
Chapter 4

Digital Signal Processing of 
Continuous-Time Signals

2

Chapter 4 
Two major topics of this chapter:
 Time-Domain Sampling

 Sampling of Continuous-Time Signals
 Sampling
 Effect of Sampling in the Frequency Domain
 Recovery of the Analog Signal
 Implementation of the Sampling Process

 Sampling of Bandpass Signals

 Analog Filter Design
 Analog Lowpass Filter Specifications
 Butterworth Approximation
 Design of Other Types of Analog Filters

Chapter 4A

Time-Domain Sampling
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Part A: Time-Domain Sampling 
Necessity

Most signals in the real world are continuous 
in time, such as speech, music, and images. 
For processing these continuous-time signals 

by digital systems, we need the analog-to-
digital and digital-to-analog interface circuits 
to convert the continuous-time signals into 
discrete-time digital form, and vice versa. 
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Part A: Time-Domain Sampling 
Necessity

It is necessary to develop the relations between 
the continuous-time signal and its discrete-time 
equivalent in the time-domain and also in the 
frequency-domain. 
The latter relations are important in determining 

conditions under which the discrete-time 
processing of continuous-time signals can be 
done free of error under ideal situations. 
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1 Introduction

 Digital processing of a continuous-time signal 
involves the following basic steps:
(1) Conversion of the continuous-time signal 
into a discrete-time signal,
(2) Processing of the discrete-time signal,
(3) Conversion of the processed discrete-time 
signal back into a continuous-time signal
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1 Introduction

 Complete block-diagram is shown below

Anti-aliasing 
filter S/H A/D D/ADigital 

Processing
Reconstruction 
filter
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1 Introduction

 Conversion of a continuous-time signal into 
digital form is carried out by an analog-to-
digital (A/D) converter

 The reverse operation of converting a digital 
signal into a continuous-time signal is 
performed by a digital-to-analog (D/A) 
converter
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1 Introduction

 Since the A/D conversion takes a finite amount 
of time, a sample-and-hold (S/H) circuit is used 
to ensure that the analog signal at the input of 
the A/D converter remains constant in 
amplitude until the conversion is complete to 
minimize the error in its representation
 S/H circuit often consists of a capacitor to store the 

analogue voltage, and an electronic switch or gate to 
alternately connect and disconnect the capacitor from 
the analogue input.
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1 Introduction

 The continuous-time signal to be processed 
usually has a larger bandwidth than the 
bandwidth of the available discrete-time 
processors. 

 To prevent aliasing, an analog anti-aliasing 
filter is employed before the S/H circuit.
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1 Introduction

 To smooth the output signal of the D/A 
converter, which has a staircase-like waveform, 
an analog reconstruction filter is used.
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1 Introduction

 Both the anti-aliasing filter and the 
reconstruction filter are analog lowpass
filters, we will go throw the theory behind the 
design of such filters in following lecture

 Also, the most widely used IIR digital filter 
design method is based on the conversion of 
an analog lowpass prototype
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1 Introduction

 The simplified block-diagram is shown below

[ ]x n [ ]y n  tya
 txa

14

1 Introduction

 Ideal sampler:  the S/H circuit in cascade with 
an infinite precision A/D converter has been 
replaced with the ideal continuous-time to  
discrete-time (CT-DT) converter which 
develops a discrete-time equivalent x[n] of the 
continuous-time signal       ( )ax t
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1 Introduction

 Ideal interpolator: the infinite-precision D/A 
converter in cascade with the ideal 
reconstruction filter has been replaced with the 
ideal discrete-time to continuous-time (DT-CT) 
converter, which develops a continuous-time 
equivalent       of the processed discrete-time 
signal y[n]. 

( )ay t
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2 Sampling of Continuous-Time 
Signals

 Often, a discrete-time sequence g[n] is 
developed by uniformly sampling a continuous-
time signal ga(t) as indicated below

         ,2  ,1  ,0  ,1 ,2,   nnTgtgng anTta
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2.1 Sampling Process

 Let ga(t) be a continuous-time signal that is 
sampled uniformly at t = nT, generating the 
sequence g[n] where g[n]= ga(nT) with T
being the sampling period

 The reciprocal of T is called the sampling 
frequency FT , i.e.,    denoting the 
sampling angular frequency.

