

Chapter 4

Two major topics of this chapter:

• Time-Domain Sampling

- Sampling of Continuous-Time Signals
- Sampling
- Effect of Sampling in the Frequency Domain
- > Recovery of the Analog Signal
- > Implementation of the Sampling Process
- Sampling of Bandpass Signals

Analog Filter Design

- Analog Lowpass Filter Specifications
- **Butterworth Approximation**
- Design of Other Types of Analog Filters

2

Part A: Time-Domain Sampling

Necessity

- Most signals in the real world are continuous in time, such as speech, music, and images.
- For processing these continuous-time signals by digital systems, we need the analog-todigital and digital-to-analog interface circuits to convert the continuous-time signals into discrete-time digital form, and vice versa.

Part A: Time-Domain Sampling

Necessity

- It is necessary to develop the relations between the continuous-time signal and its discrete-time equivalent in the time-domain and also in the frequency-domain.
- The latter relations are important in determining conditions under which <u>the discrete-time</u> processing of continuous-time signals can be done free of error under ideal situations.

7

1 Introduction

• Complete block-diagram is shown below

1 Introduction

• Digital processing of a continuous-time signal involves the following basic steps:

(1) Conversion of the continuous-time signal into a discrete-time signal,

(2) Processing of the discrete-time signal,

(3) Conversion of the processed discrete-time signal back into a continuous-time signal

6

1 Introduction

- Conversion of a continuous-time signal into digital form is carried out by an analog-to-digital (A/D) converter
- The reverse operation of converting a digital signal into a continuous-time signal is performed by a digital-to-analog (D/A) converter

1 Introduction

- Since the A/D conversion takes a finite amount of time, a sample-and-hold (S/H) circuit is used to ensure that the analog signal at the input of the A/D converter remains constant in amplitude until the conversion is complete to minimize the error in its representation
 - S/H circuit often consists of a *capacitor* to store the analogue voltage, and an electronic *switch* or *gate* to alternately connect and disconnect the capacitor from the analogue input.

1 Introduction

• To smooth the output signal of the D/A converter, which has a staircase-like waveform, an analog reconstruction filter is used.

1 Introduction

- The continuous-time signal to be processed usually has a larger bandwidth than the bandwidth of the available discrete-time processors.
- To prevent aliasing, an analog anti-aliasing filter is employed before the S/H circuit.

10

1 Introduction

- Both the anti-aliasing filter and the reconstruction filter are analog lowpass filters, we will go throw the theory behind the design of such filters in following lecture
- Also, the most widely used IIR digital filter design method is based on the conversion of an **analog lowpass prototype**

9

1 Introduction

13

• The simplified block-diagram is shown below

1 Introduction

• Ideal interpolator: the infinite-precision D/A converter in cascade with the ideal reconstruction filter has been replaced with the ideal discrete-time to continuous-time (DT-CT) converter, which develops a continuous-time equivalent y_a(t) of the processed discrete-time signal y[n].

1 Introduction

• Ideal sampler: the S/H circuit in cascade with an infinite precision A/D converter has been replaced with the ideal continuous-time to discrete-time (CT-DT) converter which develops a discrete-time equivalent x[n] of the continuous-time signal x_a(t)

14

••••

2 Sampling of Continuous-Time Signals

 Often, a discrete-time sequence g[n] is developed by uniformly sampling a continuoustime signal g_a(t) as indicated below

 $g[n] = g_a(t)|_{t=nT} = g_a(nT)$ $n = \dots, -2, -1, 0, 1, 2, \dots$

2.1 Sampling Process

- Let g_a(t) be a continuous-time signal that is sampled uniformly at t = nT, generating the sequence g[n] where g[n]=g_a(nT) with T being the sampling period F_T = 1/T
 - $g[n] = g_a(t)|_{t=nT} = g_a(nT)$ $n = \dots, -2, -1, 0, 1, 2, \dots$
- The reciprocal of *T* is called the sampling frequency F_T , i.e., $\Omega_T = 2\pi F_T$ denoting the sampling angular frequency.

