN

e Therefore, the algorithms designed for DFT
are applicable to IDFT

27

2.2 Matrix Relations .
[
e where
1 1 1 1 |
| 1wy wi oo
ngl :N 1 W]\Iz W;‘ ngz(zv—l)
_i WA;(.N*I) W]\;Z.(Nfl) .. W]\;(Nil)(Nfl) .
e Note: D 1 D
A A 2
2.3 DFT Computation Using §§::
MATLAB H

o Built-in Functions to compute the DFT and
the IDFT are ¥t and 1Tt

re(x) 1ffre(X)
re(x,M) iffe(x,M)
e These functions make use of FFT algorithms

which are computationally highly efficient

compared to the direct computation
28
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2.3 DFT Computation Using 1T
MATLAB H
\
e Sequence cos(6zn/16) 0<n<15
9
: s
7
6
% g
2
1
% 02 04 o 06 08 1 2
oo
B ) ee0o
2.3 DFT Computation Using 1T
MATLAB H
\
e N-point sequence u[n] [
k/K, OSkSN_l 8 06
V[k] = . § 04
0, otherwise “ . T T T
. . i
Determine the M-point DFT. ey ek
03 Real part of the time-domain samples 0.Igm\ginary part of the time-domain samples
0.2 0.1 T
g o1 8
- IR PN 2 oplpety T P
< Jy 4) ® [) 4) Jy < l
0.1 01
02 5 10 5 %% 5 10 15 3
Time index n Time index n

2.3 DFT Computation Using e

MATLAB .

Original time-domain sequence

e N-point sequence u[n]
l, 0<n<N-1&

u[n] — . E 0.4

0, otherwise

0

Determine the M-point DFT. ’

Magnitude of the DFT samples Phase of the DFT samples
1.5

1
0.5

l |

LittLl .

>
i
o
L 5

Magnitude
IS
Phase

N

o

0 5 0 5 10 15 30
Frequency index k Frequency index k
(X XJ
o000

3. Relations between DTFT and ocs

DFT and their inverses N

e Relations: (for finite x[n] of length N)

0

X(e'”) = Zx[n]e’j“’" = fx[n]e’j“’”

n=—ow

X[k] is obtained by uniformly sampling on the
w-axis between

X[k]= X (™)

w=2mk/N

X[k] :

sampling

X(e’)

N-1
= Zx[n]e_ﬂ”k"w, 0<k<N-1
n=0

32
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3.1 Numerical Computation of the
DTFT Using the DFT

e A practical approach to the numerical
computation of the DTFT of a finite-length
sequence.

e LetX(e’”)be the DTFT of a length-N
sequence x[n]. We wish to evaluate X (/) ata
dense grid of frequencies , where M >> N:

o, =27k /M, 0<k<M-I

33

3.1 Numerical Computation of the
DTFT Using the DFT

3.1 Numerical Computation of the
DTFT Using the DFT

2017/11/15

|
e Thus X, (/™) is essentially an M-point DFT
X [k] of the length-M sequence x,[n]

e The DFT X [k] can be computed very
efficiently using the FFT algorithm if M is an
integer power of 2.

35

[
-1 -1

X(e./wk ) — Z x[n] e—./'a)w _ zx[n]e—jzfzkn/M

e Define a new sequence
x[n], 0<n<N-I
X, [n]=
0, N<n<M -1

e Then

—jZEkV

M-1
Xe(ef‘”"):er [n]e M
n=0

3.1 Numerical Computation of the
DTFT Using the DFT

34

Example
e Compute the DFT and the DTFT of the
sequence, as shown below
cos(6zrn/16) 0<n<15

o DFT
——DTFT

02 04 06 08 1
o/

36



(X X J
o000
3.1 Numerical Computation of the EE:'
DTFT using DFT H
\
e The function freqz employs this approach
to evaluate the frequency response at a
prescribed set of frequencies of a DTFT
expressed as a rational function in
37
(X X J
o000
e

3.2 DTFT from DFT by interpolation

3.2 DTFT from DFT by interpolation H

oL N —jlo—~(27k/N)] [a)f(27rk/N):|
et §= Z I and =
e Thus "

1

. 1— N 1 — g /(@N-27k)

S= g r= 1—7 - l_efj[a)—(bzk/N)]
. (a)N —~ 27zkj
sm{ ———
_ 2 Lo ak Y (v-172]
. ( oN 27zkj
Sin
2N

39

X)) = x[n]e‘-’“’” =

ZX (k] Ze Lo (amk/N )1 || IDFT

x[n]