1/TF T
         ,2  ,1  ,0  ,1 ,2,   nnTgtgng anTta

TTn nFnnTt  /2/ 

TT F2
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2.1 Sampling Processing

 Consider the continuous-time signal

 The corresponding discrete-time signal is

 : normalized digital angular frequency

)cos()2cos()(   tAtfAtg ooa

)cos(][  nTAng o

To
T

o
o 





 2

)cos()2cos( 





 nAnA o
T

o

19

2.1 Sampling Processing

 If the unit of sampling period T is in  seconds
 The unit of normalized digital angular frequency       

is radians.
 The unit of normalized analog angular  frequency

is radians/second.
 The unit of sampling frequency      is hertz  (Hz).
 The unit of analog frequency     is hertz  (Hz).
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2.1 Sampling Processing

Recall
 Consider three continuous-time signals of 

frequencies 3 Hz, 7 Hz, and 13 Hz, are 
sampled at a sampling rate of 10 Hz, i.e. with 
T = 0.1 sec,  generating the three sequences
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2.1 Sampling Processing

Recall
 Plots of these sequences and their parent time 

functions
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2.1 Sampling Processing

 It is obvious that identical discrete time 
signals may result from the sampling of more 
than one distinct continuous-time function

 In fact, there exists an infinite number of 
continuous-time signals, which when 
sampled lead to the same discrete-time 
signal
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2.1 Sampling Processing

Example :
 This fact can also be verified by observing that

 It is difficult to associate a unique continuous-time 
function with each of these  sequences.

 a continuous time signal of higher frequency acquiring 
the identity of a sinusoidal sequence of lower frequency 
after sampling is called aliasing.

][)6.0cos(])6.02cos[()6.2cos(][
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2.1 Sampling Process

 However, under certain conditions, it is 
possible to relate a unique continuous-time 
signal to a given discrete-time signals

 If these conditions hold, then it is possible to 
recover the original continuous-time signal 
from its sampled values
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2.2 Effect of Sampling in the 
Frequency Domain

 Now, the frequency-domain representation of 
ga(t) is given by its continuous-time Fourier 
transform (CTFT):

 The frequency-domain representation of g[n] 
is given by its discrete-time Fourier transform 
(DTFT):

( ) ( ) j t
a aG j g t e dt

  


  

nj

n
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 ][)(
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2.2 Effect of Sampling in the 
Frequency Domain

 To establish the relation between              and 
, we treat the sampling operation 

mathematically as a multiplication of ga(t) by 
a periodic impulse train p(t):

( )aG j
( )jG e 

ga(t)

p(t)

gp(t)

( ) ( ) ( )p ag t g t p t
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2.2 Effect of Sampling in the 
Frequency Domain

 ga(t) is a continuous-time signal consisting of 
a train of uniformly spaced impulses with the 
impulse at t = nT weighted by the sampled 
value ga(nT) of ga(t) at that instant
ga(t)

0 t

gp(t)

0 t

ga(t)
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2.2 Effect of Sampling in the 
Frequency Domain

 p(t) consists of a train of ideal impulses with a 
period T as shown below

 The multiplication operation yields an 
impulse train:

… …

p(t)

t
0 T 2T－2T－T

( ) ( ) ( ) ( ) ( )p a a
n

g t g t p t g nT t nT




  
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2.2 Effect of Sampling in the 
Frequency Domain

 Two different forms of :
 One form is given by the weighted sum of the 

CTFTs :

time-shifting property

( )pG j

( ) ( ) j nT
p a
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  
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2.2 Effect of Sampling in the 
Frequency Domain

 Two different forms of :
 second form: we note that p(t) can be expressed as a 

Fourier series:

where

The impulse train gp(t) therefore can be expressed as
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2.2 Effect of Sampling in the 
Frequency Domain

 From the frequency-shifting property, the frequency 
translated portions of is given by:

 Hence, an alternative form of the CTFT of           
is given by

 periodic function of consisting of a sum of shifted 
and scaled replicas of , shifted by integer 
multiples of and scaled by       .

