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Part A: Time-Domain Sampling .
|
Necessity
Chapte r 4A ® Most signals in the real world are continuous
oo in time, such as speech, music, and images.
: : : : ® For processing these continuous-time signals
. . . e0o0 i -to-
Time-Domain Sampling p by fhgltal sy§t§ms, we need ‘Fhe analog 'to '
° digital and digital-to-analog interface circuits
to convert the continuous-time signals into

discrete-time digital form, and vice versa.



Part A: Time-Domain Sampling

\
Necessity

® [t is necessary to develop the relations between
the continuous-time signal and its discrete-time
equivalent in the time-domain and also in the
frequency-domain.

® The latter relations are important in determining
conditions under which the discrete-time
processing of continuous-time signals can be
done free of error under ideal situations.

1 Introduction .
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1 Introduction .
\
e Complete block-diagram is shown below
Anti-aliasing| | Digital Reconstruction| |
filter SH A/D Processing D/A filter

e Digital processing of a continuous-time signal
involves the following basic steps:

(1) Conversion of the continuous-time signal
into a discrete-time signal,

(2) Processing of the discrete-time signal,

(3) Conversion of the processed discrete-time
signal back into a continuous-time signal

1 Introduction .

e Conversion of a continuous-time signal into
digital form is carried out by an analog-to-
digital (A/D) converter

e The reverse operation of converting a digital
signal into a continuous-time signal is
performed by a digital-to-analog (D/A)
converter



1 Introduction

1 Introduction

e Since the A/D conversion takes a finite amount
of time, a sample-and-hold (S/H) circuit is used
to ensure that the analog signal at the input of
the A/D converter remains constant in
amplitude until the conversion is complete to
minimize the error in its representation
o S/H circuit often consists of a capacitor to store the

analogue voltage, and an electronic switch or gate to

alternately connect and disconnect the capacitor from
the analogue input.

1 Introduction

e The continuous-time signal to be processed
usually has a larger bandwidth than the
bandwidth of the available discrete-time
processors.

e To prevent aliasing, an analog anti-aliasing
filter is employed before the S/H circuit.
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1 Introduction

e To smooth the output signal of the D/A
converter, which has a staircase-like waveform,
an analog reconstruction filter is used.

e Both the anti-aliasing filter and the
reconstruction filter are analog lowpass
filters, we will go throw the theory behind the
design of such filters in following lecture

e Also, the most widely used IIR digital filter
design method is based on the conversion of
an analog lowpass prototype

12



1 Introduction

e The simplified block-diagram is shown below

Xy (t) x[}’l] Discrete- y[i’l] ya(t)
‘ N\ Ideal \ Time Ideal :>
V| Sampler 4 Processing Inter- polator
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1 Introduction

1 Introduction N

|

e Ideal interpolator: the infinite-precision D/A
converter in cascade with the ideal
reconstruction filter has been replaced with the
ideal discrete-time to continuous-time (DT-CT)
converter, which develops a continuous-time
equivalent y,(¢) of the processed discrete-time

signal y[n].
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e Ideal sampler: the S/H circuit in cascade with
an infinite precision A/D converter has been
replaced with the ideal continuous-time to
discrete-time (CT-DT) converter which
develops a discrete-time equivalent x[#] of the
continuous-time signal x,(¢)
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2 Sampling of Continuous-Time | 3¢
Signals .

e Often, a discrete-time sequence g[#] is
developed by uniformly sampling a continuous-
time signal g (¢) as indicated below

ST

t:nT:ga(nT) n=---,—2,—1, Oa la 2:

gln]=g.,(t)
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2.1 Sampling Process

2.1 Sampling Processing

e Let g (7) be a continuous-time signal that is
sampled uniformly at 7 = n7, generating the
sequence g[n] where g[n]= g (nT) with T
being the sampling period F, =1/T

glnl=g.(t) =g, (0T) n=--2,-1,0,1,2, -~

e The reciprocal of 7'is called the sampling
frequency Fy, 1.e., Q, =27zF, denoting the
sampling angular frequency.

t,=nT=n/F,=2m/Q,
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2.1 Sampling Processing

e Consider the continuous-time signal
g,(t)=Acosrf t+ @)= Acos(Qt +¢)

e The corresponding discrete-time signal is

gln]= Acos(QQ nT + @)

=4 cos(2g2" n+ @)= Acos(w,n+¢)

T

LU Q,7 :normalized digital angular frequency

b a){)
Q, 18

2.1 Sampling Processing

\
e If the unit of sampling period 7'is in seconds

e The unit of normalized digital angular frequency @,
is radians.

o The unit of normalized analog angular frequency QO
is radians/second.

e The unit of sampling frequency fT is hertz (Hz).
e The unit of analog frequencyfo is hertz (Hz).

