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Digital Signal Processing of 
Continuous-Time Signals
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Chapter 4 
Two major topics of this chapter:
 Time-Domain Sampling

 Sampling of Continuous-Time Signals
 Sampling
 Effect of Sampling in the Frequency Domain
 Recovery of the Analog Signal
 Implementation of the Sampling Process

 Sampling of Bandpass Signals

 Analog Filter Design
 Analog Lowpass Filter Specifications
 Butterworth Approximation
 Design of Other Types of Analog Filters

Chapter 4A

Time-Domain Sampling
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Part A: Time-Domain Sampling 
Necessity

Most signals in the real world are continuous 
in time, such as speech, music, and images. 
For processing these continuous-time signals 

by digital systems, we need the analog-to-
digital and digital-to-analog interface circuits 
to convert the continuous-time signals into 
discrete-time digital form, and vice versa. 
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Part A: Time-Domain Sampling 
Necessity

It is necessary to develop the relations between 
the continuous-time signal and its discrete-time 
equivalent in the time-domain and also in the 
frequency-domain. 
The latter relations are important in determining 

conditions under which the discrete-time 
processing of continuous-time signals can be 
done free of error under ideal situations. 
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1 Introduction

 Digital processing of a continuous-time signal 
involves the following basic steps:
(1) Conversion of the continuous-time signal 
into a discrete-time signal,
(2) Processing of the discrete-time signal,
(3) Conversion of the processed discrete-time 
signal back into a continuous-time signal
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1 Introduction

 Complete block-diagram is shown below

Anti-aliasing 
filter S/H A/D D/ADigital 

Processing
Reconstruction 
filter
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1 Introduction

 Conversion of a continuous-time signal into 
digital form is carried out by an analog-to-
digital (A/D) converter

 The reverse operation of converting a digital 
signal into a continuous-time signal is 
performed by a digital-to-analog (D/A) 
converter
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1 Introduction

 Since the A/D conversion takes a finite amount 
of time, a sample-and-hold (S/H) circuit is used 
to ensure that the analog signal at the input of 
the A/D converter remains constant in 
amplitude until the conversion is complete to 
minimize the error in its representation
 S/H circuit often consists of a capacitor to store the 

analogue voltage, and an electronic switch or gate to 
alternately connect and disconnect the capacitor from 
the analogue input.
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1 Introduction

 The continuous-time signal to be processed 
usually has a larger bandwidth than the 
bandwidth of the available discrete-time 
processors. 

 To prevent aliasing, an analog anti-aliasing 
filter is employed before the S/H circuit.
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1 Introduction

 To smooth the output signal of the D/A 
converter, which has a staircase-like waveform, 
an analog reconstruction filter is used.
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1 Introduction

 Both the anti-aliasing filter and the 
reconstruction filter are analog lowpass
filters, we will go throw the theory behind the 
design of such filters in following lecture

 Also, the most widely used IIR digital filter 
design method is based on the conversion of 
an analog lowpass prototype
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1 Introduction

 The simplified block-diagram is shown below

[ ]x n [ ]y n  tya
 txa
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1 Introduction

 Ideal sampler:  the S/H circuit in cascade with 
an infinite precision A/D converter has been 
replaced with the ideal continuous-time to  
discrete-time (CT-DT) converter which 
develops a discrete-time equivalent x[n] of the 
continuous-time signal       ( )ax t
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1 Introduction

 Ideal interpolator: the infinite-precision D/A 
converter in cascade with the ideal 
reconstruction filter has been replaced with the 
ideal discrete-time to continuous-time (DT-CT) 
converter, which develops a continuous-time 
equivalent       of the processed discrete-time 
signal y[n]. 

( )ay t
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2 Sampling of Continuous-Time 
Signals

 Often, a discrete-time sequence g[n] is 
developed by uniformly sampling a continuous-
time signal ga(t) as indicated below

         ,2  ,1  ,0  ,1 ,2,   nnTgtgng anTta
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2.1 Sampling Process

 Let ga(t) be a continuous-time signal that is 
sampled uniformly at t = nT, generating the 
sequence g[n] where g[n]= ga(nT) with T
being the sampling period

 The reciprocal of T is called the sampling 
frequency FT , i.e.,    denoting the 
sampling angular frequency.