$$t_n = nT = n/F_T = 2\pi n/\Omega_T$$

2.1 Sampling Processing

- If the unit of sampling period *T* is in seconds
 - The unit of normalized digital angular frequency ω_o is radians.
 - The unit of normalized analog angular frequency Ω_o is radians/second.
 - The unit of sampling frequency f_T is hertz (Hz).
 - The unit of analog frequency f_o is hertz (Hz).

$$\omega_0 = \frac{2\pi\Omega_0}{\Omega_T} = \Omega_0 T$$

17

- 2.1 Sampling Processing
- Consider the continuous-time signal

$$g_a(t) = A\cos(2\pi f_o t + \phi) = A\cos(\Omega_o t + \phi)$$

• The corresponding discrete-time signal is

$$g[n] = A\cos(\Omega_o nT + \phi)$$

= $A\cos(\frac{2\pi\Omega_o}{\Omega_T}n + \phi) = A\cos(\omega_o n + \phi)$
• $\omega_o = \frac{2\pi\Omega_o}{\Omega_T} = \Omega_o T$: normalized digital angular frequency
18

2.1 Sampling Processing

<u>Recall</u>

• Consider three continuous-time signals of frequencies 3 Hz, 7 Hz, and 13 Hz, are sampled at a sampling rate of 10 Hz, i.e. with T = 0.1 sec, generating the three sequences

$$g_{1}(t) = \cos(6\pi t) \qquad g_{1}[n] = \cos(0.6\pi n) g_{2}(t) = \cos(14\pi t) \qquad g_{2}[n] = \cos(1.4\pi n) g_{3}(t) = \cos(26\pi t) \qquad g_{3}[n] = \cos(2.6\pi n)$$

....

•••

2.1 Sampling Processing

<u>Recall</u>

• Plots of these sequences and their parent time functions

2.1 Sampling Processing

Example :

- This fact can also be verified by observing that $g_2[n] = \cos(1.4\pi n) = \cos[(2\pi - 1.4\pi)n] = \cos(0.6\pi n) = g_1[n]$ $g_3[n] = \cos(2.6\pi n) = \cos[(2\pi + 0.6\pi)n] = \cos(0.6\pi n) = g_1[n]$
 - It is difficult to associate a unique continuous-time function with each of these sequences.
 - a continuous time signal of higher frequency acquiring the identity of a sinusoidal sequence of lower frequency after sampling is called **aliasing**.

2.1 Sampling Processing

- It is obvious that **identical discrete time** signals may result from the sampling of more than one *distinct continuous-time function*
- In fact, there exists an *infinite number of continuous-time signals*, which when sampled lead to the same discrete-time signal

22

2.1 Sampling Process

- However, under certain **conditions**, it is possible to relate a unique continuous-time signal to a given discrete-time signals
- If these conditions hold, then it is possible to **recover** the original continuous-time signal from its sampled values

••••

2.2 Effect of Sampling in the Frequency Domain

- 1		
- 0		
	• •	

25

• Now, the frequency-domain representation of $g_a(t)$ is given by its continuous-time Fourier transform (CTFT):

$$G_a(j\Omega) = \int_{-\infty}^{\infty} g_a(t) e^{-j\Omega t} dt$$

• The frequency-domain representation of g[n] is given by its discrete-time Fourier transform (DTFT):

$$G(e^{j\omega}) = \sum_{n=-\infty}^{\infty} g[n] e^{-j\omega n}$$

2.2 Effect of Sampling in the Frequency Domain

• $g_a(t)$ is a continuous-time signal consisting of a train of uniformly spaced impulses with the impulse at t = nT weighted by the sampled value $g_a(nT)$ of $g_a(t)$ at that instant

2.2 Effect of Sampling in the Frequency Domain

• To establish the relation between $G_a(j\Omega)$ and $G(e^{j\omega})$, we treat the sampling operation mathematically as a multiplication of $g_a(t)$ by a periodic impulse train p(t):

$$g_p(t) = g_a(t) p(t)$$

26

28

• *p*(*t*) consists of a train of ideal impulses with a period *T* as shown below