Exchange of the order of summations

38

3.2 DTFT from DFT by interpolation H

i
) (a)N—27zk
n -

X(ejw) — ZX[ ( v 2272{{) e —jlo—-(27k/ N)|[(N-1)/2]

A 27k
X)) = Z X[k]O(w- %) interpolation formula

k=0

. [a)NJ
sm| ——
() = ——24 A

Nsin(fj
2 40
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3.2 DTFT from DFT by interpolation

e DTFT can be possibly determined by the
following interpolation formula

X(e)= ZX Jo(@ —%)

X(k) interpolation X(ejw)

sampling

X ()| = X[{]

w=27l/N
41

3.3 Sampling the DTFT

2017/11/15

3.3 Sampling the DTFT H

iN 1 i X[ W
N k=0 (=—0 N N

= Z x[ 0] {
k 0
e Making use of the identity
1 N‘lek(n b _ 1, for{=n+mN
N

®ic. =

lNl

—k(n—0)
w; }

0, otherwise

43

|
e Sequence x[n] ,0<k<N-1 with a DTFT X(&®)

X() = i x[0]e""

» Uniformly sample X(¢/”) at N equally spaced points
@, =21 k/IN, 0<k< N—1 developing the N frequency
samples {X(e&/*)}

m Let Y[k]=X(*), 0<k<N-1
Y[k]= X (") 0y amiin= z AW, 0<k<N-1

= IDFT of Ykl y[n]= ZY[k]W ¥, 0<n<N-1

42

3.3 Sampling the DTFT H

We arrive at the desired relation

0

y[n]= Z x[n+mN], 0<n<N-1

e Thus y[n]is obtained from x[7] by adding an
infinite number of shifted replicas of x[n] ,
with each replica shifted by an integer
multiple of N sampling instants, and observing
the sum only for the interval 0<n<N-1

AA



3.3 Sampling the DTFT

e For finite length-M sequences x(n)

y[n]= z x[n+mN], 0<n<N-1

assume that the samples outside the specified

range arc zZeros.
s If M <N, then y[n]=x[n] for 0<n<N-1

m If M > N, there is a time-domain aliasing of samples of
x[n] in generating y[n] , and x[n] cannot be recovered

from y[n]

Sampling Theorem in Frequency-Domain

3.3 Sampling the DTFT

45

3.3 Sampling the DTFT

2017/11/15

e By sampling its DTFT X(e/®) at w,=2m k/4,
0<k<3, and then applying a 4-point IDFT to

these samples, we arrive at the sequence y[#]

given by

y[n]= x[n] + x[n+4] + x[n—4] , 0<k<3

ie. y[nl= {4% 623}

mmm) {x[n] | cannot be recovered from {y[n]}

47

e Example Let x[n]Z{? 12345}

Sampling 4 point at its DTFT.
Can we recover x[n] from the sampling?

4. Operations on Finite-length

Sequences

46

e Let x[n] be a sequence of lengthN defined for
0<n<N—1, the time-reversal and time-shift of
the sequence is no longer defined in 0<n<N—1.

e We thus need to define another type of
operations that will keep the reversed and
shifted sequences in the range 0<n<N—1.

e Similarly, another type of convolution needs to
be defined that ensure the convoluted sequence

is in the range 0<n<N—1.

48
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4.1 Circular Time-Reversal
Operation

|

e The time-reversal operation on a finite-length
sequence that develops a sequence also
defined for the same range of the time index n,
is obtained by using the modulo operation.

e LetO,1,..., N-1 be a set of N positive integers,
and let m be any integer. The integer
obtained by evaluating m modulo N is called
the residue and is an integer with a value
between 0 and N-1.

r=<m>=mmoduloN  r=m+/N o

4.2 Circular Time-Shifting
Operation

2017/11/15

4.1 Circular Time-Reversal 44
Operation .

e The time-shifting operation on a finite-length
sequence that results in another sequence of
the same length and defined for the same range
of value of n, 1s referred to as the circular time-
shifting operation.

e Such a shifting operation is achieved by using
the modulo operation.

51

e Thus, the time-reversal version {y[n]} of the
length-N sequence{x[n]} defined for 0<n<N—1
is given by

Wl =x(-n) 1, 0<n<N-1

= x[(-n+(N) IR, [n]

| x[n], n=0,

- x[N —n], otherwise. .
4.2 Circular Time-Shifting §§:
Operation .

e The circular time-shifting operation of a
length-N sequence x[n] by an arbitrary amount
n, sample period is defined by the equation

xc[n]szn—nO)N]
where x,.[7] is also a length-N sequence.
e If 1, >0 (right circular shift)
{x[n—no], for ny<n<N-1,
x [n]=

X[N—n,+n], for 0<n<n,.
52
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4.2 Circular Time-Shifting § 4.2 Circular Time-Shifting ecet
Operation H Operation .
| |
e Given a length-6 sequence x[n], its circularly e As can be seen from the figures, a right circular
shifted versions are shown shift by n,, is equivalent to a left circular shift

by N-n, sample periods.