1/TF T
         ,2  ,1  ,0  ,1 ,2,   nnTgtgng anTta

TTn nFnnTt  /2/ 

TT F2
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2.1 Sampling Processing

 Consider the continuous-time signal

 The corresponding discrete-time signal is

 : normalized digital angular frequency
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2.1 Sampling Processing

 If the unit of sampling period T is in  seconds
 The unit of normalized digital angular frequency       

is radians.
 The unit of normalized analog angular  frequency

is radians/second.
 The unit of sampling frequency      is hertz  (Hz).
 The unit of analog frequency     is hertz  (Hz).
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2.1 Sampling Processing

Recall
 Consider three continuous-time signals of 

frequencies 3 Hz, 7 Hz, and 13 Hz, are 
sampled at a sampling rate of 10 Hz, i.e. with 
T = 0.1 sec,  generating the three sequences
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2.1 Sampling Processing

Recall
 Plots of these sequences and their parent time 

functions
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2.1 Sampling Processing

 It is obvious that identical discrete time 
signals may result from the sampling of more 
than one distinct continuous-time function

 In fact, there exists an infinite number of 
continuous-time signals, which when 
sampled lead to the same discrete-time 
signal
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2.1 Sampling Processing

Example :
 This fact can also be verified by observing that

 It is difficult to associate a unique continuous-time 
function with each of these  sequences.

 a continuous time signal of higher frequency acquiring 
the identity of a sinusoidal sequence of lower frequency 
after sampling is called aliasing.

][)6.0cos(])6.02cos[()6.2cos(][
][)6.0cos(])4.12cos[()4.1cos(][
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2.1 Sampling Process

 However, under certain conditions, it is 
possible to relate a unique continuous-time 
signal to a given discrete-time signals

 If these conditions hold, then it is possible to 
recover the original continuous-time signal 
from its sampled values
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2.2 Effect of Sampling in the 
Frequency Domain

 Now, the frequency-domain representation of 
ga(t) is given by its continuous-time Fourier 
transform (CTFT):

 The frequency-domain representation of g[n] 
is given by its discrete-time Fourier transform 
(DTFT):

( ) ( ) j t
a aG j g t e dt
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2.2 Effect of Sampling in the 
Frequency Domain

 To establish the relation between              and 
, we treat the sampling operation 

mathematically as a multiplication of ga(t) by 
a periodic impulse train p(t):

( )aG j
( )jG e 

ga(t)

p(t)

gp(t)

( ) ( ) ( )p ag t g t p t
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2.2 Effect of Sampling in the 
Frequency Domain

 ga(t) is a continuous-time signal consisting of 
a train of uniformly spaced impulses with the 
impulse at t = nT weighted by the sampled 
value ga(nT) of ga(t) at that instant
ga(t)

0 t

gp(t)

0 t

ga(t)
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2.2 Effect of Sampling in the 
Frequency Domain

 p(t) consists of a train of ideal impulses with a 
period T as shown below

 The multiplication operation yields an 
impulse train:

… …

p(t)

t
0 T 2T－2T－T

( ) ( ) ( ) ( ) ( )p a a
n

g t g t p t g nT t nT
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2.2 Effect of Sampling in the 
Frequency Domain

 Two different forms of :
 One form is given by the weighted sum of the 

CTFTs :

time-shifting property

( )pG j

( ) ( ) j nT
p a

n

G j g nT e
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2.2 Effect of Sampling in the 
Frequency Domain

 Two different forms of :
 second form: we note that p(t) can be expressed as a 

Fourier series:

where

The impulse train gp(t) therefore can be expressed as

( )pG j
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2.2 Effect of Sampling in the 
Frequency Domain

 From the frequency-shifting property, the frequency 
translated portions of is given by:

 Hence, an alternative form of the CTFT of           
is given by

 periodic function of consisting of a sum of shifted 
and scaled replicas of , shifted by integer 
multiples of and scaled by       .

