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Two major topics of this chapter:
e Discrete-Time Fourier Transform
o Discrete-Time Fourier Transform (DTFT)

o Basic Properties & Symmetry Relation
o DTFT Theorems

e Discrete-Time Signals and Systems in

Frequency Domain
Spectrum Analysis
Frequency Response of an LTI Discrete-Time System

Phase and Group Delay

O o oo

The Unwrapped Function

Part A: DTFT

1. The Continuous-Time Fourier Transform

1.1 Definition 1.2 Energy Density Spectrum
1.3 Band-limited Continuous-Time Signals

2. The Discrete-Time Fourier Transform
2.1 Definition 2.2 Basic Properties
2.3 Symmetry Relations 2.4 Convergence Condition

3. DTFT Computation Using MATLAB
4. DTFT Theorems



1.1 Definition of CTFT

Definition

e The CTFT of a continuous-time signal x () is
given by | analysis equation |

X, (jQ) = ji x, (e "™ dt

e Often referred to as the Fourier Spectrum or
simply the Spectrum of the continuous-time
signal

1.1 Definition of CTFT

1.1 Definition of CTFT o

e (is real and denotes the continuous-time
angular frequency variable in rad/s

e In general, the CTFT is a continuous complex
function of © in the range —c0<Q< o0

e [t can be expressed in the polar form as
X, () =X, (jQ)|e

where
0,(Q) =arg{X,(jQ)}

e The inverse CTFT of a Fourier Transform
X,(jQ) is given by synthesis equation |

x, (1) = Lf X, (jQ)e’dQ
27

e Often referred to as the Fourier integral
e A CTFT pair will be denoted as

x, (=X, (jO)

1.1 Definition of CTFT o

e The quantity |X (jQ)| is called the magnitude
spectrum and the quantity 0 (Q) is called the
phase spectrum; both spectrums are real
functions of Q

e In general, the CTFT X (jQ) exists 1f x(¢)
satisfies the Dirichlet Conditions given on the
next slide:



1.1 Definition of CTFT

Dirichlet Conditions

(a) The signal x () has a finite number of
discontinuities and a finite number of
maxima and minima in any finite interval

(b) The signal is absolutely integrable, i.e.
.[w lx, (¢)| dt < o0

1.1 Definition of CTFT o
\
Example
e Find the CTFT of the following signal
e, t=20
x (t)=
(1) {0, 1<0
e Solution:
. © b iy 1 —(a+jQ) | 1
)(LI(‘]Q):J‘ e ej dt::—e J 0 =
’ a+ jQ a+ jQ

1

Amplitude

1.1 Definition of CTFT o

e [f the Dirichlet Conditions are satisfied, then
1 ew .
—| X, (jQ)edQ
[ X.09

converges to x,(f) at values of 7 except at
values of # where x(#) has discontinuities

e [t can be shown that if x (¢) 1s absolutely
integrable, then |X (jQ)| <co proving the
existence of the CTFT
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1.1 Definition of CTFT o

xa(t)z{e_’ =0 s0s

0, <0

Q.
t 12



1.1 Definition of CTFT

Example
e Find the CTFT of the following signal

x, (t)=5(t) & AGQ) = [ 8(t)e ™ dt =1

x,(6)=5(t—1,)
7

Xu(jQ) = j“; S(t —to)e ™ dt =e
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1.2 Energy Density Spectrum

1.2 Energy Density Spectrum

e Interchanging the order of the integrations, we
get

e © o
£ - j_an( ]Q)[ Loxa(t)e i dt}dQ
- L7 x:0)x, (00
27 9

1 o0
= LO|Xa Q) a0
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e The total energy &, of a finite energy
continuous-time complex signal x (7) is given

by ; ;
£ = j_w x, ()| dt = Loxa (O)x. (£)dt

e The above expression can be rewritten as

I | -
E. —J_wxa(t)[% j_an (jQ)e™ dQ}dt

14

1.2 Energy Density Spectrum

e Hence
J'OO
e The above relation is more commonly known

as the Parseval’s relation for finite energy
continuous-time signals

1 o0
x, (1) dt = -+ [ |x, G do

16



1.2 Energy Density Spectrum

e The quantity | X (jQ)[? is called the energy
density spectrum of x () and usually denoted