( ( ))a TG j k 

1( ) ( ( ))p a T
k

G j G j k
T




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

)( jGa
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T
1

)( jGa
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2.2 Effect of Sampling in the 
Frequency Domain

 The term on the RHS of the previous equation 
for k = 0 is the baseband portion of               , 
and each of the remaining terms are the 
frequency translated portions of

( )pG j

( )pG j



33

2.2 Effect of Sampling in the 
Frequency Domain

 Thus if , the corresponding normalized 
digital angular frequency of  the discrete-
time signal obtained by sampling the parent 
continuous-time  sinusoidal signal will be in the 
range                  .

No aliasing

o
02T  

 
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2.2 Effect of Sampling in the 
Frequency Domain

 On the other hand, if , the normalized 
digital angular frequency will  fold over into a 
lower digital frequency                             in the 
range                    because of aliasing.
 an overlap of the spectra 

 To prevent aliasing, the sampling frequency
should be greater than 2 times the frequency 
of the sinusoidal signal being sampled.

 

02T




2T00 2 

T
0

Sampling Theorem
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2.2 Effect of Sampling in the 
Frequency Domain

 The frequency range                                 is 
called the baseband or Nyquist band

 Let ga(t) be a band-limited signal with 
for                , 

then ga(t) is uniquely determined by its samples 
ga(nT),                    ,  if

where

/ 2 / 2T T    

( ) 0aG j  m  

n   

2T m  
2

T T


 
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2.2 Effect of Sampling in the 
Frequency Domain

 Illustration of the frequency-domain effects of 
time-domain sampling

0
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mm

… …
0
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

…
0
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T

T m 

T 2 Tmm

…


…
0

T

T m 

T 2 Tmm

…


T2 T 
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 If , ga(t) can be  recovered 
exactly from gp(t) by passing it through an 
ideal lowpass filter              with a gain T and 
a cutoff frequency greater than       and 
less than     as shown  below

2.2 Effect of Sampling in the 
Frequency Domain

2T m  

( )rH j
c m

T m 

ga(t)
gp(t)

p(t)

( )rH j ˆ ( )ag t
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 The spectra of the filter and pertinent signals 
are shown below

2.2 Effect of Sampling in the 
Frequency Domain

…
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 On the other hand, if , due to the 
overlap of the shifted replicas of , the 
spectrum cannot be separated by 
filtering to recover because of the distortion 
caused by a part of the replicas              
immediately outside the baseband folded back 
or aliased into the baseband.

2.2 Effect of Sampling in the 
Frequency Domain

2T m  
( )aG j

( )aG j

( )aG j
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 Sampling Theorem
Let be a band-limited signal with 

CTFT 

Then is uniquely determined by its
samples                   , if

where              .

2.2 Effect of Sampling in the 
Frequency Domain
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2.2 Effect of Sampling in the 
Frequency Domain

Nyquist condition
Folding frequency
Nyquist frequency

Nyquist  rate
When Oversampling
When Undersampling
When Critical sampling

Note: A pure sinusoid may not be recoverable from its 
critically sampled version

/ 2T

m

2 m
2T m  

2T m  

2T m  

2T m  
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Example 
 In high-quality analog music signal 

processing, a bandwidth of 20 kHz has been 
determined to preserve the fidelity (保真度)

 Hence, in compact disc (CD) music systems, 
a sampling rate of 44.1 kHz, which is slightly 
higher than twice the signal bandwidth, is 
used

2.2 Effect of Sampling in the 
Frequency Domain
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Example
 Consider the three continuous time sinusoidal 

signals at a rate of  T = 0.1 sec :

 Their corresponding CTFTs are:

2.2 Effect of Sampling in the 
Frequency Domain

1 2 3( ) cos(6 ), ( ) cos(14 ), ( ) cos(26 )g t t g t t g t t    

 
 
 

1

2

3

( ) ( 6 ) ( 6 )
( ) ( 14 ) ( 14 )
( ) ( 26 ) ( 26 )

G j
G j
G j

    
    
    

    
    
    
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 These three transforms are plotted below

2.2 Effect of Sampling in the 
Frequency Domain
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 These continuous-time signals sampled at a 
rate of T = 0.1 sec, i.e., with a sampling 
frequency   rad/sec