— 2”90
QT

@, =Q,T
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Recall

e Consider three continuous-time signals of
frequencies 3 Hz, 7 Hz, and 13 Hz, are
sampled at a sampling rate of 10 Hz, i.e. with
T=0.1 sec, generating the three sequences

g,(t) = cos(67) g,[n]=cos(0.6/m)
g () =cos(ldm) EE)  gln]=cos(l.4m)
g,(t) = cos(26t) g,[n]=cos(2.6/m)

20



2.1 Sampling Processing

Recall

e Plots of these sequences and their parent time
functions
1

0.5+ \ ‘C‘

or' r

Amplitude

-0.5F ! J‘
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2.1 Sampling Processing

2.1 Sampling Processing

2.1 Sampling Process

Example :

e This fact can also be verified by observing that
g,[n]=cos(l.47m) =cos[Rx —1.47)n] = cos(0.6:m) = g,[n]
g;[n]=cos(2.6:m) =cos[2x +0.67r)n] = cos(0.6:m) = g,[n]

e [tis difficult to associate a unique continuous-time
function with each of these sequences.

e a continuous time signal of higher frequency acquiring
the identity of a sinusoidal sequence of lower frequency
after sampling is called aliasing.
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e [t is obvious that identical discrete time
signals may result from the sampling of more
than one distinct continuous-time function

e In fact, there exists an infinite number of
continuous-time signals, which when
sampled lead to the same discrete-time
signal
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e However, under certain conditions, it is

possible to relate a unique continuous-time
signal to a given discrete-time signals

e [f these conditions hold, then it is possible to

recover the original continuous-time signal
from its sampled values

24



2.2 Effect of Sampling in the
Frequency Domain

e Now, the frequency-domain representation of
g,(?) 1s given by its continuous-time Fourier
transform (CTFT):

G, =[ g0
e The frequency-domain representation of g[n]
is given by its discrete-time Fourier transform
(DTFT):
Ge")= Y glnk ™
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2.2 Effect of Sampling in the
Frequency Domain

2.2 Effect of Sampling in the
Frequency Domain

e g (7) is a continuous-time signal consisting of
a train of uniformly spaced impulses with the
impulse at # = n7 weighted by the sampled
value g (nT) of g (?) at that instant

P0) g,

:> ‘ |/ 2.(0)
0 ; 0| *1 I 141,
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|
e To establish the relation between G, (j2) and
G(e’”), we treat the sampling operation
mathematically as a multiplication of g (7) by
a periodic impulse train p(f):

840 —'(%—' g, (0

p(d)

g,()=g,)p(1)
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2.2 Effect of Sampling in the
Frequency Domain

e p(?) consists of a train of ideal impulses with a

period 7 as shown below
p(0)

-

=277 [0 T 2T
e The multiplication operation yields an
impulse train:

g, (0=g.(0p() =Y g.(nT)5(t~nT)

n=—ow

28



2.2 Effect of Sampling in the
Frequency Domain

e Two different forms of : G ,(jQ2)

e One form is given by the weighted sum of the
CTFTs :

G,/ =f[ igamma—nn} =3 g (T[S —nT)]

n=—w0

time-shifting property
G,(jQ)= 2, g,(nT)e ™"

n=—000
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2.2 Effect of Sampling in the
Frequency Domain

2.2 Effect of Sampling in the eoo
Frequency Domain H

\
e From the frequency-shifting property, the frequency
translated portions of G, (j€2) is given by:

G, (J(Q-kQ;))
e Hence, an alternative form of the CTFT of
is given by

G, (/==Y G,(@-kQ,)

e periodic function of Q) consisting of a sum of shifted
and scaled replicas of G_(;jQ) v shifted by integer
multiples of Q, and scaled by = .

