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Chapter 3 

Two major topics of this chapter:
 Discrete-Time Fourier Transform

 Discrete-Time Fourier Transform (DTFT)
 Basic Properties & Symmetry Relation
 DTFT Theorems

 Discrete-Time Signals and Systems in 
Frequency Domain

 Spectrum Analysis
 Frequency Response of an LTI Discrete-Time System
 Phase and Group Delay
 The Unwrapped Function 

Chapter 3B

Discrete-Time Signals and 
Systems in Frequency Domain
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Part B:  DTFT Analysis

1. Spectrum Analysis
1.1 Energy Density Spectrum
1.2 Band-limited Discrete-Time Signals

2. The Unwrapped Function
3. The Frequency Response of an LTI Discrete-time 

System
4. Phase and Group Delay
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1.1 Energy Density Spectrum

 The total energy of a finite-energy sequence 
g[n] is given by

 From Parseval’s relation we observe that
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1.1 Energy Density Spectrum

 The quantity

is called the energy density spectrum

 The area under this curve in the range          
divided by       is the energy of the sequence
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1.1 Energy Density Spectrum

 Recall that the auto-correlation sequence rgg[l]
of g[n] can be expressed as 

 As we know that the DTFT of g[－ l] is G(e－jω), 
therefore, the DTFT of                     is given by 
|G(ejω)|2, where we have used the fact that for a
real sequence g[n], G(e－jω)=G*(ejω)
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1.1 Energy Density Spectrum

 As a result, the energy density spectrum Sgg(ejω) 
of a real sequence g[n] can be computed by 
taking the DTFT of its auto-correlation 
sequence rgg(l), i.e.,
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1.1 Energy Density Spectrum

Example
 Compute the energy of the sequence

 Here

where
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1.1 Energy Density Spectrum

 Therefore, Compute the energy of the 
sequence

 Hence, hLP(n) is a finite-energy sequence
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1.2 Band-limited Discrete-Time 
Signals

 Discrete-time signal is a periodic function of 
ω with a period 2π.

 A full-band, finite-energy, discrete-time signal 
has a spectrum occupying the whole 
frequency range −π ≤ ω < π

 A band-limited discrete-time signal has a 
spectrum that is limited to a portion of the 
frequency range −π ≤ ω < π

12

1.2 Band-limited Discrete-Time 
Signals

 An ideal band-limited signal has a spectrum 
that is zero outside a finite frequency range ω 
0≤ ωa≤| ω|≤ ωb ≤ π , that is 

 However, an ideal band-limited signal cannot 
be generated in practice (Why?)
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1.2 Band-limited Discrete-Time 
Signals

 Band-limited signals are classified according 
to the frequency range where most of the 
signal’s energy is concentrated

 A lowpass, discrete-time signal has a spectrum 
occupying the frequency range  

-π < -ωp ≤ |ω|≤ ωp<π
where ωp is called the bandwidth of the signal

14

1.2 Band-limited Discrete-Time 
Signals

 A highpass, discrete-time signal has a spectrum 
occupying the frequency range ωp ≤ |ω|<π
where the bandwidth of the signal is π-ωp

 A bandpass, discrete-time signal has a spectrum 
occupying the frequency range 0< ωL ≤ |ω| ≤ ωH 
< π where ωH− ωL is the bandwidth

 A precise definition of the bandwidth depends on 
applications: 80% of the energy

15

2 The Unwrapped Phase Function

 In numerical computation, when the computed 
phase function is outside the range [-π,π], the 
phase is computed modulo 2π, to bring the 
computed value to this range. 

 As the result, the phase functions of some 
sequences exhibit discontinuities of 2π radians 
in the plot.

16

2 The Unwrapped Phase Function

 Consider an alternate type of phase function 
that is a continuous function of ω derived from 
the original phase function by removing the 
discontinuities of 2π. 

 The process of removing the discontinuities is 
called “unwrapping the phase,” and the new 
phase function will be denoted as             , with 
the subscript “c” indicating that it is a 
continuous function of ω. 