 The sampling process generates the 
continuous-time impulse trains, g1p(t), g2p (t), 
and g3p (t) 

 Their corresponding CTFTs are given by

2.2 Effect of Sampling in the 
Frequency Domain

20T  

( ) 10 ( ( )), 1 3lp l T
k

G j G j k l




     
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 Plots of the 3 CTFTs are shown below

2.2 Effect of Sampling in the 
Frequency Domain
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2.2 Effect of Sampling in the 
Frequency Domain
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 We now derive the relation between the 
DTFT of g[n] and the CTFT of gp(t)

 To this end we compare

with

and make use of

2.2 Effect of Sampling in the 
Frequency Domain

( ) ( ) j nT
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 Observation: We have

or, equivalently,

 From the above observation and

2.2 Effect of Sampling in the 
Frequency Domain

/
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 We arrive at the desired result given by

2.2 Effect of Sampling in the 
Frequency Domain
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 The relation derived on the previous slide can 
be alternately expressed as

from                                            

or from 

2.2 Effect of Sampling in the 
Frequency Domain
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 It follows that            is obtained from              by 
applying the mapping

 Now, the CTFT is a periodic function 
of      with a period

 Because of the mapping, the DTFT             is a 
periodic function of     with a period

2.2 Effect of Sampling in the 
Frequency Domain

( )jG e  ( )pG j
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 We now derive the expression for the output       
fsdf of the ideal lowpass reconstruction 
filter as a function of the samples g[n]

 The impulse response hr(t) of the lowpass
reconstruction filter is obtained by taking the 
inverse DTFT of :

2.3 Recovery of the Analog Signal
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 Thus, the impulse response is given by

 The input to the lowpass filter is the impulse 
train gp(t)

2.3 Recovery of the Analog Signal
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 Therefore, the output          of the ideal 
lowpass filter is given by:

 Substituting          in the above and assuming          
for simplicity, we get

2.3 Recovery of the Analog Signal
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 It can be shown that when                    in 

hr(0)=1 and hr(nT)=0 for n≠0
 As a result, from

we observe
for all integer values of r in the range

2.3 Recovery of the Analog Signal
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2.3 Recovery of the Analog Signal
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 The ideal bandlimited interpolation process is 

illustrated below

58

 The relation                                      , r is 
integer, holds whether or not the condition of 
the sampling theorem is satisfied

 However,                       for all values of t only 
if the sampling frequency      satisfies the 
condition of the sampling theorem

2.3 Recovery of the Analog Signal

ˆ ( ) ( ) ( )a ag rT g r g rT 

ˆ ( ) ( )a ag t g t
T
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 Consider again the three continuous-time 
signals:                          ,                             ,           
and

 The plot of the CTFT              of the sampled 
version of g1(t) is shown below

2.4 Implication of the Sampling 
Process
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 From the plot, it is apparent that we can 
recover any of its frequency-translated 
versions outside the 
baseband by passing through an ideal analog 
bandpass filter g1p(t) with a passband centered 
at

 For example, to recover the signal cos(34pt), 
it will be necessary to employ a bandpass
filter with a frequency response

2.4 Implication of the Sampling 
Process

 cos 20 6k t  

 20 6k   
cos(34 )t
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0, otherwiserH j
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  


A small number



61

 Likewise, we can recover the aliased 
baseband component cos(6pt) from the 
sampled version of either g2p(t) or g3p(t) by 
passing it through an ideal lowpass filter with 
a frequency response:

2.4 Implication of the Sampling 
Process

cos(6 )t

0.1, 0 (6 )
( )

0, otherwiserH j
     

  

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 There is no aliasing distortion unless the 
original continuous-time signal also contains 
the component

 Similarly, from either g2p(t) or g3p(t) we can 
recover any one of the frequency-translated 
versions, including the parent continuous-time 
signal cos(14πt) or cos(26πt) as the case may 
be, by employing suitable filters

2.4 Implication of the Sampling 
Process

cos(6 )t
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2.4 Implication of the Sampling 
Process
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 The conditions developed earlier assumed that 
the continuous-time signal is band-limited in 
the frequency range from dc to some frequency