T 31

e Two different forms of : G ,(jQ)

e second form: we note that p(¢) can be expressed as a
Fourier series:

1 & e 1S
pO==3 T =23 e
Tk:—oo Tk:—oo
where 5
Vs
Q==

The impulse train gp(t) therefore can be expressed as

1 &
&0~ 1 S Je.0)
k= 30

2.2 Effect of Sampling in the eoo
Frequency Domain H

e The term on the RHS of the previous equation
for k= 0 is the baseband portion of G, (jQ2),
and each of the remaining terms are the
frequency translated portions of G, (jC2)

32



2.2 Effect of Sampling in the
Frequency Domain

2.2 Effect of Sampling in the eoo
Frequency Domain

e Thus if €, >2Q, the corresponding normalized
digital angular frequency @, of the discrete-
time signal obtained by sampling the parent
continuous-time sinusoidal signal will be in the
range —T<w<7T.

No aliasing

33

2.2 Effect of Sampling in the
Frequency Domain

e On the other hand, if Q; >2Q, | the normalized
digital angular frequency will fold over into a
lower digital frequency @, =(2742,/£2;), in the
range —r<w<s because of aliasing.

e an overlap of the spectra
e To prevent aliasing, the sampling frequency €,

should be greater than 2 times the frequency €2,
of the sinusoidal signal being sampled.

‘ Sampling Theorem ‘

34

2.2 Effect of Sampling in the
Frequency Domain

e The frequency range —Q), /2<Q<Q, /218
called the baseband or Nyquist band

e Let g () be a band-limited signal with
G,(j)=0 for |Q>Q,,
then g (7) is uniquely determined by its samples
g,(nT), —0<n <o, if

Q,>20

where Q, = 27”

35

|
e [llustration of the frequency-domain effects of
time-domain sampling

G,(jO) PUR)
1 ) 1
. ST T
9,0 Q, -Q, Q, 20, 30,

lo
G, (/)

/T Q,-Q,

\/I_\ | -

-, -9, [0 @, Q, 20,

G,(jQ)
T Q,-Q,
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2.2 Effect of Sampling in the
Frequency Domain

o m=p [f O >20 ,g,(¢)canbe recovered
exactly from g (?) by passing it through an
ideal lowpass filter H .(jQ) with a gain 7" and
a cutoff frequency () greater than () and
less than ), — Q) as shown below

()

20 Aﬁég— H,(jOF— 2.0

p(0)
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2.2 Effect of Sampling in the
Frequency Domain

2.2 Effect of Sampling in the 000
Frequency Domain

e On the other hand, if Q, <2Q ', due to the
overlap of the shifted replicas of G (;Q) , the
spectrum G (jQ) cannot be separated by
filtering to recover because of the distortion
caused by a part of the replicas G (jQ)
immediately outside the baseband folded back
or aliased into the baseband.
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e The spectra of the filter and pertinent signals

are shown below
G,(jQ)

/T Q,-Q

\ m‘ I TN a

‘
0, 9, 0@, Q, 20,

H,(j€)

Jl—’ ¢ 38

2.2 Effect of Sampling in the 000
Frequency Domain

e Sampling Theorem
Let g,(?) be a band-limited signal with
CTFT
G,(jQ)=0 for |Q]>Q,
Theng,(¢) is uniquely determined by its
samples g[n]=g,(nT), —o<n<owif
0, >20

2
where 2, =%
T 40



2.2 Effect of Sampling in the
Frequency Domain

Q,>20
Q,/2
9)

m

20,
When Q, >2Q
When Q, <20

When Q, =20,

Nyquist condition
Folding frequency
Nyquist frequency
Nyquist rate
Oversampling
Undersampling

Critical sampling

Note: A pure sinusoid may not be recoverable from its

critically sampled version

2.2 Effect of Sampling in the
Frequency Domain
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2.2 Effect of Sampling in the eoo
Frequency Domain

Example

e In high-quality analog music signal
processing, a bandwidth of 20 kHz has been
determined to preserve the fidelity (f&E /%)

e Hence, in compact disc (CD) music systems,
a sampling rate of 44.1 kHz, which is slightly
higher than twice the signal bandwidth, is
used