• The multiplication operation yields an impulse train:

$$g_p(t) = g_a(t)p(t) = \sum_{n=-\infty}^{\infty} g_a(nT)\delta(t-nT)$$

2.2 Effect of Sampling in the Frequency Domain

- Two different forms of : $G_p(j\Omega)$
 - One form is given by the weighted sum of the CTFTs :

$$G_p(j\Omega) = \mathcal{F}\left[\sum_{n=-\infty}^{\infty} g_a(nT)\delta(t-nT)\right] = \sum_{n=-\infty}^{\infty} g_a(nT)\mathcal{F}[\delta(t-nT)]$$

time-shifting property

$$G_p(j\Omega) = \sum_{n=-\infty}^{\infty} g_a(nT) e^{-j\Omega nT}$$

29

2.2 Effect of Sampling in the Frequency Domain

• From the frequency-shifting property, the frequency translated portions of $G_a(j\Omega)$ is given by:

$$G_a(j(\Omega-k\Omega_T))$$

• Hence, an **alternative form** of the CTFT of is given by

$$G_p(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} G_a(j(\Omega - k\Omega_T))$$

• periodic function of Ω consisting of a sum of shifted and scaled replicas of $G_a(j\Omega)$, shifted by integer multiples of Ω_T and scaled by $\frac{1}{T}$.

2.2 Effect of Sampling in the Frequency Domain

- Two different forms of : $G_p(j\Omega)$
 - second form: we note that p(t) can be expressed as a Fourier series: $p(t) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} e^{j\frac{2\pi}{T}kt} = \frac{1}{T} \sum_{k=-\infty}^{+\infty} e^{j\Omega_T kt}$

where

The impulse train $g_p(t)$ therefore can be expressed as

 $\Omega_T = \frac{2\pi}{T}$

$$g_{p}(t) = \left(\frac{1}{T}\sum_{k=-\infty}^{\infty}e^{jk\Omega_{T}t}\right)g_{a}(t)$$

30

2.2 Effect of Sampling in the Frequency Domain

• The term on the RHS of the previous equation for k = 0 is the baseband portion of $G_p(j\Omega)$, and each of the remaining terms are the frequency translated portions of $G_p(j\Omega)$

2.2 Effect of Sampling in the Frequency Domain

• Thus if $\Omega_T > 2\Omega_0$, the corresponding normalized digital angular frequency ω_o of the discrete-time signal obtained by sampling the parent continuous-time sinusoidal signal will be in the range $-\pi < \omega < \pi$.

No aliasing

2.2 Effect of Sampling in the Frequency Domain

35

33

- The frequency range $-\Omega_T / 2 \le \Omega \le \Omega_T / 2$ is called the baseband or Nyquist band
- Let $g_a(t)$ be a band-limited signal with

 $G_a(j\Omega) = 0$ for $|\Omega| > \Omega_m$, then $g_a(t)$ is uniquely determined by its samples $g_a(nT)$, $-\infty \le n \le \infty$, if

where
$$\Omega_T = \frac{2\pi}{T}$$

2.2 Effect of Sampling in the Frequency Domain

- On the other hand, if $\Omega_T > 2\Omega_0$, the normalized digital angular frequency will fold over into a lower digital frequency $\omega_0 = \langle 2\pi \Omega_0 / \Omega_T \rangle_{2\pi}$ in the range $-\pi < \omega < \pi$ because of aliasing.
 - an overlap of the spectra
- To prevent aliasing, the sampling frequency Ω_T should be greater than 2 times the frequency Ω_0 of the sinusoidal signal being sampled.