( ( ))a TG j k 

1( ) ( ( ))p a T
k

G j G j k
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2.2 Effect of Sampling in the 
Frequency Domain

 The term on the RHS of the previous equation 
for k = 0 is the baseband portion of               , 
and each of the remaining terms are the 
frequency translated portions of

( )pG j

( )pG j
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2.2 Effect of Sampling in the 
Frequency Domain

 Thus if , the corresponding normalized 
digital angular frequency of  the discrete-
time signal obtained by sampling the parent 
continuous-time  sinusoidal signal will be in the 
range                  .

No aliasing

o
02T  
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2.2 Effect of Sampling in the 
Frequency Domain

 On the other hand, if , the normalized 
digital angular frequency will  fold over into a 
lower digital frequency                             in the 
range                    because of aliasing.
 an overlap of the spectra 

 To prevent aliasing, the sampling frequency
should be greater than 2 times the frequency 
of the sinusoidal signal being sampled.
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2.2 Effect of Sampling in the 
Frequency Domain

 The frequency range                                 is 
called the baseband or Nyquist band

 Let ga(t) be a band-limited signal with 
for                , 

then ga(t) is uniquely determined by its samples 
ga(nT),                    ,  if

where

/ 2 / 2T T    

( ) 0aG j  m  

n   

2T m  
2

T T
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2.2 Effect of Sampling in the 
Frequency Domain

 Illustration of the frequency-domain effects of 
time-domain sampling
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 If , ga(t) can be  recovered 
exactly from gp(t) by passing it through an 
ideal lowpass filter              with a gain T and 
a cutoff frequency greater than       and 
less than     as shown  below

2.2 Effect of Sampling in the 
Frequency Domain

2T m  

( )rH j
c m

T m 

ga(t)
gp(t)

p(t)

( )rH j ˆ ( )ag t
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 The spectra of the filter and pertinent signals 
are shown below

2.2 Effect of Sampling in the 
Frequency Domain
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 On the other hand, if , due to the 
overlap of the shifted replicas of , the 
spectrum cannot be separated by 
filtering to recover because of the distortion 
caused by a part of the replicas              
immediately outside the baseband folded back 
or aliased into the baseband.

2.2 Effect of Sampling in the 
Frequency Domain

2T m  
( )aG j

( )aG j

( )aG j
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 Sampling Theorem
Let be a band-limited signal with 

CTFT 

Then is uniquely determined by its
samples                   , if

where              .

2.2 Effect of Sampling in the 
Frequency Domain
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2.2 Effect of Sampling in the 
Frequency Domain

Nyquist condition
Folding frequency
Nyquist frequency

Nyquist  rate
When Oversampling
When Undersampling
When Critical sampling

Note: A pure sinusoid may not be recoverable from its 
critically sampled version

/ 2T

m

2 m
2T m  

2T m  

2T m  

2T m  
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Example 
 In high-quality analog music signal 

processing, a bandwidth of 20 kHz has been 
determined to preserve the fidelity (保真度)

 Hence, in compact disc (CD) music systems, 
a sampling rate of 44.1 kHz, which is slightly 
higher than twice the signal bandwidth, is 
used

2.2 Effect of Sampling in the 
Frequency Domain
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Example
 Consider the three continuous time sinusoidal 

signals at a rate of  T = 0.1 sec :

 Their corresponding CTFTs are:

2.2 Effect of Sampling in the 
Frequency Domain

1 2 3( ) cos(6 ), ( ) cos(14 ), ( ) cos(26 )g t t g t t g t t    

 
 
 

1

2

3

( ) ( 6 ) ( 6 )
( ) ( 14 ) ( 14 )
( ) ( 26 ) ( 26 )

G j
G j
G j
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 These three transforms are plotted below

2.2 Effect of Sampling in the 
Frequency Domain
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 These continuous-time signals sampled at a 
rate of T = 0.1 sec, i.e., with a sampling 
frequency   rad/sec

 The sampling process generates the 
continuous-time impulse trains, g1p(t), g2p (t), 
and g3p (t) 