42

2.2 Effect of Sampling in the eoo
Frequency Domain

Example

e Consider the three continuous time sinusoidal
signals at a rate of 7=0.1 sec :

g,(t) =cos(6xt), g,(t) = cos(14xt), g,(t) = cos(267t)
e Their corresponding CTFTs are:
G,(jQ) =7[6(Q—67)+5(Q+67)]
G,(jQ) =7[6(Q—-147)+5(Q+147)]
G,(jQ) = 7[5(Q—267)+5(Q+267)]

43

e These three transforms are plotted below
G

-6 0 6r
G,(j€)

T

e 0 l4r
G,(jQ)

3

6r 0 267 44




2.2 Effect of Sampling in the EE:'
Frequency Domain H
\
e These continuous-time signals sampled at a
rate of 7= 0.1 sec, i.e., with a sampling
frequency Q, =207z rad/sec
e The sampling process generates the
continuous-time impulse trains, g,,(9), &, (1),
and g3, (1)
e Their corresponding CTFTs are given by
G,(jQ) =10 G,(j(Q-kQ,)), 1<I<3
ke 45
2.2 Effect of Sampling in the EE:'

Frequency Domain

| — 9,
| o g,
— g, |
o gy
Il 950
w95

Amplitude
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2.2 Effect of Sampling in the eoe
Frequency Domain H
[
e Plots of the 3 CTFTs are shown below
CirUUOR 0 1,
Spectrum lines : OTNU * The cutoff
painted by Red ; Lo - Q| o frequency of
and Green _2‘0” ‘_6” o 6r < 26” the lowpass
colors G, (jo ] filter is
designate A 2t iloﬁ H,(/2) chosen as
aliases | 05t
‘ LT ‘Q | o Q =107
207 —14r 67 ¢! 67 147 2071 341
G “Qilo;r H,(/)
SARA { [
L L il |
407 267 20z 670 67 207267 40r 5 O
000
0000
- - [ X XX
2.2 Effect of Sampling in the eoe

Frequency Domain

e We now derive the relation between the
DTFT of g[n] and the CTFT of g,(7)
e To this end we compare
G(e’)= D glnle™
with n=-o
G,(jQ)= D g,(nT)e’™"

n=—0

and make use of

glnl=g,(nT), —o<n<oo

48



2.2 Effect of Sampling in the 2.2 Effect of Sampling in the

Frequency Domain Frequency Domain H
\ |
e Observation: We have e We arrive at the desired result given by
G(e)=G,(jO) R o
or, equivalently, et Ge™) = T Z‘ G, (J Q= jkQy ) oot
G,(jQ)=G(e") -
P ©=QT :%ZG (]%—jkﬂ j
e From the above observation and ke
|- _liG(ﬁ_.ZﬂkJ
G, (j) = 3 G,((Q-kQp) r="Ur
k=—o0 29 50
2.2 Effect of Sampling in the EE:' 2.2 Effect of Sampling in the §§:°
Frequency Domain H Frequency Domain H
\ |
e The relation derived on the previous slide can o [t follows that G(e/‘”)ls obtained from G (jQ) by
be alternately expressed as applying the mapping Q=w/T
G(e’) = z G, (jQ- jkQ,) e Now, the CTFT G, (jQ)is a periodic function
| pa— of () witha period Q_ =27/T
from G()=G (J )‘ P ! joy
P Q=0/T e Because of the mapping, the DTFT G(e’”) isa

or from G,(jQ) = G(e oy . periodic function of @ with a period 27

51 52



2.3 Recovery of the Analog Signal

e We now derive the expression for the output
g,(t) of the ideal lowpass reconstruction
filter / () as a function of the samples g[n]

e The impulse response /,(¢) of the lowpass
reconstruction filter is obtained by taking the
inverse DTFT of :

T, |9<Q,
0, Q>0

H,(jQ) = {

c

53

2.3 Recovery of the Analog Signal

e Therefore, the output g () of the ideal
lowpass filter is given by:

.(0=g,O)xh ()= gmh (t-nT)

n=—0

e Substituting £ (r) in the above and assuming
Q,=Q,/2=7x/T for simplicity, we get

A X sin[z(t —nT)/T]
ga(t)—n;Og[n] G —nT)/T

55

2.3 Recovery of the Analog Signal H

e Thus, the impulse response is given by
_ 1 N N A
h(t)= — [ H.(jQ) d0= o L}Ce dQ