Sampling Theorem

34

2.2 Effect of Sampling in the Frequency Domain

• Illustration of the frequency-domain effects of time-domain sampling

2.2 Effect of Sampling in the Frequency Domain

•••

37

• \longrightarrow If $\Omega_T \ge 2\Omega_m$, $g_a(t)$ can be recovered exactly from $g_p(t)$ by passing it through an ideal lowpass filter $H_r(j\Omega)$ with a gain T and a cutoff frequency Ω_c greater than Ω_m and less than $\Omega_T - \Omega_m$ as shown below

$$g_{a}(t) \xrightarrow{g_{p}(t)} H_{r}(j\Omega) \xrightarrow{\hat{g}_{a}(t)} \hat{g}_{a}(t)$$

2.2 Effect of Sampling in the Frequency Domain

• On the other hand, if $\Omega_T < 2\Omega_m$, due to the overlap of the shifted replicas of $G_a(j\Omega)$, the spectrum $G_a(j\Omega)$ cannot be separated by filtering to recover because of the distortion caused by a part of the replicas $G_a(j\Omega)$ immediately outside the baseband folded back or aliased into the baseband.

• The spectra of the filter and pertinent signals are shown below

....

38

40

• Sampling Theorem

Let $g_a(t)$ be a band-limited signal with CTFT $G_a(j\Omega) = 0$ for $|\Omega| > \Omega_m$ Then $g_a(t)$ is uniquely determined by its samples $g[n] = g_a(nT), -\infty < n < \infty$ if

where
$$\boldsymbol{\Omega}_T = \frac{2\pi}{T}$$
.

2.2 Effect of Sampling in the Frequency Domain	
Nyquist condition	
Folding frequency	
Nyquist frequency	
Nyquist rate	
Oversampling	
Undersampling	
Critical sampling	
	ling in the nain Nyquist condition Folding frequency Nyquist frequency Nyquist rate Oversampling Undersampling Critical sampling

Note: A pure sinusoid may not be recoverable from its critically sampled version 41

2.2	Effect of Sampling in the	
	Frequency Domain	

Example

• Consider the three continuous time sinusoidal signals at a rate of T = 0.1 sec :

 $g_1(t) = \cos(6\pi t), g_2(t) = \cos(14\pi t), g_3(t) = \cos(26\pi t)$

43

• Their corresponding CTFTs are:

 $G_{1}(j\Omega) = \pi \left[\delta(\Omega - 6\pi) + \delta(\Omega + 6\pi) \right]$ $G_{2}(j\Omega) = \pi \left[\delta(\Omega - 14\pi) + \delta(\Omega + 14\pi) \right]$ $G_{3}(j\Omega) = \pi \left[\delta(\Omega - 26\pi) + \delta(\Omega + 26\pi) \right]$

2.2 Effect of Sampling in the Frequency Domain

Example

- In high-quality analog music signal processing, a bandwidth of 20 kHz has been determined to preserve the fidelity (保真度)
- Hence, in compact disc (CD) music systems, a sampling rate of 44.1 kHz, which is slightly higher than twice the signal bandwidth, is used

42

....

••••

2.2 Effect of Sampling in the Frequency Domain

• These three transforms are plotted below

2.2 Effect of Sampling in the **Frequency Domain**

$\bullet \bullet \bullet \bullet \bullet$	
• •	

45

- These continuous-time signals sampled at a rate of T = 0.1 sec, i.e., with a sampling frequency $\Omega_{\tau} = 20\pi$ rad/sec
- The sampling process generates the continuous-time impulse trains, $g_{1p}(t)$, $g_{2p}(t)$, and $g_{3p}(t)$
- Their corresponding CTFTs are given by
 - $G_{lp}(j\Omega) = 10\sum_{k=-\infty}^{\infty} G_l(j(\Omega k\Omega_T)), \quad 1 \le l \le 3$

• Plots of the 3 CTFTs are shown below

2.2 Effect of Sampling in the	
Frequency Domain	

- We now derive the relation between the DTFT of g[n] and the CTFT of $g_n(t)$
- To this end we compare

 $G(e^{j\omega}) = \sum_{n=-\infty}^{\infty} g[n]e^{-j\omega}$ $G_p(j\Omega) = \sum_{n=-\infty}^{\infty} g_a(nT)e^{-j\Omega nT}$

and make use of

 $g[n] = g_a(nT), -\infty < n < \infty$

....