( )c 



5

17

2 The Unwrapped Phase Function

 The natural logarithm of the Fourier transform       
of the sequence x[n] can be expressed as 

 If             exists, then its derivative with 
respect to ω also exists and is given by 
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2 The Unwrapped Phase Function

 The derivative                of  with respect to ω is 
also given by 

 The derivative of θ(ω) with respect to ω is 
given by the imaginary part of the right-hand 
side 
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2 The Unwrapped Phase Function

 The phase function θ(ω) can thus be defined 
unequivocally by its derivative          : 

with the constraint
 The phase function as defined is called the 

unwrapped phase function. The unwrapped 
phase is a continuous function of ω. 
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2 The Unwrapped Phase Function

 If the above constraint is not satisfied, then the 
computed phase function will exhibit absolute 
jumps greater than π. 

 For unwrapping the phase, these jumps should 
be replaced with their 2π complements.

 In Matlab, this can be done using the M-file 
unwrap. 
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2 The Unwrapped Phase Function

 Unwrapped phase spectrum of the Fourier transform 
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3 The Frequency Response of an LTI 
Discrete-time System

 An LTI discrete-time system is completely 
characterized in the time-domain by its 
impulse response sequence {h[n]}

23

3 The Frequency Response of an LTI 
Discrete-time System

 Frequency response – A transform-domain 
representation of the LTI discrete-time system.

 Such transform-domain representations 
provide additional insights into the behavior 
of such systems.

 It is easier to design and implement these 
systems in the transformed-domain for certain 
applications.

24

3 The Frequency Response of an LTI 
Discrete-time System

 Most discrete-time signals encountered in 
practice can be represented as a linear 
combination of a very large, maybe infinite 
number of sinusoidal discrete-time signals of 
different angular frequencies.

 Since a sinusoidal signal can be expressed in 
terms of an exponential signal, the response 
of the LTI system to an exponential input 
is of practical  interest.



7

25

3.1 Definition

 An important property of an LTI system is  
that for certain types of input signals, called  
eigenfunctions, the output signal is the input 
signal multiplied by a complex constant.

 Consider the following LTI system. We 
consider one such eigenfunction as the input.

h[n]x[n] y[n]

26

3.1 Definition

 Its I-O relationship in the time domain is given 
by the convolution sum.

 If the input is of the form

then
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3.1 Definition

 Then we can write

 It implies for a complex exponential input 
signal       , the output of an LTI discrete-time 
system is also a complex exponential signal of 
the same frequency multiplied by a complex 
constant              

 Thus        is an eigenfunction of the system

[ ] ( )j j ny n H e e 
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3.1 Definition

 The quantity            is called the frequency 
response of the LTI discrete-time system that is 
a function of the input frequency ω and the 
system impulse response coefficients h[n]. 

 provides the frequency-domain 
description of the system.

( )jH e 

( )jH e 
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3.1 Definition

 In this course we shall be concerned with LTI 
discrete-time systems characterized by linear 
constant coefficient difference equations of 
the form:

0 0
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3.1 Definition

 Applying the DTFT to the difference equation 
and making use of the linearity and the time-
invariance properties, we arrive at the input-
output relation in the transform-domain as
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3.1 Definition

Definition
 The DTFT of the impulse response of an LTI 

system is called the Frequency Response of 
this system
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3.1 Definition

 In some cases, the magnitude function is 
specified in decibels as

where          is called the gain function
 The negative of the gain function

is called the attenuation or loss function

10( ) 20 log ( ) dBjH e  
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3.2  Frequency-Domain Characterization 
of the LTI Discrete-Time System

 The convolution sum description of the LTI  
discrete-time system is given by

 Taking the DTFT of both sides we obtain
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3.2  Frequency-Domain Characterization 
of the LTI Discrete-Time System

 Interchanging the summation signs on the 
right-hand side and rearranging we arrive at
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3.2  Frequency-Domain Characterization 
of the LTI Discrete-Time System

 It follows from the previous equation

 The output cannot contain sinusoidal 
components of frequencies that are not present 
in the input and the system. 