_ sin(Qct) Co<i<w
Q,t/2°

e The input to the lowpass filter is the impulse
train g,,(7)

8,(1)= L elnble—nT)

54

2.3 Recovery of the Analog Signal H

e [t can be shown that when Q=Q,/2 n
sin Q2 ¢
h (1) = S22
Q,t/2
h,(0)=1 and /.(nT)=0 for n#0
e As aresult, from . sin[z(t—nT)/T]

g, (0= ;Og(n) e

we observe ¢ (rT)=g(r)=g,(rT)
for all integer values of 7 in the range —o0 < r <

56




2.3 Recovery of the Analog Signal

2.3 Recovery of the Analog Signal

e The ideal bandlimited interpolation process is
illustrated below

Amplitude
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2.4 Implication of the Sampling
Process

The relation &,(rT)=g(r)=g,(T), ris
integer, holds whether or not the condition of
the sampling theorem is satisfied

However, g ()= g,(¢) for all values of 7 only
if the sampling frequency Q) satisfies the
condition of the sampling theorem

58

.4 Implication of the Sampling b

Process

e Consider again the three continuous-time
signals: g, (r) = cos(67t) , g,(¢) = cos(14xt) ,
and g,(7) = cos(267t)

e The plot of the CTFTG, (Q2)of the sampled
version of g,(7) is shown below

. GI’)(]Q)J:IO{H"(-ng))
= Qi Q
207 -6 0 o6r 207

59

|
From the plot, it is apparent that we can

recover any of its frequency-translated
versions cos| (20k + 6) zt |outside the
baseband by passing through an ideal analog
bandpass filter g (¢) with a passband centered
at Q:(2Oki6)7z
For example, to recover the signal cos(3477),
it will be necessary to employ a bandpass
filter with a frequency response A small number
N
H () = {0.1, (34-A)z <|Q|<(34+A)r

. 60
0, otherwise



2.4 Implication of the Sampling 2.4 Implication of the Sampling see
Process Process .
\ |
e Likewise, we can recover the aliased e There is no aliasing distortion unless the
baseband component cos(6¢) from the original continuous-time signal also contains
sampled version of either g, (7) or g; (7) by the component cos(67t)

passing it through an ideal lowpass filter with

e Similarly, from either g, () or g, () we can
a frequency response: P P

recover any one of the frequency-translated

_ 0.1, 0<|Qf<(6 +®) s versions, including the parent continuous-time
H,(jQ)= . signal cos(14mt) or cos(26mf) as the case may
0, otherwise . )
be, by employing suitable filters
61 62
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2.4 Implication of the Sampling see eoe
Process . 3 Sampling of Bandpass Signals | @
Input analog signal ‘ [
g o e The conditions developed earlier assumed that
£, the continuous-time signal is band-limited in
ALV the frequency range from dc to some frequency
. Impulse train output of sampler 1Ou|pu| of bandpass reconstruction filter g-%n .
s I I s e Such a continuous-time signal is commonly
- tt : o referred to as a lowpass signal

-0.5 -0.5

‘H ‘ L

-1 A -1
0 2 4 6 8 10 0 02 04 06 08 1

Time Time
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3 Sampling of Bandpass Signals

3 Sampling of Bandpass Signals e

e There are applications where the continuous-
time signal is bandlimited to a higher
frequency range a ), < ‘Q‘ <Q,with Q, >0

e Such a signal is usually referred to as the
bandpass signal

e To prevent aliasing, a bandpass signal can of
course be sampled at a rate greater than twice
the highest frequency, i.e. by ensuring
Q. 220,

65

3 Sampling of Bandpass Signals

e However, due to the bandpass spectrum of the
continuous-time signal, the spectrum of the
discrete-time signal obtained by sampling will
have spectral gaps with no signal components
present in these gaps

e Moreover, if Q) is very large, the sampling
rate also has to be very large which may not
be practical in some situations

66

3 Sampling of Bandpass Signals e

e A more practical approach is to use under-
sampling

o Let AQ=0Q, —Q define the bandwidth of the
bandpass signal

o Assume first that the highest frequency Q)
contained in the signal is an integer multiple
of the bandwidth, i.e.,

Q, = M(AQ)