é é é é

2.2 Effect of Sampling in the Frequency Domain

ĺ	
	$\bullet \bullet \bullet \bullet \bullet$
	•••
	• • •

49

• Observation: We have

$$G(e^{j\omega}) = G_p(j\Omega)\Big|_{\Omega = \omega/T}$$
 or, equivalently,

$$G_p(j\Omega) = G(e^{j\omega})\Big|_{\omega=\Omega\Omega}$$

• From the above observation and

$$G_p(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} G_a(j(\Omega - k\Omega_T))$$

2.2 Effect of Sampling in the Frequency Domain

• The relation derived on the previous slide can be alternately expressed as

$$G(e^{j\Omega T}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} G_a \left(j\Omega - jk\Omega_T \right)$$

from $G(e^{j\omega}) = G_p (j\Omega) \Big|_{\Omega = \omega/T}$
or from $G_p (j\Omega) = G(e^{j\omega}) \Big|_{\omega = \Omega T}$

2.2 Effect of Sampling in the Frequency Domain

• We arrive at the desired result given by

$$G(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} G_a \left(j\Omega - jk\Omega_T \right) \bigg|_{\Omega = \omega/T}$$
$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} G_a \left(j\frac{\omega}{T} - jk\Omega_T \right)$$
$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} G_a \left(j\frac{\omega}{T} - j\frac{2\pi k}{T} \right)$$

2.2 Effect of Sampling in the Frequency Domain

- It follows that $G(e^{j\omega})$ is obtained from $G_p(j\Omega)$ by applying the mapping $\Omega = \omega/T$
- Now, the CTFT $G_p(j\Omega)$ is a periodic function of Ω with a period $\Omega_T = 2\pi/T$
- Because of the mapping, the DTFT G(e^{jω}) is a periodic function of ω with a period 2π

•••

2.3 Recovery of the Analog Signal

- We now derive the expression for the output $\hat{g}_a(t)$ of the ideal lowpass reconstruction filter $H_r(j\Omega)$ as a function of the samples g[n]
- The impulse response $h_r(t)$ of the lowpass reconstruction filter is obtained by taking the inverse DTFT of :

$H_r(j\Omega) = \begin{cases} T, & |\Omega| \le \Omega_c \\ 0, & |\Omega| > \Omega_c \end{cases}$

2.3 Recovery of the Analog Signal

• Therefore, the output $\hat{g}_a(t)$ of the ideal lowpass filter is given by:

$$\hat{g}_{a}(t) = g_{p}(t) * h_{r}(t) = \sum_{n=-\infty}^{\infty} g(n)h_{r}(t-nT)$$

• Substituting $h_r(t)$ in the above and assuming $\Omega_c = \Omega_T / 2 = \pi / T$ for simplicity, we get

$$\hat{g}_a(t) = \sum_{n=-\infty}^{\infty} g[n] \frac{\sin[\pi(t-nT)/T]}{\pi(t-nT)/T}$$

53

....

2.3 Recovery of the Analog Signal

• Thus, the impulse response is given by

$$h_r(\mathbf{t}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H_r(j\Omega) e^{j\Omega t} d\Omega = \frac{T}{2\pi} \int_{-\Omega_c}^{\Omega_c} e^{j\Omega t} d\Omega$$
$$= \frac{\sin(\Omega_c t)}{\Omega_r t/2}, \quad -\infty < t < \infty$$

• The input to the lowpass filter is the impulse train $g_p(t)$

$$g_p(t) = \sum_{n=-\infty}^{\infty} g[n] \delta(t-nT)$$

54

2.3 Recovery of the Analog Signal

• It can be shown that when $\Omega_c = \Omega_T / 2$ in $h_r(t) = \frac{\sin \Omega_c t}{\Omega_T t / 2}$ $h_r(0)=1$ and $h_r(nT)=0$ for $n \neq 0$ • As a result, from $\hat{g}_a(t) = \sum_{n=-\infty}^{\infty} g(n) \frac{\sin[\pi(t-nT)/T]}{\pi(t-nT)/T}$ we observe $\hat{g}_a(rT) = g(r) = g_a(rT)$ for all integer values of r in the range $-\infty < r < \infty$