.
 Such a continuous-time signal is commonly 

referred to as a lowpass signal

3 Sampling of Bandpass Signals

m
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 There are applications where the continuous-
time signal is bandlimited to a higher 
frequency range  a                        with

 Such a signal is usually referred to as the 
bandpass signal

 To prevent aliasing，a bandpass signal can of 
course be sampled at a rate greater than twice 
the highest frequency, i.e. by ensuring

3 Sampling of Bandpass Signals

L H    0L 

2T H  
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 However, due to the bandpass spectrum of the 
continuous-time signal, the spectrum of the 
discrete-time signal obtained by sampling will 
have spectral gaps with no signal components 
present in these gaps

 Moreover, if       is very large, the sampling 
rate also has to be very large which may not 
be practical in some situations

3 Sampling of Bandpass Signals

H
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 A more practical approach is to use under-
sampling

 Let                        define the bandwidth of the 
bandpass signal

 Assume first that the highest frequency  
contained in the signal is an integer multiple 
of the bandwidth, i.e.,

3 Sampling of Bandpass Signals

H

H L   

( )H M  
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 We choose the sampling frequency      to 
satisfy the condition

which is smaller than         , the Nyquist rate
 Substitute the above expression for      in

3 Sampling of Bandpass Signals
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 As before,              consists of a sum of             
and replicas of               shifted by integer 
multiples of twice the bandwidth DWand
scaled by 1/T

 The amount of shift for each value of k
ensures that there will be no overlap between 
all shifted replicas            no aliasing

3 Sampling of Bandpass Signals

( )pG j ( )aG j
( )aG j


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 Figure below illustrates the idea behind

3 Sampling of Bandpass Signals
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 As can be seen, ga(t) can be recovered from 
gp(t) by passing it through an ideal bandpass 
filter with a passband given by                       
and a gain of T

 Note: Any of the replicas in the lower 
frequency bands can be retained by passing 
gp(t) through bandpass filters with passbands

, 
providing a translation to lower frequency 
ranges

3 Sampling of Bandpass Signals
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 If is not an integer multiple of the band-
width                     , we can 
extend the band-width either to the right or to 
the left artificially 
so that the highest frequency contained in the 
bandpass signal is an integer multiple of the 
extended bandwidth. 

3 Sampling of Bandpass Signals

H
H L   



73

 Figure below illustrates the idea behind

3 Sampling of Bandpass Signals
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 Analog anti-aliasing lowpass filter is the first 
circuit in the interface between the continuous-
time and the discrete-time domains. 

*1 Anti-Aliasing Filter Design
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 Ideally, the anti-aliasing filter           should have 
a lowpass frequency response 

 Such a “brick-wall” type frequency response 
cannot be realized using practical analog circuit 
components and, hence, must be approximated. 

*1 Anti-Aliasing Filter Design
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 A practical anti-aliasing filter should have 
 a passband magnitude response approximating unity 

with an acceptable tolerance, 
 a stopband magnitude response exceeding a minimum 

attenuation level
 an acceptable transition band separating the passband

and the stopband, with a transmission zero at infinity. 

 In many applications, it is also desirable to 
have a linear-phase response in the passband. 

*1 Anti-Aliasing Filter Design



77

 The passband edge frequency     , the stopband
edge frequency      , and the sampling frequency     

must satisfy the relation 

 The maximum aliasing distortion comes from 
the signal components in the replicas of the 
input spectrum adjacent to the baseband. 

*1 Anti-Aliasing Filter Design
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

*1 Anti-Aliasing Filter Design
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 The the frequency                    is aliased into      , 
and if the acceptable amount of aliased spectrum 
at       is 

then the minimum attenuation of the anti-aliasing 
filter at       must also be       . 

*1 Anti-Aliasing Filter Design
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 In practice, the sampling frequency chosen 
depends on the specific application. 

 In applications requiring minimal aliasing, the 
sampling rate is typically chosen to be 3 to 4 
times the passband edge       of the anti-aliasing 
analog filter. 

 In noncritical applications, a sampling rate of 
twice the passband edge       of the anti-aliasing 
analog filter is more than adequate. 