 As a result, if the output of a system has new 
frequency components, then the system is either 
nonlinear or time-varying or both. 

( ) ( ) / ( )j j jH e Y e X e  
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3.2  Frequency-Domain Characterization 
of the LTI Discrete-Time System

Example
 Convolution Sum Computation Using Fourier 

Transform
the input sequence                      with |α|< 1
the frequency response of the causal LTI system       

with |β|< 1, 
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3.2  Frequency-Domain Characterization 
of the LTI Discrete-Time System
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3.3 Frequency Response of Discrete-
Time Systems

 Frequency Response of LTI FIR Discrete-
Time Systems 

 Frequency Response of LTI IIR Discrete-Time 
Systems 

39

3.3-1 Frequency Response of LTI FIR 
Discrete-Time Systems 

 LTI FIR Discrete-Time System

 The frequency response is

which is seen to be a polynomial in 
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3.3-2 Frequency Response of LTI IIR 
Discrete-Time Systems 

 LTI IIR discrete-time systems are 
characterized by linear constant coefficient 
difference equations of the form

 The frequency response is
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3.4 Frequency Response Computation 
using Matlab

 The function freqz(h,w) can be used to 
determine the values of the frequency response 
vector h at a set of given frequency points w

 From h, the real and imaginary parts can be 
computed using the functions real and imag, 
and the magnitude and phase functions using 
the functions abs and angle

42

3.4 Frequency Response Computation 
using Matlab

Example
 Consider a moving-average filter

 Its frequency response is given by 
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3.4 Frequency Response Computation 
using Matlab

 The magnitude and phase responses of the 
moving-average filter are obtained 
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  Program 4_3 can be used to generate the magnitude 
and gain responses of an M-point moving average 
filter as shown in the next slide 44

3.4 Frequency Response Computation 
using Matlab

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

M
ag

ni
tu

de
/

Magnitude Response

M=5
M=14

0 0.2 0.4 0.6 0.8 1
-200

-150

-100

-50

0

50

100

Ph
as

e,
 d

eg
re

es

/

Phase Response

M=5
M=14



12

45

3.5 The Concept of Filtering

 One application of an LTI discrete-time system 
is to pass certain frequency components in an 
input sequence without any distortion (if 
possible) and to block other frequency 
components.

 Such systems are called digital filters and one 
of the main subjects of discussion in this 
course.

46

3.5 The Concept of Filtering

 The key to the filtering process is

 It expresses an arbitrary input as a linear 
weighted sum of an infinite number of 
exponential sequences, or equivalently, as a 
linear weighted sum of sinusoidal sequences.
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3.5 The Concept of Filtering

 By appropriately choosing the values of the 
magnitude function              of the LTI digital 
filter at frequencies corresponding to the 
frequencies of the sinusoidal components of 
the input, some of these components can be 
selectively heavily attenuated or filtered with 
respect to the others.

( )jH e 
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3.5 The Concept of Filtering

 To understand the mechanism behind the 
design of frequency-selective filters, consider a 
real-coefficient LTI discrete-time system 
characterized by a magnitude function.
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3.5 The Concept of Filtering

 We apply an input

to this system

 Because of linearity, the output of this system 
is of the form 
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3.5 The Concept of Filtering

 As

the output reduces to

 Thus, the system acts like a lowpass filter
 In the following example, we consider the 

design of a very simple digital filter.
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1
1 1[ ] ( ) cos( ( ))jy n A H e n    

51

3.5 The Concept of Filtering

Example
 Design of a high pass digital filter 

The input                                                       
which consists of two frequency components 
0.1 rad/sample and 0.4 rad/sample.

