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Chapter 3 

Two major topics of this chapter:
 Discrete-Time Fourier Transform

 Discrete-Time Fourier Transform (DTFT)
 Basic Properties & Symmetry Relation
 DTFT Theorems

 Discrete-Time Signals and Systems in 
Frequency Domain

 Spectrum Analysis
 Frequency Response of an LTI Discrete-Time System
 Phase and Group Delay
 The Unwrapped Function 

Chapter 3A

Discrete-Time 
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Part A:  DTFT

1. The Continuous-Time Fourier Transform
1.1 Definition     1.2 Energy Density Spectrum
1.3 Band-limited Continuous-Time Signals

2. The Discrete-Time Fourier Transform
2.1 Definition              2.2 Basic Properties
2.3 Symmetry Relations 2.4 Convergence Condition 

3. DTFT Computation Using MATLAB
4. DTFT Theorems
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1.1 Definition of CTFT

Definition

 The CTFT of a continuous-time signal xa(t) is 
given by

 Often referred to as the Fourier Spectrum or 
simply the Spectrum of the continuous-time 
signal

( ) ( ) j t
a aX j x t e dt

  


  

analysis equation
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1.1 Definition of CTFT

 The inverse CTFT of a Fourier Transform 
Xa(jΩ) is given by

 Often referred to as the Fourier integral
 A CTFT pair will be denoted as 

1( ) ( )
2

j t
a ax t X j e d


 


  

CTFT( ) ( )a ax t X j 

synthesis equation
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1.1 Definition of CTFT

 Ω is real and denotes the continuous-time 
angular frequency variable in rad/s

 In general, the CTFT is a continuous complex 
function of Ω in the range −∞<Ω< ∞ 

 It can be expressed in the polar form as

where
( )( ) ( ) aj

a aX j X j e    

( ) arg{ ( )}a aX j   
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1.1 Definition of CTFT

 The quantity |Xa(jΩ)| is called the magnitude 
spectrum and the quantity θa(Ω) is called the 
phase spectrum；both spectrums are real
functions of Ω

 In general, the CTFT Xa(jΩ) exists if xa(t)
satisfies the Dirichlet Conditions given on the 
next slide：
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1.1 Definition of CTFT

Dirichlet Conditions
(a) The signal xa(t) has a finite number of 
discontinuities and a finite number of 
maxima and minima in any finite interval

(b) The signal is absolutely integrable, i.e. 

( )ax t dt



 

10

1.1 Definition of CTFT

 If the Dirichlet Conditions are satisfied, then

converges to xa(t) at values of t except at 
values of t where xa(t) has discontinuities

 It can be shown that if xa(t) is absolutely 
integrable, then |Xa(jΩ)| <∞ proving the 
existence of the CTFT

1 ( )
2

j t
aX j e d
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1.1 Definition of CTFT

Example
 Find the CTFT of the following signal

 Solution:
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1.1 Definition of CTFT

-4 -2 0 2 4
0

0.5

1

1.5

2

 , in radians

M
ag

ni
tu

de

-4 -2 0 2 4
-1.5

-1

-0.5

0

0.5

1

1.5

 , in radians

P
ha

se
,in

 ra
di

an
s

-5 0 5 10
-0.2

0

0.2

0.4

0.6

0.8

1

t

A
m

pl
itu

de

 
0,

0.5
00,

t

a

te
x t

t

 
  







4

13

1.1 Definition of CTFT

Example
 Find the CTFT of the following signal

0( ) ( )ax t t t 




otjtj
oa edtettjX 



  )()( 

    ( ) ( ) 1j t
ax t t j t e dt
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1.2 Energy Density Spectrum

 The total energy x of a finite energy 
continuous-time complex signal xa(t) is given 
by

 The above expression can be rewritten as

2 *( ) ( ) ( )x a a ax t dt x t x t dt
 

 
  

*1( ) ( )
2

j t
x a ax t X j e d dt
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1.2 Energy Density Spectrum

 Interchanging the order of the integrations, we 
get

*
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1.2 Energy Density Spectrum

 Hence

 The above relation is more commonly known 
as the Parseval’s relation for finite energy 
continuous-time signals

2 21( ) ( )
2a ax t dt X j d
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1.2 Energy Density Spectrum

 The quantity |Xa(jΩ)|2 is called the energy 
density spectrum of xa(t) and usually denoted 
as

 The energy over a specified range of 
frequencies Ωa≤Ω≤Ωb can be computed using 

2( ) ( )xx aS X j  

,
1 ( )

2
b

a
x r xxS d
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1.3 Band-limited Continuous-Time 
Signals

 A full-band, finite-energy, continuous-time 
signal has a spectrum occupying the whole 
frequency range −∞<Ω< ∞

 A band-limited continuous-time signal has a 
spectrum that is limited to a portion of the 
frequency range −∞<Ω< ∞

19

1.3 Band-limited Continuous-Time 
Signals

 An ideal band-limited signal has a spectrum 
that is zero outside a finite frequency range 
Ωa≤|Ω|≤Ωb  , that is 

 However, an ideal band-limited signal cannot 
be generated in practice (Why?)