T I e A circular shift by an integer number 7,

0 12345 012345 a1 greater than /N is equivalent to a circular shift
(a) (b) (© by <n0> N *
x[n] x[(n—l)ﬁ}:x[<n+5>J x[(n—4>5]:x|:<n+2>6:|
53 54

4.2 Circular Time-Shifting § 4.2 Circular Time-Shifting ecet
Operation H Operation .
| |
e In the frequency domain, the circular shifting Steps to get a circular shift of an M-point
operation by k&, samples on the length-N DFT sequence x[n]
sequence X[k] is defined by = Periodize

ylnl=x{(n), ]
= Time-shifting

where X _[£] is also a length-N DFT. nln]=y[n-n]= x[<” - n0>N:'

X[k =X[(k-k), ]

xc[n]=y, [n] ‘R [”]

55 56
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4.2 Circular Time-Shifting §§§ 4.2 Circular Time-Shifting §§:
Operation H Operation .
! N—-1+m [

. . _ ' k(n'=m)

e DFT of the circular shift sequence Y[k]= Z x[(n"), Wy
y[nl=x[{n+m) 1R, [(n+m) ] o , »
< >N N < >N =w,* x[<n >N]WA1,‘
Y[k]=DFT[y[n]] ) [ % i Nim
“ . =Wy 2 0O-2, O+ (-)j
= Zx[<n + 111>N]R]\,[71]W1\',C A =0 n'=N
n=0 —km &= ] kn
N-1 = WN X[<l’l >N ]WN
=2 x(n+m) W =
n=0 . — W]\;km X[n v]W]ém — W]\;ka[k] .
n'=0
4.3 Circular Convolution H 4.3 Circular Convolution e
\ |
e Analogous to linear convolution, but with a linear convolution | circular convolution
subtle difference Length of IN—1 t0 be specified
. . . . . convolution
e Comparison of linear convolution with circular :
Convolution

convolution y,(n)= i g(m)h(n—m)| y.(n) = \z‘: gmh((n-m),)

) Formulas fourd
= Consider two length-N sequences, g[n] and /[n] 5

respectively. Their linear convolution results in a Convolution ® or * ®

length-(2N-1) sequence ¥, [n] given by Signs
N-l Condition of o

y [n1=) glmlhln-m], 0<n<2N-2 equivalence -
m=0
59 60



4.3 Circular Convolution

e To develop a convolution-like operation
resulting in a length-N sequence y[n], we
need to utilize a circular time-reversal, and
then apply a circular time-shift.

e Resulting operation, called a circular
convolution, s defined by

Yeln]= Eg[M]hKn—m}N], 0<n<N-1

61

4.3 Circular Convolution

2017/11/15

4.3 Circular Convolution N

Example 1 Length of Circular Convolution is 4

gl - g i 79 - ]
n n

0123 0123

Step 1: Perform Circular time-reversal operation on
h[m] (or g[m])

[rel.,

012

h[<—m>4] -—) T T T
-3-2 -1 3

H_/

These seven samples are enough to calculate the
circular convolution because of the periodicity of DFT

63

e Since the operation defined involves two
length-N sequences, it is often referred to as an
N-point circular convolution, denoted as

yclnl=gln] ® hn]
e The circular convolution i1s commutative, 1.e.

gln]® hlnl=h[n] © g[n]

62

4.3 Circular Convolution N

Step 2: Perform Circular time-shift operation

Red h[<7/n>4]R4[/n] {2112}
Blue  /[(1-m) IR, (m) {2 2 1 1}
(2-m), IR, (m) {1 2 2 1}
(

3-m),R(m) {1122}

Green /i
Purple i[

64
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4.3 Circular Convolution

Step 3: Perform multiplication and summation of
sequences over the region of 0<n<3 for n=0,n=1,n=2
and »=3 respectively

1201 1201
2112 2211

y(0)= 2+2+0+2=6 y(1)= 2+4+0+1=7
1201 1201
1221 1122

y(2)= 1+4+0+1=6 y(3)= 1+2+0+2=5

65

4.3 Circular Convolution

01 23456 0 123 456

Perform Circular time-reversal operation on #,[m]