 For simplicity, assume the filter to be an FIR 
filter of length-3 with an impulse response:

 [ ] cos(0.1 ) cos(0.4 ) [ ]x n n n u n  
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3.5 The Concept of Filtering

 Note that h[n] is a linear phase FIR filter
which will be discussed in the latter chapters

 The frequency response of this filter is given 
by
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3.5 The Concept of Filtering

 The magnitude and phase functions are

 In order to block the low-frequency component, 
the magnitude function at ω = 0.1 should be 
equal to zero

 Likewise, to pass the high-frequency 
component, the magnitude function at ω = 0.4
should be equal to one

( ) 2 cosjH e      ( )   

54

3.5 The Concept of Filtering

 Thus, the two conditions that must be satisfied 
are

 Solving the above two equations we get

 Thus the output-input relation of the FIR filter 
is given by

2 cos 0.1 0 2 cos 0.4 1      

6.76195 13.456335   

[ ] 6.76195 [ ] 13.456335 [ 1]
6.76195 [ 2]

y n x n x n
x n

   
 
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3.5 The Concept of Filtering

 Figure below shows the plots generated by 
running program 4_4

56

3.5 The Concept of Filtering

 Figure below shows the frequency response 
of this highpass filter
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4  Definition of Phase and Group 
delays

 They are two important additional parameters 
that characterize the form of the output 
response y[n] of an LTI discrete-time system 
excited by an input signal x[n] composed of a 
weighted linear combination of sinusoidal 
sequences. 

58

4.1 Definition of Phase Delay 

 The output h[n] of a frequency-selective LTI 
discrete-time system with a frequency 
response                exhibits some delay relative
to the input caused by the nonzero phase 
response of the system

 For an input

( )jH e 

 ( ) arg ( )jH e   

0[ ] cos( )x n A n n      

59

4.1 Definition of Phase Delay 

The output is

 Thus, the output lags in phase by            
radians

 Rewriting the above equation we get

0
0 0[ ] ( ) cos( ( ) )jy n A H e n      

0( ) 

0
0

0

( )
[ ] ( ) cosjy n A H e n

  
       

  
 



Proof

60

4.1  Definition of Phase delays

 Phase delay

 The phase delay of s discrete-time signal leads 
to a phase shift in the output of the system with 
respect to the input, with the amount of shift 
depending on the frequency ω

 The output y[n] will not be a delayed replica of 
the input x[n] unless the phase delay is an 
integer. 

0
0

0

( )
( )p  

 
 


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4.1  Definition of Phase delays

 Now consider the case when the input signal 
contains many sinusoidal components with 
different frequencies that are not harmonically 
related

 In this case, each component of the input will 
go through different phase delays when 
processed by a frequency-selective LTI 
discrete-time system

 Then, the output signal, in general, will not 
look like the input signal. 62

4.2  Definition of Group delays

 To develop the necessary expression, consider 
a discrete-time signal x [n] obtained by a 
double-sideband suppressed carrier (DSB-SC)
modulation with a carrier frequency     of a 
low-frequency sinusoidal signal of frequency      

c
0

0

0 0

[ ] cos( ) cos( )

cos( ) cos( )
2 2

c

l u

l c u c

x n A n n
A An n



 

   

 

 

     
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4.2  Definition of Group delays

 Let the input be processed by an LTI discrete-
time system with a frequency response              
satisfying the condition

 The output y[n] is then given by

( )jH e 

( ) 1 forj
l uH e      

   [ ] cos ( ) cos ( )
2 2l l u u
A Ay n n n        

0
( ) ( ) ( ) ( )

cos cos
2 2

u l u l
cA n n

         
   

       
 

64

4.2  Definition of Group delays

 Note: The output is also in the form of a 
modulated carrier signal with the same carrier 
frequency    and the same modulation 
frequency     as the input.