0, 0
( )

0,
a

a
b

X j
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1.3 Band-limited Continuous-Time 
Signals

 Band-limited signals are classified according 
to the frequency range where most of the 
signal’s is concentrated

 A lowpass, continuous-time signal has a 
spectrum occupying the frequency range 
|Ω|≤Ωp<∞ where Ωp is called the bandwidth of 
the signal



6

21

1.3 Band-limited Continuous-Time 
Signals

 A highpass, continuous-time signal has a 
spectrum occupying the frequency range 0<Ωp 
≤ |Ω|<∞ where the bandwidth of the signal is 
from Ωp to ∞

 A bandpass, continuous-time signal has a 
spectrum occupying the frequency range 0<ΩL 
≤ |Ω| ≤ΩH <∞ where ΩH−ΩL is the bandwidth

 A precise definition of the bandwidth 
depends on applications. 
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2.1 Definition of DTFT

Definition
 The discrete-time Fourier transform (DTFT) 

X(ejω) of a sequence x[n] is given by

 In general, X(ejω) is a continuous complex 
function of the real variable ω

( ) [ ]j j n

n
X e x n e
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2.1 Definition of DTFT

 From the definition:

 It should be noted that DTFT is a periodic 
function of ω with a period 2π

( 2 ) ( 2 )

2

( ) [ ]

[ ] [ ] ( )

j k j k n

n

j n j k n j n j

n n

X e x n e

x n e e x n e X e


  



 
  

 



  



 

   

   

24

2.1 Definition of DTFT

Example

 Determine the DTFT of the unit sample 
sequence {δ[n]}

 Consider the causal sequence x[n]=αnu[n]
| α |<1

( ) [ ] [0] 1j j n

n

X e n e
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2.1 Definition of DTFT

 The Inverse discrete-time Fourier transform
(IDTFT) of X(ejω) is given by

Proof

 It represents the Fourier series expansion of 
the periodic function X(ejω). 

 x[n] can be computed from X(ejω) using the 
Fourier integral.

-

1[ ] ( )
2

j j nx n X e e d 
  





[ ] ( )jx n X e 
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2.2 Basic Properties

 In general, is a complex function of 
the real variable ω and can be written as

 and are, respectively, the 
real and imaginary parts of , and are 
real functions of ω

re
1( ) { ( ) ( )}
2

j j jX e X e X e   

im
1( ) { ( ) ( )}

2
j j jX e X e X e

j
   

re im( ) ( ) ( )j j jX e X e jX e   

re ( )jX e 
im ( )jX e 

( )jX e 

( )jX e 
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2.2 Basic Properties

 can alternately be expressed as

where

 is called the magnitude function
 is called the phase function

 Both quantities are again real functions of ω

( )( ) ( )j j jX e X e e   

 ( ) arg ( )jX e  

( )jX e 

( )jX e 

( ) 
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2.1 Definition of DTFT

Simulation Results
 The magnitude and phase of the DTFT 

X(ejω)=1/(1－0.5e−jω) are shown below
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2.2 Basic Properties

 In many applications, the DTFT is called the
Fourier spectrum

 Likewise, | X(ejω) | and θ(ω) are called the    
magnitude and phase spectra

30

2.2 Basic Properties

 Note that, for any integer k

 θ(ω) is also a a periodic function of ω with a
period 2π

The phase function θ(ω) cannot be uniquely 
specified for any DTFT

 

( )

( ) 2

( ) ( )
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2.2 Basic Properties

 Unless otherwise stated, we shall assume that 
the phase function θ(ω) is restricted to the 
following range of values:

called the principal value
( )     

32

2.2 Basic Properties

 The relations between rectangular and polar 
forms of              are given below: ( )jX e 

re ( ) ( ) cos ( )j jX e X e   

im ( ) ( ) sin ( )j jX e X e   
2 2 2

re im( ) ( ) ( ) ( ) ( )j j j j jX e X e X e X e X e      

im

re

( )
tan ( )

( )

j

j

X e
X e
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2.3 Symmetry Relations