 Their corresponding CTFTs are given by

2.2 Effect of Sampling in the 
Frequency Domain

20T  

( ) 10 ( ( )), 1 3lp l T
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 Plots of the 3 CTFTs are shown below

2.2 Effect of Sampling in the 
Frequency Domain
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2.2 Effect of Sampling in the 
Frequency Domain
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 We now derive the relation between the 
DTFT of g[n] and the CTFT of gp(t)

 To this end we compare

with

and make use of

2.2 Effect of Sampling in the 
Frequency Domain

( ) ( ) j nT
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 Observation: We have

or, equivalently,

 From the above observation and

2.2 Effect of Sampling in the 
Frequency Domain
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 We arrive at the desired result given by

2.2 Effect of Sampling in the 
Frequency Domain
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 The relation derived on the previous slide can 
be alternately expressed as

from                                            

or from 

2.2 Effect of Sampling in the 
Frequency Domain
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 It follows that            is obtained from              by 
applying the mapping

 Now, the CTFT is a periodic function 
of      with a period

 Because of the mapping, the DTFT             is a 
periodic function of     with a period

2.2 Effect of Sampling in the 
Frequency Domain

( )jG e  ( )pG j
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( )pG j
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 We now derive the expression for the output       
fsdf of the ideal lowpass reconstruction 
filter as a function of the samples g[n]

 The impulse response hr(t) of the lowpass
reconstruction filter is obtained by taking the 
inverse DTFT of :

2.3 Recovery of the Analog Signal

ˆ ( )ag t
( )rH j
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 Thus, the impulse response is given by

 The input to the lowpass filter is the impulse 
train gp(t)

2.3 Recovery of the Analog Signal
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 Therefore, the output          of the ideal 
lowpass filter is given by:

 Substituting          in the above and assuming          
for simplicity, we get

2.3 Recovery of the Analog Signal
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 It can be shown that when                    in 

hr(0)=1 and hr(nT)=0 for n≠0
 As a result, from

we observe
for all integer values of r in the range

2.3 Recovery of the Analog Signal
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2.3 Recovery of the Analog Signal
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illustrated below
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 The relation                                      , r is 
integer, holds whether or not the condition of 
the sampling theorem is satisfied

 However,                       for all values of t only 
if the sampling frequency      satisfies the 
condition of the sampling theorem

2.3 Recovery of the Analog Signal

ˆ ( ) ( ) ( )a ag rT g r g rT 

ˆ ( ) ( )a ag t g t
T
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 Consider again the three continuous-time 
signals:                          ,                             ,           
and

 The plot of the CTFT              of the sampled 
version of g1(t) is shown below

2.4 Implication of the Sampling 
Process
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 From the plot, it is apparent that we can 
recover any of its frequency-translated 
versions outside the 
baseband by passing through an ideal analog 
bandpass filter g1p(t) with a passband centered 
at

 For example, to recover the signal cos(34pt), 
it will be necessary to employ a bandpass
filter with a frequency response

2.4 Implication of the Sampling 
Process

 cos 20 6k t  

 20 6k   
cos(34 )t

0.1, (34 ) (34 )
( )

0, otherwiserH j
       

  


A small number
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 Likewise, we can recover the aliased 
baseband component cos(6pt) from the 
sampled version of either g2p(t) or g3p(t) by 
passing it through an ideal lowpass filter with 
a frequency response:

2.4 Implication of the Sampling 
Process

cos(6 )t

0.1, 0 (6 )
( )

0, otherwiserH j
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 There is no aliasing distortion unless the 
original continuous-time signal also contains 
the component

 Similarly, from either g2p(t) or g3p(t) we can 
recover any one of the frequency-translated 
versions, including the parent continuous-time 
signal cos(14πt) or cos(26πt) as the case may 
be, by employing suitable filters

2.4 Implication of the Sampling 
Process

cos(6 )t
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2.4 Implication of the Sampling 
Process
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 The conditions developed earlier assumed that 
the continuous-time signal is band-limited in 
the frequency range from dc to some frequency