67

e We choose the sampling frequency Q) to
satisfy the condition
2Q,

Q, =2(AQ) =
which is smaller than 2Q),, the Nyquist rate

e Substitute the above expression for Q in
. I & : :
G, ()= 2, G, (/- k)

G,(jQ) :% i G, (jQ- j2k(AQ))

68



3 Sampling of Bandpass Signals

e As before, G,(j€2) consists of a sum of G,,(/C2)
and replicas of G,(j€2) shifted by integer
multiples of twice the bandwidth AQ and
scaled by 1/T

e The amount of shift for each value of £
ensures that there will be no overlap between
all shifted replicas wmmp 710 aliasing
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3 Sampling of Bandpass Signals

3 Sampling of Bandpass Signals

e As can be seen, g () can be recovered from
g () by passing it through an ideal bandpass
fﬁter wit_h a passband given by ) < ‘Q‘ <Q,
and a gain of T’

e Note: Any of the replicas in the lower
frequency bands can be retained by passing
g,(7) through bandpass filters with passbands

Q, k(A <|Q)<Q, —k(AQ) , 1<k<M-I
providing a translation to lower frequency

ranges
g 71

e Figure below illustrates the idea behind

G, ()
‘ / \ Q
7QH _QL O‘ Q[_ Q1-1
G,(j&)
[\ B $ ARSOA
_QH _QI_ o Q[_ QH
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3 Sampling of Bandpass Signals

|
e If (3, is not an integer multiple of the band-
width AQ=0Q,, -Q, , we can
extend the band-width either to the right or to
the left artificially
so that the highest frequency contained in the

bandpass signal is an integer multiple of the
extended bandwidth.
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3 Sampling of Bandpass Signals

e Figure below illustrates the idea behind

G, (/)
‘ 0/ 2 | (o)
-Q, -Q 0 Q  Q,
G,(jQ)
‘ o /—\. /—\‘ e Q
_QH _QI_ 0 Q[_ QH
73
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*1 Anti-Aliasing Filter Design

*1 Anti-Aliasing Filter Design .

e Ideally, the anti-aliasing filter #, (s) should have
a lowpass frequency response

() 1, \Q\<%
H,(jQ)=
0, \Q\z%

e Such a “brick-wall” type frequency response
cannot be realized using practical analog circuit
components and, hence, must be approximated.

75

1

e Analog anti-aliasing lowpass filter is the first
circuit in the interface between the continuous-
time and the discrete-time domains.

—— Aﬁ:stllr-) H—— S/H A/D Digital D/A Reconstruction
ﬁlterg processor filter
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*1 Anti-Aliasing Filter Design .

e A practical anti-aliasing filter should have

e a passband magnitude response approximating unity
with an acceptable tolerance,

e a stopband magnitude response exceeding a minimum
attenuation level

e an acceptable transition band separating the passband
and the stopband, with a transmission zero at infinity.

e In many applications, it is also desirable to
have a linear-phase response in the passband.
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*1 Anti-Aliasing Filter Design

|

e The passband edge frequency Q,, the stopband
edge frequency 2, , and the sampling frequency
Q, must satisfy the relation

Q<Q£%
P s 2

e The maximum aliasing distortion comes from
the signal components in the replicas of the

input spectrum adjacent to the baseband.
77

*1 Anti-Aliasing Filter Design

e The the frequency Q =Q,-Q, is aliased into €2, ,
and if the acceptable amount of aliased spectrum
at Q) is

ap = —ZOlogm[%j

then the minimum attenuation of the anti-aliasing
filter at QO ) must also be & .
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*1 Anti-Aliasing Filter Design .

‘Xa(/q Spectrum of aliased
A

component of input
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*1 Anti-Aliasing Filter Design .

e In practice, the sampling frequency chosen
depends on the specific application.

e In applications requiring minimal aliasing, the
sampling rate is typically chosen to be 3 to 4
times the passband edge Q , of the anti-aliasing
analog filter.

e In noncritical applications, a sampling rate of
twice the passband edge Q2 , of the anti-aliasing
analog filter is more than adequate.
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*1 Anti-Aliasing Filter Design *1 Anti-Aliasing Filter Design .
\ |
e Requirements for the analog anti-aliasing filter °
can be relaxed by oversampling the analog G, (jg2) Arenine fer
signal and then decimating the high-sampling- N Hua
rate digital signal to the desired low-rate digital . I I s
signal. —Q, n
e The decimation process can be implemented G,(/) H(j)
completely in the digital domain by first passing . B N e
the high-rate digital signal through a digital anti- Q

aliasing filter and then downsampling its output.