as 5
S.(Q) =]X,(j)

e The energy over a specified range of
frequencies ,<Q<Q, can be computed using

£ —ijg”s (Q)dQ
X,r 272_ Q, xx

17

1.3 Band-limited Continuous-Time
Signals

[

[

1.3 Band-limited Continuous-Time E
Signals H

e An ideal band-limited signal has a spectrum
that is zero outside a finite frequency range
Q <Q=Q, , that is

v % 0<|Q<Q,
R0, 0, <[] <o

e However, an ideal band-limited signal cannot
be generated in practice (///117)

19

e A full-band, finite-energy, continuous-time
signal has a spectrum occupying the whole
frequency range —0o<Q)< o0

e A band-limited continuous-time signal has a
spectrum that is limited to a portion of the
frequency range —0o<Q)< o0

18

1.3 Band-limited Continuous-Time eoe
Signals

e Band-limited signals are classified according
to the frequency range where most of the
signal’s is concentrated

e A lowpass, continuous-time signal has a
spectrum occupying the frequency range
|Q[<Q,<o0 where Q, is called the bandwidth of
the signal

20



1.3 Band-limited Continuous-Time
Signals

\

e A highpass, continuous-time signal has a
spectrum occupying the frequency range 0<€,
<|Q|<co where the bandwidth of the signal is
from €2, to o

e A bandpass, continuous-time signal has a
spectrum occupying the frequency range 0<Q,
<|Q| <Q,, <oo where Q,—€Q; is the bandwidth

e A precise definition of the bandwidth

depends on applications. ”

2.1 Definition of DTFT

2.1 Definition of DTFT o

e From the definition:

X(ej(a)+2k7r)) — i x[n]e—j(aHZkﬂ')n

— Z x[n]e—ja)ne—jZkﬂn — Z x[n]e—j(on — X(eja))
e [t should be noted that DTFT is a periodic

function of @ with a period 2n

23

Definition
e The discrete-time Fourier transform (DTFT)
X(e”) of a sequence x[n] is given by

X(e) = Z x[n]e "

n=—0w

e In general, X(&/) is a continuous complex
function of the real variable w

22

2.1 Definition of DTFT o

Example

e Determine the DTFT of the unit sample
sequence {J[n]}
X(®) =) Snle ™ =6[0]=1
e Consider the causal sequence x|[n]=a"u[n]

<] ) 1
X)) =Y ae” =——
@) ,,Z:(; l-ae™” ”



2.1 Definition of DTFT

2.2 Basic Properties

e The Inverse discrete-time Fourier transform
(IDTFT) of X(¢/®) is given by

1 ¢# , ,
xn]=—1 X(“)e'”"dw
L] 2 j—fr () Proof
x[n]«L— X (')
e It represents the Fourier series expansion of
the periodic function X(&/®).

e x[n] can be computed from X(&®) using the
Fourier integral. 25

2.2 Basic Properties

e In general, X (/) is a complex function of
the real variable @ and can be written as

X (€)= Xe(e’”) + jXim(e’)
Xee(e!”) = %{X(ej”’) +X ()N
Xin(e'”) = Zij{X(ef'”) X))

e X _(¢/) and X, (¢/”) are, respectively, the
real and imaginary parts of X(e’”) , and are
real functions of ® 2

2.1 Definition of DTFT o

e X(¢’) can alternately be expressed as

X(e) = ‘X(eAIW)‘ejﬁ(w)
where ,
O(w) = arg{X(e”” )}

o ‘X (e’ )‘ is called the magnitude function
O @(w) is called the phase function

e Both quantities are again real functions of @

27

Simulation Results x[n] =0.5" ,u[n]
e The magnitude and phase of the DTFT
X(@”)=1/(1—0.5¢7*) are shown below

Phase Response
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2.2 Basic Properties

e In many applications, the DTFT is called the
Fourier spectrum

e Likewise, | X(¢) | and (w) are called the
magnitude and phase spectra

29

2.2 Basic Properties

2.2 Basic Properties H

e Unless otherwise stated, we shall assume that
the phase function f(w) is restricted to the
following range of values:

—-1<0(w)<rm
called the principal value

31

e Note that, for any integer &
X(ejw) — ‘X(ejw)‘ /0@
eA/'(H(a))+2k7r)

=[x (")

e O(w) is also a a periodic function of w with a
period 27

The phase function #(w) cannot be uniquely
specified for any DTFT

30

2.2 Basic Properties H

e The relations between rectangular and polar
forms of X (e’) are given below:

X, (e’)= ‘X(ej“’ )‘ cos (w)

X, ()= \X(efw )\ sin O(w)

K@) = X)X (@) = X2(e) + X2, (")
X, (™)

tan 0((0) = m

32



2.3 Symmetry Relations

Complex Sequences

e For a given sequence x[n] with a Fourier
transform X (¢’”), the Fourier transforms of its
time-reversed sequence x[-n] and the complex
conjugate sequence x*[n] are

—0

x[-n] & i x-nle ™ =Y x{mle™" = X(e)

n m=o0

o el = Sk < x (o)

n=-0n n=-—0n

x%ﬂeifh@W{iﬂ¢Wf:fww

n=-o0 n=-o

2.3 Symmetry Relations

2.3 Symmetry Relations

Recall

e A complex sequence x[n] can be rewritten as
X[n] :xod[n]+xev[n] X[n] :xre[n]+jxim[n]
x[n]=x_[n]+x,[n]

e An Fourier transform.X (/) can be rewritten
B X(@) =X, @)+ X, ()

X)) = X,,e(ej‘") +jX, (™)

im

X)) =X,(")+ X, () N

Complex Sequences

e A Fourier transform X (¢’”) is defined to be a
conjugate-symmetric function of w if

X(E)=X"(e7)
e The Fourier transform X (¢/*)1s a conjugate-

antisymmetric function of @ if

X(e)=-X"(e)

34

2.3 Symmetry Relations §§E:
(Complex sequences) e
Sequence Discrete-Time Fourier Transform
x[n] X(e)
A-n] X(e )
X [-n] X" (&)
Re{x{n]} X ()= %{X(e"“) +X (7))
Jimix{n} X, ()= %{X(e"”)—X*(e”‘”)}
x.[n] X

Xea [I’l] JX (e s ) 36




2.3 Symmetry Relations

Real Sequences

e The real part X..(e/”)and imaginary part Xi.(e’®)
of the Fourier transform of a real sequence
are, respectively, even and odd functions of .

° \X (ej"’)‘ 1s an even function of w. (w) is an
odd function of w.

37

2.4 Convergence Condition

Y
- [ X XX
2.3 Symmetry Relations eoe
(Real sequences) H
Sequence Discrete-Time Fourier Transform
x[n] X('") =X, (") + jX,, (e")
X, [7] X,.(e")
Xod [I’l] inm (ejw)

X()=X"(e’)

X, (€)= X, ()

e The Fourier transform X (e’*) of x[n] is said to
exist if the series

0

X(e”) = Zx[n]e"j‘””

n=-ow
converges 1n some sense.
0 Uniform convergence
0 Mean-square convergence

39

Symmetry joy _ _ ~jo
remﬁn X%Ae )_ ‘Xm(e )
[X(e")| =[x

arg{X(e’®)} = —arg{X(e’”)} 38

[ X X ]

0000

[ X LX)

oo

2.4 Convergence Condition H

e If x[n] is an absolutely summable sequence,

ie., if i
Z‘x[n]‘ < 0
Then ij .
‘X(ej“’) = Z x[n]e ™| < Z ‘x[n]‘ < oo

e Thus, the absolute summability of x[n] is a
sufficient condition for the existence of the
DTFT

40
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2.4 Convergence Condition

Example
e The sequence x[n] = " u[n] for ‘a‘ <1
1s absolutely summable as

5 festn|= S o

n=-—u

1

=— <<

1=|a

and its DTFT X (e'j “) therefore converges to

1/(1-ae””) uniformly.