.
 Such a continuous-time signal is commonly 

referred to as a lowpass signal

3 Sampling of Bandpass Signals

m
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 There are applications where the continuous-
time signal is bandlimited to a higher 
frequency range  a                        with

 Such a signal is usually referred to as the 
bandpass signal

 To prevent aliasing，a bandpass signal can of 
course be sampled at a rate greater than twice 
the highest frequency, i.e. by ensuring

3 Sampling of Bandpass Signals

L H    0L 

2T H  
66

 However, due to the bandpass spectrum of the 
continuous-time signal, the spectrum of the 
discrete-time signal obtained by sampling will 
have spectral gaps with no signal components 
present in these gaps

 Moreover, if       is very large, the sampling 
rate also has to be very large which may not 
be practical in some situations

3 Sampling of Bandpass Signals

H
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 A more practical approach is to use under-
sampling

 Let                        define the bandwidth of the 
bandpass signal

 Assume first that the highest frequency  
contained in the signal is an integer multiple 
of the bandwidth, i.e.,

3 Sampling of Bandpass Signals

H

H L   

( )H M  
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 We choose the sampling frequency      to 
satisfy the condition

which is smaller than         , the Nyquist rate
 Substitute the above expression for      in

3 Sampling of Bandpass Signals
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 As before,              consists of a sum of             
and replicas of               shifted by integer 
multiples of twice the bandwidth DWand
scaled by 1/T

 The amount of shift for each value of k
ensures that there will be no overlap between 
all shifted replicas            no aliasing

3 Sampling of Bandpass Signals

( )pG j ( )aG j
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 Figure below illustrates the idea behind

3 Sampling of Bandpass Signals
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 As can be seen, ga(t) can be recovered from 
gp(t) by passing it through an ideal bandpass 
filter with a passband given by                       
and a gain of T

 Note: Any of the replicas in the lower 
frequency bands can be retained by passing 
gp(t) through bandpass filters with passbands

, 
providing a translation to lower frequency 
ranges

3 Sampling of Bandpass Signals

L H   

( ) ( )L Hk k         1 1k M  
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 If is not an integer multiple of the band-
width                     , we can 
extend the band-width either to the right or to 
the left artificially 
so that the highest frequency contained in the 
bandpass signal is an integer multiple of the 
extended bandwidth. 

3 Sampling of Bandpass Signals

H
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 Figure below illustrates the idea behind

3 Sampling of Bandpass Signals
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 Analog anti-aliasing lowpass filter is the first 
circuit in the interface between the continuous-
time and the discrete-time domains. 

*1 Anti-Aliasing Filter Design
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 Ideally, the anti-aliasing filter           should have 
a lowpass frequency response 

 Such a “brick-wall” type frequency response 
cannot be realized using practical analog circuit 
components and, hence, must be approximated. 

*1 Anti-Aliasing Filter Design
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 A practical anti-aliasing filter should have 
 a passband magnitude response approximating unity 

with an acceptable tolerance, 
 a stopband magnitude response exceeding a minimum 

attenuation level
 an acceptable transition band separating the passband

and the stopband, with a transmission zero at infinity. 

 In many applications, it is also desirable to 
have a linear-phase response in the passband. 

*1 Anti-Aliasing Filter Design



77

 The passband edge frequency     , the stopband
edge frequency      , and the sampling frequency     

must satisfy the relation 

 The maximum aliasing distortion comes from 
the signal components in the replicas of the 
input spectrum adjacent to the baseband. 

*1 Anti-Aliasing Filter Design
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*1 Anti-Aliasing Filter Design
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 The the frequency                    is aliased into      , 
and if the acceptable amount of aliased spectrum 
at       is 

then the minimum attenuation of the anti-aliasing 
filter at       must also be       . 

*1 Anti-Aliasing Filter Design

0 T p  

10
120 logP A

     
 

p

0 P

p

80

 In practice, the sampling frequency chosen 
depends on the specific application. 

 In applications requiring minimal aliasing, the 
sampling rate is typically chosen to be 3 to 4 
times the passband edge       of the anti-aliasing 
analog filter. 