Complex Sequences
 For a given sequence x[n] with a Fourier 

transform          , the Fourier transforms of its 
time-reversed sequence x[-n] and the complex 
conjugate sequence x*[n] are 

( )jX e 

[ ] [ ] [ ] ( )j n j m j

n m

x n x n e x m e X e
 

 

 

       

       
*

* * - *j n j n j

n n
x n x n e x n e X e  

 


 

    
 

 

       
*

* * - j n j n j

n n

x n x n e x n e X e  
 

 

 

      
 

 
34

2.3 Symmetry Relations

Complex Sequences 
 A Fourier transform           is defined to be a 

conjugate-symmetric function of ω if 

 The Fourier transform            is a conjugate-
antisymmetric function of ω if 

( )jX e 

)()( *  jj eXeX 

)()( *  jj eXeX 

( )jX e 
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2.3 Symmetry Relations

Recall
 A complex sequence        can be rewritten as 

 An Fourier transform            can be rewritten 
as 

[ ]x n
[ ] [ ] [ ]od evx n x n x n 

( ) ( ) ( )j j j
ev odX e X e X e   

( )jX e 

[ ] [ ] [ ]re imx n x n jx n 

[ ] [ ] [ ]cs cax n x n x n 

( ) ( ) ( )j j j
re imX e X e jX e   

( ) ( ) ( )j j j
cs caX e X e X e   
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2.3 Symmetry Relations
(Complex sequences)

Sequence Discrete-Time Fourier Transform

][nx

][ nx 

[ ]x n 

]}[Re{ nx

Im{ [ ]}j x n

][nxcs

][nxca

)( jeX

)( jeX 
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2
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re eX
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2

j j j
csX e X e X e    
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2.3 Symmetry Relations

Real Sequences
 The real part            and imaginary part                 

of the Fourier transform of a real sequence  
are, respectively, even and odd functions of ω.

 is an even function of ω. θ(ω) is an 
odd function of ω. 

)( j
re eX )( j

im eX

)( jeX
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2.3 Symmetry Relations
(Real sequences)

Sequence Discrete-Time Fourier Transform

Symmetry 
relatin

][nx

][nxev

][nxod

)()()(  j
im

j
re

j ejXeXeX 

)( j
re eX

)( j
im ejX
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im
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)()(  jj eXeX 

)}(arg{)}(arg{  jj eXeX 
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2.4 Convergence Condition

 The Fourier transform            of x[n] is said to 
exist if the series

converges in some sense.
 Uniform convergence
 Mean-square convergence 

)( jeX

nj

n

j enxeX  



 ][)(
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2.4 Convergence Condition

 If x[n] is an absolutely summable sequence, 
i.e., if

Then

 Thus, the absolute summability of x[n] is a 
sufficient condition for the existence of the 
DTFT

[ ]
n

x n




 

- -
( ) [ ] [ ]j j n

n n
X e x n e x n
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2.4 Convergence Condition

Example
 The sequence for

is absolutely summable as

and its DTFT therefore converges to 
uniformly.

[ ] [ ]nx n n   1

0

1[ ]
1

n n

n n
n
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1 / (1 )je 
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2.4 Convergence Condition

Example
 Consider the DTFT

shown below

01,
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2.4 Convergence Condition

Example
 The inverse DTFT of is given by

 is a finite-energy sequence, but it is 
not absolutely summable.
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LPH e 
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2.4 Convergence Condition

 The mean-square convergence property of the 
sequence can be further illustrated by 
examining the plot of the function

for various values of K as shown next

[ ]LPh n

,
sin

( )
K

j j nc
LP K

n K

n
H e e

n
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2.4 Convergence Condition
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2.4 Convergence Condition

 As can be seen from these plots, there are 
ripples in the plot of                     around both 
sides of the point

 The number of ripples increases as K increases 
with the height of the largest ripple remaining 
the same for all values of K.

, ( )j
LP KH e 

c 

47

2.4 Convergence Condition

 As K goes to infinity, the condition

holds indicating the convergence of                  
to

 The oscillatory behavior of 
approximating                  in the mean  square 
sense at a point of discontinuity is known as 
the Gibbs phenomenon.