81
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*1 Anti-Aliasing Filter Design s *2 Reconstruction Filter Design e
\ |
e Note that the transition band of the analog anti- e The output of the D/A converter is finally
aliasing filter with a higher sampling rate is passed through an analog reconstruction or
considerably more than 3 times that needed in smoothing filter to eliminate all the replicas of
the former situation. the spectrum outside the baseband.

e As aresult, the filter specifications are met more
easily with a much lower order analog filter.

Anti-

iasi Digital R tructi
——| Aliasing S/H — A/D |- prolfels:or | D/A ecor‘:ls]t::c ion
filter
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*2 Reconstruction Filter Design

e The impulse response h,(t) of the lowpass
reconstruction filter H, (jQ) is obtained by
taking the inverse DTFT of :

il <, /2
=10 0>, 2

The reconstructed analog equivalent ¥, (1)

o sin[ﬂ(t—nT)/T]
n
n=—00 ﬂ(t_nT)/T

85

*2 Reconstruction Filter Design

|

e The magnitude response of the zero-order hold
circuit, has a lowpass characteristic with zeros at
+ T,x2T,.. , where Q =27/T is the sampling
angular frequency.
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|

e An ideal impulse-train D/A output y, (t) ,
followed by a linear, time-invariant analog
circuit (zero-order hold operation) with an
impulse response j, (;) that is a rectangular
pulse of width 7 and unity height.

U

v, (00— h(t) —2.0) ;ﬁb
v(Q =Y
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|

e The zero-order hold circuit somewhat attenuates
the unwanted replicas centered at multiples of
the sampling frequency Q, .

0.8 0.8

v, 6

0.6 S o6
3
z

0.4 04

0.2 0.2
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*2 Reconstruction Filter Design

|

e Moreover, it should also compensate for the
amplitude distortion, more commonly called
droop, caused by the zero-order hold circuit in
the band from DC to Q, /2 .
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*2 Reconstruction Filter Design | @

|

e Therefore, if the system specification calls for a
minimum attenuation of 4, dB of all frequency
components in the residual images, then the
reconstruction filter should provide at least an
attenuation of 4, +20log, | (j©,)|dB at @,
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e The general specifications for the analog
reconstruction filter H, (Q) can be easily
determined if the effect of the droop is
neglected.

e If Q denotes the highest frequency of the
signal y,(?) that should be preserved at the
output of the reconstruction filter, then the
lowest-frequency component present in the
residual images in the output of the zero-order
hold circuit is of frequency Q, =Q, - Q,
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e For example, if the normalized value of Q. is
0.7m, then the gain of the zero-order hold circuit
at 0.7m 1s -7.2 dB. Now, the lowest normalized
frequency of the residual images is given by
1.37.

e For a minimum attenuation of 50 dB of all
signal components in the residual images at the
output of the zero-order hold, the reconstruction
filter must therefore provide at least an
attenuation of 42.8 dB at frequency 1.3w .
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*2 Reconstruction Filter Design

|
e The droop caused by the zero-order hold circuit
can be compensated either before the D/A
converter by means of a digital filter or after the
zero-order hold circuit by the analog reconstruc-
tion filter.

For the latter approach, we observe that the
cascade of the zero-order hold circuit and the
analog reconstruction filter must have a
frequency response of an ideal reconstruction

filter following an ideal D/A converter.
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e The gain responses of the uncompensated and
the droop-compensated D/A converters in the
baseband.

Gain,dB

Normalized frequency

95

e Alternatively, the effect of the droop can be

compensated by including a digital
compensation filter G(z) prior to the D/A
converter circuit with a modest increase in the
digital hardware requirements. The digital
compensation filter can be either an FIR or an
IIR type.
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e Since the above digital compensation filters

have a periodic frequency response of

period Q, , the replicas of the baseband
magnitude response outside the baseband need
to be suppressed sufficiently to ensure minimal
effect from aliasing.
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