2.3 Recovery of the Analog Signal

• The ideal bandlimited interpolation process is illustrated below

57

2.4 Implication of the Sampling Process

continuous-time	

- Consider again the three continuous-time signals: $g_1(t) = \cos(6\pi t)$, $g_2(t) = \cos(14\pi t)$, and $g_3(t) = \cos(26\pi t)$
- The plot of the CTFT $G_{1p}(j\Omega)$ of the sampled version of $g_1(t)$ is shown below

2.3 Recovery of the Analog Signal

- The relation $\hat{g}_a(rT) = g(r) = g_a(rT)$, *r* is integer, holds whether or not the condition of the sampling theorem is satisfied
- However, $\hat{g}_a(t) = g_a(t)$ for all values of *t* only if the sampling frequency Ω_T satisfies the condition of the sampling theorem

58

2.4 Implication of the Sampling Process

- From the plot, it is apparent that we can recover any of its frequency-translated versions $\cos[(20k \pm 6)\pi t]$ outside the baseband by passing through an ideal analog bandpass filter $g_{1p}(t)$ with a passband centered at $\Omega = (20k \pm 6)\pi$
- For example, to recover the signal $\cos(34\pi t)$, it will be necessary to employ a bandpass filter with a frequency response A small number $H_r(j\Omega) = \begin{cases} 0.1, \quad (34-\Delta)\pi \le |\Omega| \le (34+\Delta)\pi\\ 0, \quad \text{otherwise} \end{cases}$

2.4 Implication of the Sampling Process

$\bullet \bullet \bullet \bullet \bullet$

61

• Likewise, we can recover the aliased baseband component $cos(6\pi t)$ from the sampled version of either $g_{2p}(t)$ or $g_{3p}(t)$ by passing it through an ideal lowpass filter with a frequency response:

$$H_r(j\Omega) = \begin{cases} 0.1, & 0 \le |\Omega| \le (6 + \Delta)\pi\\ 0, & \text{otherwise} \end{cases}$$

2.4 Implication of the Sampling Process

- There is no aliasing distortion unless the original continuous-time signal also contains the component $\cos(6\pi t)$
- Similarly, from either g_{2p}(t) or g_{3p}(t) we can recover any one of the frequency-translated versions, including the parent continuous-time signal cos(14πt) or cos(26πt) as the case may be, by employing suitable filters

62

...

3 Sampling of Bandpass Signals

- The conditions developed earlier assumed that the continuous-time signal is band-limited in the frequency range from dc to some frequency Ω_m.
- Such a continuous-time signal is commonly referred to as a lowpass signal

3 Sampling of Bandpass Signals

- There are applications where the continuoustime signal is bandlimited to a higher frequency range a $\Omega_L \leq |\Omega| \leq \Omega_H$ with $\Omega_L > 0$
- Such a signal is usually referred to as the bandpass signal
- To prevent aliasing, a bandpass signal can of course be sampled at a rate greater than twice the highest frequency, i.e. by ensuring $\Omega_T \geq 2\Omega_H$ 65

3 Sampling of Bandpass Signals

- A more practical approach is to use undersampling
- Let $\Delta \Omega = \Omega_H \Omega_L$ define the bandwidth of the bandpass signal
- Assume first that the highest frequency Ω_{μ} contained in the signal is an integer multiple of the bandwidth, i.e.,

$$\Omega_{H} = M(\Delta \Omega)$$

3 Sampling of Bandpass Signals

- However, due to the bandpass spectrum of the continuous-time signal, the spectrum of the discrete-time signal obtained by sampling will have spectral gaps with no signal components present in these gaps
- Moreover, if Ω_{H} is very large, the sampling rate also has to be very large which may not be practical in some situations

66

3 Sampling of Bandpass Signals

• We choose the sampling frequency Ω_{τ} to satisfy the condition $\Omega_T = 2(\Delta \Omega) = \frac{2\Omega_H}{M}$

which is smaller than $2\Omega_{\mu}$, the Nyquist rate

• Substitute the above expression for Ω_{τ} in

$$G_{p}(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} G_{a} \left(j\Omega - jk\Omega_{T} \right)$$
$$G_{p}(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} G_{a} \left(j\Omega - j2k(\Delta\Omega) \right)$$
68