=
T T \L—T—l <+—— These three
h,[(~m) - - 71 S samples are
654 32-10 1234 56:" not involved in

the circular
convolution

glm] wp o oot operation

01 23i456:m

67

4.3 Circular Convolution N

Example 2 Length of Circular Convolution is 7

e In order to develop the 7-point circular convolution
on the sequences in the former example, we
extended these two sequences to length 7 by
appending each with 3 zero-valued samples, i.e.

ge[n]:{g[n], 0<n<3

0, 4<n<é6
{h[n], 0<n<3
h,[n]=
0, 4<n<é6
66
[ X X ]
0000
[ X LX)
-4
4.3 Circular Convolution N

|
® [n this case, the procedure of circular convolution is
equivalent to that of linear convolution over the region of
principle value.

® Obviously, this conclusion always holds when the
length of Circular Convolution is not less than 7
Summary

Provided that the length of Circular Convolution is not less
than N+M —1 where /V and M are the lengths of the two
sequences involved, the procedure of circular convolution is
equivalent to that of linear convolution

68
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5.1 Classification Based on eser
Conjugate Symmetry .

(X X J
o000
5.1 Classification Based on 1T
Conjugate Symmetry H
!
e Based on Conjugate Symmetry
It has been discussed in Ch.2 of 4" edition.
O Circular Conjugate Symmetry
A length-N circular conjugate-symmetric
sequence x[n]
x[n]=x"[(-n) 1= x"[N —n], 0<n<N-1
A length-N circular conjugate-antisymmetric
sequence
xn]==x"[(-n) 1= —x"[N —n], 0<n<N-1
69
eses
5.1 Classification Based on 1T
Conjugate Symmetry H
—'X[n] Conjugating xn] Folding X ] Zi’;lel;d:g:’,
x*(n) X* [<_n>N]
X' [N —-n]
I , (0<n<N-1) Ry[n]
¥ n] @ X [(=n), ] ”””””””””
L =t

A

A length-N sequence x[n] can be expressed as

x[n]l=x  [n]+x [¢] 0<n<N-1

pes [ peca [

where
circular (periodic) conjugate-symmetric part

Xpeln] = %(X[n] +x'[(-n),1),  0<n<N-I
circular (periodic) conjugate-antisymmetric part

X,,m[n]=%(X[n]—x*[<—n>N]), 0<n<N-1

X[kl=X, [k]+ X, [k], 0<k<N-1

pes pea 70

5.1 Classification Based on §§.
Conjugate Symmetry .
[
Example

e Consider the length-4 sequence defined for
{uln]} = {1+ j4, -2+ j3, 4— 2, =5-j6}  0<n<3

Conjugate sequence
{W'[n]} = {1-j4, —2- 3, 4+ j2, =5+ j6)
Circular conjugate sequence
(W' [(-n),1} ={1-j4, =5+ j6, 4+ j2, -2 j3}

72

2017/11/15

40



(X X J
o000
5.1 Classification Based on 1T
Conjugate Symmetry H
\
Conjugate-symmetric part
1 *
{ttpes[nl} = E{”[H]Jr“ [<_”>4]}
={l, —3.5+ /45, 4, -3.5— j4.5}
Circular conjugate-antisymmetric part
1 *
(a1} = ] = L),
={j4, 1.5- 1.5, -2, -1.5-j1.5}
73
(X X J
- gm - o000
5.2 Classification Based on 1T
Geometric Symmetry H
\
Hnl  Type1 Center of hn]l Type 2 Center of
N=9 symmetry N=8 , symmetry
1 // W :y,
TTT R
01i3l45i78 01i3l4i67
h[nr Type 3 Center of h[n]l  Type 4 Center of
N=9 / N=8 ’

’ symmetry

~
~

et

——-o
S
w—— 0o

IS
—o

symmetry

N

w

o—Jo
o—=

~
3]

2017/11/15

5.2 Classification Based on §§:
Geometric Symmetry .

e Based on Geometric Symmetry

A length-N symmetry sequence x[n] satisfies
the condition

x[n]=x[N —-1-n]

A length-N antisymmetry sequence x[n]
satisfies the condition

x[n]=-x[N-1-n]

74

0000
5.2 Classification Based on §§.
Geometric Symmetry .
[
h[n Type 1 Center of
N=9 symmetry

LA
| |
X(e™) = g /N2 {X{NT_I} i znzzl:x[Nz_l - n}cos(wn)}

_ (N-1)2 _
X[k]=e /O™ S x Nod +2 ) x N 1—n cos(zwmj
2 n=l1 2 N 76

Symmetric Sequence with Odd Length
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