2.4 Convergence Condition

2.4 Convergence Condition

Example
e The inverse DTFT of H,,(e’”) is given by

hLP[n] :i.[j; ejwnda)

1 eja)‘.n e—ja)‘.n Sin C()Cn
= — - — - = N —oo<n<owo
2w\ jn jn n

e 7,,[n] is a finite-energy sequence, but it is
not absolutely summable.
43

Example
e Consider the DTFT
Ho (o) 1 O£|a)|Sa)C
e’’) =
r 0, o <<z

shown below
Hpp(e!”)

|

T — 0 . T
‘ N 42

2.4 Convergence Condition

e The mean-square convergence property of the
sequence /1, ,[n] can be further illustrated by
examining the plot of the function

-K

HLP,K (ejw) = Z

n=-—K n

sinw,n

— jon

for various values of K as shown next

44
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2.4 Convergence Condition

Amplitude
Amplitude

r I
0 02 04 06 08 1

oln oln 45

2.4 Convergence Condition

e As K goes to infinity, the condition

T

lim [ |H,,(e")~H,p (") do=0

K—w
-

holds indicating the convergence of H,, ( (¢")
to H,p(e™)

e The oscillatory behavior of H,, ,(e’)
approximating H,,(e’”) inthe mean square

sense at a point of discontinuity is known as
the Gibbs phenomenon.

47

2.4 Convergence Condition H

e As can be seen from these plots, there are
ripples in the plot of /,, (e/*) around both
sides of the point@w = @,

e The number of ripples increases as K increases
with the height of the largest ripple remaining
the same for all values of K.

46

2.4 Convergence Condition H

|
e The Fourier transform can also be defined for a
certain class of sequences that are neither
absolutely summable nor square-summable.
o the unit step sequence
O the sinusoidal sequence

o the complex exponential sequence

e For this type of sequences, DTFT representation

is possible using the Dirac delta function d(w)
48

1



2.4 Convergence Condition

e A Dirac delta function d(w) is a function of @
with infinite height, zero width, and unit area

e It is the limiting form of a unit area pulse
function p, (w) as A goes to zero satisfying

o0

lim[* p,(@)do= [ s@)do

A—0 J—

49

2.4 Convergence Condition

|
e Consider the complex exponential sequence

Jagn

x[n]=e
e Its DTFT is given by

X(”)= Y 2n5(w -, +2kr)
k=—o0

where 5((0) is an impulse function of  and

TSy <7 9

2.4 Convergence Condition H
|
1 Pi(@)
A
w
—A/2"A/2
50
[ X X J
[ XX L]
HE
2.4 Convergence Condition H

e The function
X(”) =Y 278(w -, + 2km)
k=—o0

1s a periodic function of @ with a period 27
and is called a periodic impulse train

e To verify that x (¢/*) given above is indeed the

DTFT of x[n] = /", we compute the inverse
DTET of X (')

52
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2.4 Convergence Condition

e Thus

x[n] = i I Z 278(w— w, + 2km)e’™" dw

— g k=—o
VA
= j 275(0— @)™ dw = ™"
-7

where we have used the sampling property of
the impulse function § (a))
53

3 DTFT Computation Using MATLAB

e The Signal Processing Toolbox in Matlab
includes a number of M-files to aid in the
DTFT-based analysis of discrete-time signals.

e Specifically, the functions that can be used are
freqz, abs, angle, and unwrap.

e In addition, the built-in Matlab functions real
and imag are also useful in some applications.

55

Commonly Used DTFT Pairs

Some Common Discrete-Time Fourier Transform Pairs

Sequence Transform
a[n] 1
a[n — ny] i
P 1(vn) Yo 2md(w + 2rk)
P oun] T+ 2 o TO(w +27k)
smé-::gn _Yl‘:t‘f“":] _ ‘u‘ Jwp
Oywp < w| <
glwon E?‘:—x 2 O(u. — wp + 2wk )
cos(wyn + o) T e [fj'%(u; — w1 2mk) + e (w + wy + Qﬂ'k:‘l}

el = I, 0€n<M sinfo(M+1/2]_— b2
0, Otherwise

3 DTFT Computation Using MATLAB | ¢

e The function Treqz can be used to compute
the values of the DTFT of a sequence,
described as a rational function in the form of

-joM

X(e./w) _Po +p1€-‘/%) +o+pye A
dy+de’ +--+de’™
at a prescribed set of discrete frequency points
W=y,