 In noncritical applications, a sampling rate of 
twice the passband edge       of the anti-aliasing 
analog filter is more than adequate. 

*1 Anti-Aliasing Filter Design

p
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 Requirements for the analog anti-aliasing filter 
can be relaxed by oversampling the analog 
signal and then decimating the high-sampling-
rate digital signal to the desired low-rate digital 
signal. 

 The decimation process can be implemented 
completely in the digital domain by first passing 
the high-rate digital signal through a digital anti-
aliasing filter and then downsampling its output. 

*1 Anti-Aliasing Filter Design
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*1 Anti-Aliasing Filter Design
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 Note that the transition band of the analog anti-
aliasing filter with a higher sampling rate is 
considerably more than 3 times that needed in 
the former situation.

 As a result, the filter specifications are met more 
easily with a much lower order analog filter. 

*1 Anti-Aliasing Filter Design
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 The output of the D/A converter is finally 
passed through an analog reconstruction or 
smoothing filter to eliminate all the replicas of 
the spectrum outside the baseband. 

*2 Reconstruction Filter Design
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 The impulse response of the lowpass  
reconstruction filter             is obtained by 
taking the inverse DTFT of :

The reconstructed analog equivalent 

*2 Reconstruction Filter Design
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 An ideal impulse-train D/A output          , 
followed by a linear, time-invariant analog 
circuit (zero-order hold operation) with an 
impulse response     that is a rectangular 
pulse of width T and unity height. 
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 The magnitude response of the zero-order hold 
circuit, has a lowpass characteristic with zeros at 
± T , ±2 T ,... , where                 is the sampling 
angular frequency. 
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 The zero-order hold circuit somewhat attenuates 
the unwanted replicas centered at multiples of 
the sampling frequency      . 
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 Moreover, it should also compensate for the 
amplitude distortion, more commonly called 
droop, caused by the zero-order hold circuit in 
the band from DC to .

*2 Reconstruction Filter Design
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 The general specifications for the analog 
reconstruction filter              can be easily 
determined if the effect of the droop is 
neglected. 

 If       denotes the highest frequency of the 
signal           that should be preserved at the 
output of the reconstruction filter, then the 
lowest-frequency component present in the 
residual images in the output of the zero-order 
hold circuit is of frequency      

*2 Reconstruction Filter Design
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 Therefore, if the system specification calls for a 
minimum attenuation of As dB of all frequency 
components in the residual images, then the 
reconstruction filter should provide at least an 
attenuation of                              dB at 

*2 Reconstruction Filter Design
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 For example, if the normalized value of       is 
0.7π, then the gain of the zero-order hold circuit 
at 0.7π is -7.2 dB. Now, the lowest normalized 
frequency of the residual images is given by 
1.3π. 

 For a minimum attenuation of 50 dB of all 
signal components in the residual images at the 
output of the zero-order hold, the reconstruction 
filter must therefore provide at least an 
attenuation of 42.8 dB at frequency 1.3π . 
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 The droop caused by the zero-order hold circuit 
can be compensated either before the D/A 
converter by means of a digital filter or after the 
zero-order hold circuit by the analog reconstruc-
tion filter. 

 For the latter approach, we observe that the 
cascade of the zero-order hold circuit and the 
analog reconstruction filter must have a 
frequency response of an ideal reconstruction 
filter following an ideal D/A converter. 

*2 Reconstruction Filter Design
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 Alternatively, the effect of the droop can be 
compensated by including a digital 
compensation filter G(z) prior to the D/A 
converter circuit with a modest increase in the 
digital hardware requirements. The digital 
compensation filter can be either an FIR or an 
IIR type. 

*2 Reconstruction Filter Design
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 The gain responses of the uncompensated and 
the droop-compensated D/A converters in the 
baseband. 
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 Since the above digital compensation filters 
have a periodic frequency response of 
period       , the replicas of the baseband 
magnitude response outside the baseband need 
to be suppressed sufficiently to ensure minimal 
effect from aliasing. 

*2 Reconstruction Filter Design

T