3 Sampling of Bandpass Signals

- As before, G_p(jΩ) consists of a sum of G_a(jΩ) and replicas of G_a(jΩ) shifted by integer multiples of twice the bandwidth ΔΩ and
 - scaled by 1/T
- The amount of shift for each value of k ensures that there will be no overlap between all shifted replicas *no aliasing*
 - 69

3 Sampling of Bandpass Signals

- As can be seen, $g_a(t)$ can be recovered from $g_p(t)$ by passing it through an ideal bandpass filter with a passband given by $\Omega_L \leq |\Omega| \leq \Omega_H$ and a gain of *T*
- Note: Any of the replicas in the lower frequency bands can be retained by passing $g_p(t)$ through bandpass filters with passbands $\Omega_L - k(\Delta \Omega) \le |\Omega| \le \Omega_H - k(\Delta \Omega)$, $1 \le k \le M - 1$ providing a translation to lower frequency ranges

3 Sampling of Bandpass Signals

• Figure below illustrates the idea behind

3 Sampling of Bandpass Signals

• If Ω_H is not an integer multiple of the bandwidth $\Delta \Omega = \Omega_H - \Omega_L$, we can

extend the band-width either to the right or to the left artificially

so that the highest frequency contained in the bandpass signal is an integer multiple of the extended bandwidth.

3 Sampling of Bandpass Signals

• Figure below illustrates the idea behind

*1 Anti-Aliasing Filter Design

• Ideally, the anti-aliasing filter $H_a(s)$ should have a lowpass frequency response

$$H_{a}(j\Omega) = \begin{cases} 1, & |\Omega| < \frac{\Omega_{T}}{2} \\ 0, & |\Omega| \ge \frac{\Omega_{T}}{2} \end{cases}$$

• Such a "brick-wall" type frequency response cannot be realized using practical analog circuit components and, hence, must be approximated.

*1 Anti-Aliasing Filter Design

• Analog anti-aliasing lowpass filter is the first circuit in the interface between the continuous-time and the discrete-time domains.

74

- A practical anti-aliasing filter should have
 - a passband magnitude response approximating unity with an acceptable tolerance,
 - a stopband magnitude response exceeding a minimum attenuation level
 - an acceptable transition band separating the passband and the stopband, with a transmission zero at infinity.
- In many applications, it is also desirable to have a linear-phase response in the passband.

....

*1 Anti-Aliasing Filter Design

The passband edge frequency Ω_p, the stopband edge frequency Ω_s, and the sampling frequency Ω_T must satisfy the relation

$$\Omega_p < \Omega_s \le \frac{\Omega_T}{2}$$

• The maximum aliasing distortion comes from the signal components in the replicas of the input spectrum adjacent to the baseband.

*1 Anti-Aliasing Filter Design

• The the frequency $\Omega_0 = \Omega_T - \Omega_p$ is aliased into Ω_p , and if the acceptable amount of aliased spectrum at Ω_p is

$$\alpha_P = -20\log_{10}\left(\frac{1}{A}\right)$$

then the minimum attenuation of the anti-aliasing filter at Ω_0 must also be α_P .

*1 Anti-Aliasing Filter Design

*1 Anti-Aliasing Filter Design

- gn
- In practice, the sampling frequency chosen depends on the specific application.
- In applications requiring minimal aliasing, the sampling rate is typically chosen to be 3 to 4 times the passband edge Ω_p of the anti-aliasing analog filter.
- In noncritical applications, a sampling rate of twice the passband edge Ω_p of the anti-aliasing analog filter is more than adequate.

*1 Anti-Aliasing Filter Design

- Requirements for the analog anti-aliasing filter can be relaxed by *oversampling* the analog signal and then *decimating* the high-samplingrate digital signal to the desired low-rate digital signal.
- The decimation process can be implemented completely in the digital domain by <u>first passing</u> the high-rate digital signal through a digital antialiasing filter and then <u>downsampling its output</u>.

*1 Anti-Aliasing Filter Design

82

....