56
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3 DTFT Computation Using MATLAB

e For example, the statement
H= freqz(num,den,w)

returns the frequency response values as a
vector H of a DTFT defined in terms of the
vectors num and den containing the
coefficients {p,} and {d,} , respectively at a

prescribed set of frequencies between 0 and 2w
given by the vector w.

e For example p=[0.008 —0.033 0.05 —0.033 0.008]
d=[12.372.71.60.41] 57

4.1 DTFT Theorems

3 DTFT Computation Using MATLAB | °

e Linearity
e Time-Reversal
gl-n]< G(e)
e Shifting (in time and in frequency domain)

gln—n,] < e/ G(ej‘”)
e’ g[n] & G(ej(“"‘”"))

59

Real part
T T

Imaginary part
T T T T

T T
I I I I
F-—lm— 4 -k — ==+

e Exercise: Program 3 1.m

4.1 DTFT Theorems

58

e Differentiation

ngln] < j—-

dG (ef“’ )

e Convolution (in time and in frequency domain)

________

————————— ! 60
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4.1 DTFT Theorems e
\
e Area Theorem (simple but useful)
1 0 =
q01=-] "X(e)do X ()= xin]
e Parseval’s Theorem 7
= * 1 z i * i
nlh[nl=—| Gl |H (" )dw
2 gl i = 6(e”)H (¢
Corollary Energy 1S preserved
|x[n =
61
4.1 DTFT Theorems e
\
Example
Determine the DFT Y(e/®) of y[n]=(n+1)a"u[n]
(la[<1)
Step 1: Let x[n]=a"u[n] . Therefore
yln]=nx[n]+x[n]
Step 2: Calculate the DTFT X(&/®)
: 1
JON _
X(e™)= 1—ae’ 63

[ X X J
0000
H
Type of Property Sequence DTFT .
g(n) G(e’“’)
h(l’l) H(e.m)
Linearity ag(n)+ ph(n) aG(ej“) n ﬁH(ej“’)
Time-shifting gln—n,) e/ G(ej @ )
F - ) .
l;ell(ll;ltill:;y e/mong(n) G(e/(w—wo))
Differentiation i i
) P
Convolution g(n)*h(n) Gle™)H(e™)
Modulation g(n)h(n) L I 5 ejy )H (EI(M))M
P I N () L (o
relation Tl )= [ole Wb
[ X X J
0000
i
4.1 DTFT Theorems 4
[
Step 3: Calculate the DTFT of nx[n]
dX(e) . —gje’  ae™?
- N2 T SN2
do (l—ae_’“’) (l—ae_’“’)
Step 4: Calculate the DTFT Y(¢/®) of y[n]
i —jo 1 1
Y(e]w): = i\ 2 + —jo = S \2
(l—ae_]"') 1-ae (l—ae_’”’)

64
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4.1 DTFT Theorems

Example
e Determine the DTFT V() of the sequence
v[n] defined by
dyv[n]+dyn-1]= p,o[n]+ p,o[n—1]

Solution: Using the time-shifting property, we
observe that the DTFT of 6[n —1] is ¢/* and the
DTFT of v[n—1] is e "V (e’”)

65

4.2 Linear Convolution Using DTFT

4.1 DTFT Theorems .

e According to the convolution theorem
y[n] = x[n]* h[n] < Y(ej‘”) = X(ej“’)H(ej“’)
e An implication of this result is that the linear

convolution y[#n] of the sequences x[n] and
h[n] can be performed as follows:

67

|
e Using the linearity property we then obtain
the frequency-domain representation of

dyv[n]+dpn—1]= p,o[n]+ p,o[n—1]
dyV (") +d\e"V (") = py + pe™”
* Solving the above equation we get

—-jo
e J

i@ p +p
Ve =
, +de
66

4.2 Linear Convolution Using DTFT

Step 1: Compute the DTFTs X(¢/®) and H(e/®)
of the sequences x[#] and A[n], respectively.

Step 2: Form the DTFT Y(e*)= X(&“)H(e/®)
Step 3: Compute the IDTFT y[n] of Y(&®)
X(&®)

68
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