2

,lim ( ) ( ) 0j j
LP LP KK

H e H e d
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2.4 Convergence Condition

 The Fourier transform can also be defined for a 
certain class of sequences that are neither 
absolutely summable nor square-summable. 
 the unit step sequence 
 the sinusoidal sequence 
 the complex exponential sequence 

 For this type of sequences, DTFT representation 
is possible using the Dirac delta function δ(ω)
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2.4 Convergence Condition

 A Dirac delta function δ(ω) is a function of ω
with infinite height, zero width, and unit area

 It is the limiting form of a unit area pulse 
function as  goes to zero satisfying( )p  

0
lim ( ) ( )p d d    
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2.4 Convergence Condition

( )p 


/ 2 / 2
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2.4 Convergence Condition

 Consider the complex exponential sequence

 Its DTFT is given by

where            is an impulse function of ω and

0[ ] j nx n e 

0( ) 2 ( 2 )j

k
X e k    
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2.4 Convergence Condition

 The function

is a periodic function of ω with a period 2π 
and is called a periodic impulse train

 To verify that given above is indeed the 
DTFT of , we compute the inverse 
DTFT of

0( ) 2 ( 2 )j

k

X e k    




  

( )jX e 

0[ ] j nx n e 
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2.4 Convergence Condition

 Thus

where we have used the sampling property of 
the impulse function

0

0 0

0

0

1[ ] 2 ( 2 )
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j n
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Commonly Used DTFT Pairs

55

3 DTFT Computation Using MATLAB

 The Signal Processing Toolbox in Matlab 
includes a number of M-files to aid in the 
DTFT-based analysis of discrete-time signals. 

 Specifically, the functions that can be used are 
freqz, abs, angle, and unwrap. 

 In addition, the built-in Matlab functions real
and imag are also useful in some applications. 

56

3 DTFT Computation Using MATLAB

 The function freqz can be used to compute 
the values of the DTFT of a sequence, 
described as a rational function in the form of

at a prescribed set of discrete frequency points 
ω= ωl .
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3 DTFT Computation Using MATLAB

 For example, the statement 
H= freqz(num,den,ω)

returns the frequency response values as a 
vector H of a DTFT defined in terms of the 
vectors num and den containing the 
coefficients {pi} and {di} , respectively at a 
prescribed set of frequencies between 0 and 2π
given by the vector ω.

 For example   p=[0.008 －0.033 0.05 －0.033 0.008] 
d=[1 2.37 2.7 1.6 0.41] 58

3 DTFT Computation Using MATLAB
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4.1 DTFT Theorems

 Linearity
 Time-Reversal

 Shifting (in time and in frequency domain)
 [ ] jg n G e  

 0
0[ ] j n jg n n e G e  

 0 0( )[ ]j n je g n G e  
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4.1 DTFT Theorems

 Differentiation

 Convolution (in time and in frequency domain)
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4.1 DTFT Theorems

 Area Theorem (simple but useful)

 Parseval’s Theorem

Corollary——Energy is preserved
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4.1 DTFT Theorems

Example

Determine the DFT Y(ejω) of y[n]=(n+1)anu[n]
(|a|<1)

Step 1: Let x[n]=anu[n] . Therefore
y[n]=nx[n]+x[n]

Step 2: Calculate the DTFT X(ejω)

-

1( )
1

j
jX e

ae
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4.1 DTFT Theorems

Step 3: Calculate the DTFT of nx[n]

Step 4: Calculate the DTFT Y(ejω) of y[n]
   2 2

( )

1 1

j j j

j j

dX e aje aej j
d ae ae
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4.1 DTFT Theorems

Example

 Determine the DTFT V(ejω) of the sequence 
v[n] defined by

Solution：Using the time-shifting property,  we 
observe that the DTFT of is        and the 
DTFT of              is

0 1 0 1[ ] [ 1] [ ] [ 1]d v n d v n p n p n     

[ 1]n 
[ 1]v n 

je 

( )j je V e 
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4.1 DTFT Theorems

 Using the linearity property we  then obtain 
the frequency-domain representation of

as

• Solving the above equation we get

0 1 0 1[ ] [ 1] [ ] [ 1]d v n d v n p n p n     

0 1

0 1

( )
j

j
j

p p e
V e

d d e















0 1 0 1( ) ( )j j j jd V e d e V e p p e      
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4.2 Linear Convolution Using DTFT

 According to the convolution theorem

 An implication of this result is that the linear 
convolution y[n] of the sequences x[n] and 
h[n] can be performed as follows:

     [ ] [ ] [ ] j j jy n x n h n Y e X e H e     
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Step 1:  Compute the DTFTs X(ejω) and H(ejω)
of the sequences x[n] and h[n], respectively.

Step 2: Form the DTFT Y(ejω)= X(ejω)H(ejω)
Step 3: Compute the IDTFT y[n] of Y(ejω)

DTFT

DTFT

× IDTFT

x[n]

h[n]

X(ejω)

H(ejω)

Y(ejω)

4.2 Linear Convolution Using DTFT

y[n]