*1 Anti-Aliasing Filter Design

- Note that the transition band of the analog antialiasing filter with a higher sampling rate is considerably more than 3 times that needed in the former situation.
- As a result, the filter specifications are met more easily with a much lower order analog filter.

*2 Reconstruction Filter Design

• The output of the D/A converter is finally passed through an analog reconstruction or smoothing filter to eliminate all the replicas of the spectrum outside the baseband.

....

81

*2 Reconstruction Filter Design

• The impulse response $h_r(t)$ of the lowpass reconstruction filter $H_r(j\Omega)$ is obtained by taking the inverse DTFT of :

$$H_{r}(j\Omega) = \begin{cases} T, & |\Omega| \le \Omega_{T} / 2\\ 0, & |\Omega| > \Omega_{T} / 2 \end{cases}$$

The reconstructed analog equivalent $y_a(t)$

$$y_{a}(t) = \sum_{n=-\infty}^{\infty} y[n] \frac{\sin[\pi(t-nT)/T]}{\pi(t-nT)/T}.$$

*2 Reconstruction Filter Design

• The magnitude response of the zero-order hold circuit, has a lowpass characteristic with zeros at $\pm T$, $\pm 2 T$,..., where $\Omega_T = 2\pi/T$ is the sampling angular frequency.

*2 Reconstruction Filter Design

86

• An ideal impulse-train D/A output $y_p(t)$, followed by a linear, time-invariant analog circuit (zero-order hold operation) with an impulse response $h_i(t)$ that is a rectangular pulse of width T and unity height.

*2 Reconstruction Filter Design

• The zero-order hold circuit somewhat attenuates the unwanted replicas centered at multiples of the sampling frequency Ω_T .

*2 Reconstruction Filter Design

• Moreover, it should also compensate for the amplitude distortion, more commonly called droop, caused by the zero-order hold circuit in the band from DC to $\Omega_{\tau}/2$.

89

*2 Reconstruction Filter Design

• Therefore, if the system specification calls for a minimum attenuation of $A_{\rm s}$ dB of all frequency components in the residual images, then the reconstruction filter should provide at least an attenuation of $A_s + 20 \log_{10} |H_z(j\Omega_o)| dB$ at Ω_0

*2 Reconstruction Filter Design

- The general specifications for the analog reconstruction filter $H_{r}(j\Omega)$ can be easily determined if the effect of the droop is neglected.
- If Ω_{α} denotes the highest frequency of the signal $y_n(t)$ that should be preserved at the output of the reconstruction filter, then the lowest-frequency component present in the residual images in the output of the zero-order hold circuit is of frequency $\Omega_0 = \Omega_T - \Omega_c$

*2 Reconstruction Filter Design

- For example, if the normalized value of Ω_c is 0.7π , then the gain of the zero-order hold circuit at 0.7π is -7.2 dB. Now, the lowest normalized frequency of the residual images is given by 1.3π .
- For a minimum attenuation of 50 dB of all signal components in the residual images at the output of the zero-order hold, the reconstruction filter must therefore provide at least an attenuation of 42.8 dB at frequency 1.3π .

91

*2 Reconstruction Filter Design

93

- The droop caused by the zero-order hold circuit can be compensated either before the D/A converter by means of a digital filter or after the zero-order hold circuit by the analog reconstruction filter.
- For the latter approach, we observe that the cascade of the zero-order hold circuit and the analog reconstruction filter must have a frequency response of an ideal reconstruction filter following an ideal D/A converter.

*2 Reconstruction Filter Design

• Alternatively, the effect of the droop can be compensated by including a digital compensation filter *G*(*z*) prior to the D/A converter circuit with a modest increase in the digital hardware requirements. The digital compensation filter can be either an FIR or an IIR type.

94

*2 Reconstruction Filter Design

• The gain responses of the uncompensated and the droop-compensated D/A converters in the baseband.

 Since the above digital compensation filters have a periodic frequency response of period Ω_τ, the replicas of the baseband magnitude response outside the baseband need to be suppressed sufficiently to ensure minimal effect from aliasing.