 However, the two components have different 
phase lags relative to their corresponding 
components in the input

c
0
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4.2  Definition of Group delays

 Now consider the case when the modulated 
input is a narrow band signal with the 
frequencies       and      very close to the carrier 
frequency      , i.e.       is very small

 In the neighborhood of       we can express the 
phase response           as

by making a Taylor’s series expansion and 
keeping only the first two terms

u
0

l
c

c
( ) 

( )( ) ( ) ( )
c

c c
d

d  

      
 

   
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4.2  Definition of Group delays

 Using the above formula, we now evaluate the 
time delays of the carrier and the modulating 
components:

 In the case of the carrier signal we have

which is seen to be the same as the phase delay 
if only the carrier signal is passed through the 
system

( ) ( ) ( )
2

u l c

c c

     
 


  
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4.2  Definition of Group delays

 In the case of the modulating component we 
have

 The parameter

is called the group delay or envelope delay
caused by the system at              

0

( ) ( ) ( ) ( ) ( )
2

c

u l u l

u l

d
d  

         
    

 
    


( )( )

c

g c
d

d  

  
 

 

c 
68

4.2  Definition of Group delays

 The group delay is a measure of the linearity of 
the phase function as a function of the frequency

 It is the time delay between the waveforms of 
underlying continuous-time signals whose 
sampled versions, sampled at t = nT, are precisely 
the input and the output discrete-time signals

 If the phase function and the angular frequency ω
are in radians per second, then the group delay is 
in seconds
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4.3  Phase and Group delays

 Figure below illustrates the  evaluation of the 
phase delay and the group delay

70

4.3  Definition of Phase and Group 
delays

 As can be seen, the group delay            is the 
negative of the slope of the phase function         
at a frequency      , 

 Whereas the phase delay is the 
negative of the slope of the straight line from 
the origin to the point on the phase 
function plot.  

 0 g

 0 p

0

[ )]0 0ω ,  θ(ω

71

4.3 Phase and Group delays

 Figure below shows the waveform of an 
amplitude-modulated input and the output 
generated by an LTI system

72

4.3  Phase and Group delays

Example
 The phase function of the FIR  Filter 

is
 Hence its group delay is given by

[ ] [ ] [ 1] [ 2]y n x n x n x n      
( )   

( ) 1g  
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4.3  Phase and Group delays

Example
 Consider an LTI continuous-time system with 

a frequency response 
and excited by a narrow-band amplitude 
modulated continuous-time signal given by

where a(t) is a lowpass modulating signal with 
a band-limited continuous-time Fourier 
transform given by 

     aj
a aH j H j e q   

     cosa cx t a t t 

  00,    A j    
74

4.3  Phase and Group delays

 We assume that in the frequency range 

the frequency response of the continuous-time 
system has a constant magnitude and a linear 
phase; that is, 

0 0| |c c      

   a a cH j H j  

       

     
c

a
a a c c

c p c c g c

d
d
q

q q

t t



    



    
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4.3  Phase and Group delays

 The continuous-time Fourier transform of the 
input signal         is of the form 

of the LTI continuous-time system is 
given by   

      1
2a c cX j A j A j          

)(txa

 tya

     cosa g c c p cy t a t t            
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4.3  Phase and Group delays
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4.3  Phase and Group delays

 The group delay              is precisely the delay 
of the envelope         of the input signal          , 
whereas the phase delay is the delay of 
the carrier signal. 

 The carrier component at the output is delayed 
by the phase delay and the envelope of the 
output is delayed by the group delay relative to 
the waveform of the continuous-time input 
signal in the previous slide

 cg 

 cp 
 txa( )a t
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4.3  Phase and Group delays

 The waveform of the underlying continuous 
time output shows distortion when the group 
delay of the LTI system is not constant over 
the bandwidth of the modulated signal

 In the case of LTI systems with a wide-band 
frequency response, the two delays do not 
have any physical meanings. 
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4.3  Phase and Group delays

 If the distortion is unacceptable,  a delay 
equalizer is usually cascaded with the LTI 
system so that the overall group delay of the 
cascade is approximately linear over the 
band of interest.

 To keep the magnitude response of the 
parent LTI system unchanged, the equalizer 
must have a constant magnitude response at 
all frequencies

80

4.4 Phase and Group delay 
Computation Using Matlab

 Phase delay and group delay can be computed 
using the function phasedelay, grpdelay
respectively

 Figures in the next slide shows the phase delay 
and group delay of the DTFT
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4.4 Phase and Group delay 
Computation Using Matlab
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