*1 Anti-Aliasing Filter Design

p

p
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 Requirements for the analog anti-aliasing filter 
can be relaxed by oversampling the analog 
signal and then decimating the high-sampling-
rate digital signal to the desired low-rate digital 
signal. 

 The decimation process can be implemented 
completely in the digital domain by first passing 
the high-rate digital signal through a digital anti-
aliasing filter and then downsampling its output. 

*1 Anti-Aliasing Filter Design
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

*1 Anti-Aliasing Filter Design
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 Note that the transition band of the analog anti-
aliasing filter with a higher sampling rate is 
considerably more than 3 times that needed in 
the former situation.

 As a result, the filter specifications are met more 
easily with a much lower order analog filter. 

*1 Anti-Aliasing Filter Design
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 The output of the D/A converter is finally 
passed through an analog reconstruction or 
smoothing filter to eliminate all the replicas of 
the spectrum outside the baseband. 

*2 Reconstruction Filter Design
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 The impulse response of the lowpass  
reconstruction filter             is obtained by 
taking the inverse DTFT of :

The reconstructed analog equivalent 

*2 Reconstruction Filter Design
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 An ideal impulse-train D/A output          , 
followed by a linear, time-invariant analog 
circuit (zero-order hold operation) with an 
impulse response     that is a rectangular 
pulse of width T and unity height. 

*2 Reconstruction Filter Design
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 The magnitude response of the zero-order hold 
circuit, has a lowpass characteristic with zeros at 
± T , ±2 T ,... , where                 is the sampling 
angular frequency. 

*2 Reconstruction Filter Design
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 The zero-order hold circuit somewhat attenuates 
the unwanted replicas centered at multiples of 
the sampling frequency      . 

*2 Reconstruction Filter Design
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 Moreover, it should also compensate for the 
amplitude distortion, more commonly called 
droop, caused by the zero-order hold circuit in 
the band from DC to .

*2 Reconstruction Filter Design

/ 2T
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 The general specifications for the analog 
reconstruction filter              can be easily 
determined if the effect of the droop is 
neglected. 

 If       denotes the highest frequency of the 
signal           that should be preserved at the 
output of the reconstruction filter, then the 
lowest-frequency component present in the 
residual images in the output of the zero-order 
hold circuit is of frequency      

*2 Reconstruction Filter Design

 rH j
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 Therefore, if the system specification calls for a 
minimum attenuation of As dB of all frequency 
components in the residual images, then the 
reconstruction filter should provide at least an 
attenuation of                              dB at 

*2 Reconstruction Filter Design

 1020logs z oA H j  0
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 For example, if the normalized value of       is 
0.7π, then the gain of the zero-order hold circuit 
at 0.7π is -7.2 dB. Now, the lowest normalized 
frequency of the residual images is given by 
1.3π. 

 For a minimum attenuation of 50 dB of all 
signal components in the residual images at the 
output of the zero-order hold, the reconstruction 
filter must therefore provide at least an 
attenuation of 42.8 dB at frequency 1.3π . 



*2 Reconstruction Filter Design

c
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 The droop caused by the zero-order hold circuit 
can be compensated either before the D/A 
converter by means of a digital filter or after the 
zero-order hold circuit by the analog reconstruc-
tion filter. 

 For the latter approach, we observe that the 
cascade of the zero-order hold circuit and the 
analog reconstruction filter must have a 
frequency response of an ideal reconstruction 
filter following an ideal D/A converter. 

*2 Reconstruction Filter Design
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 Alternatively, the effect of the droop can be 
compensated by including a digital 
compensation filter G(z) prior to the D/A 
converter circuit with a modest increase in the 
digital hardware requirements. The digital 
compensation filter can be either an FIR or an 
IIR type. 

*2 Reconstruction Filter Design
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 The gain responses of the uncompensated and 
the droop-compensated D/A converters in the 
baseband. 

*2 Reconstruction Filter Design
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 Since the above digital compensation filters 
have a periodic frequency response of 
period       , the replicas of the baseband 
magnitude response outside the baseband need 
to be suppressed sufficiently to ensure minimal 
effect from aliasing. 

*2 Reconstruction Filter Design
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