Chapter 3

Discrete-Time Fourier Transform (DTFT)

Chapter 3A

Discrete-Time Fourier Transform

Chapter 3

Two major topics of this chapter:

- Discrete-Time Fourier Transform
 - □ Discrete-Time Fourier Transform (DTFT)
 - Basic Properties & Symmetry Relation
 - DTFT Theorems
- Discrete-Time Signals and Systems in Frequency Domain
 - □ Spectrum Analysis
 - □ Frequency Response of an LTI Discrete-Time System
 - □ Phase and Group Delay
 - □ The Unwrapped Function

2

Part A: DTFT

- 1. The Continuous-Time Fourier Transform
 - 1.1 Definition 1.2 Energy Density Spectrum
 - 1.3 Band-limited Continuous-Time Signals
- 2. The Discrete-Time Fourier Transform
 - **2.1** Definition **2.2** Basic Properties
 - 2.3 Symmetry Relations 2.4 Convergence Condition
- 3. DTFT Computation Using MATLAB
- 4. DTFT Theorems

1.1 Definition of CTFT

1.1 Definition of CTFT

Definition

• The CTFT of a continuous-time signal $x_a(t)$ is given by analysis equation

$$X_a(j\Omega) = \int_{-\infty}^{\infty} x_a(t) e^{-j\Omega t} dt$$

• Often referred to as the Fourier Spectrum or simply the Spectrum of the continuous-time signal

• The inverse CTFT of a Fourier Transform $X_a(j\Omega)$ is given by synthesis equation

$$x_a(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_a(j\Omega) e^{j\Omega t} d\Omega$$

- Often referred to as the Fourier integral
- A CTFT pair will be denoted as

$$x_a(t) \stackrel{\text{CTFT}}{\longleftrightarrow} X_a(j\Omega)$$

6

1.1 Definition of CTFT

7

5

- Ω is **real** and denotes the continuous-time **angular frequency variable** in rad/s
- In general, the CTFT is a continuous complex function of Ω in the range -∞<Ω<∞
- It can be expressed in the polar form as

where
$$X_a(j\Omega) = \big| X_a(j\Omega) \big| e^{j\theta_a(\Omega)}$$

$$\theta_a(\Omega) = \arg\{X_a(j\Omega)\}$$

1.1 Definition of CTFT

- The quantity $|X_a(j\Omega)|$ is called the magnitude spectrum and the quantity $\theta_a(\Omega)$ is called the phase spectrum; both spectrums are real functions of Ω
- In general, the CTFT $X_a(j\Omega)$ exists if $x_a(t)$ satisfies the Dirichlet Conditions given on the next slide:

8

i.i beliiittoii oi cii i

Dirichlet Conditions

- (a) The signal $x_a(t)$ has a **finite number of** discontinuities and a **finite number of** maxima and minima in any finite interval
- (b) The signal is **absolutely integrable**, i.e.

$$\int_{-\infty}^{\infty} |x_a(t)| \, dt < \infty$$

9

1.1 Definition of CTFT

Example

• Find the CTFT of the following signal

$$x_a(t) = \begin{cases} e^{-\alpha t}, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

• Solution:

$$X_a(j\Omega) = \int_0^\infty e^{-\alpha t} e^{-j\Omega t} dt == \frac{1}{\alpha + j\Omega} e^{-(\alpha + j\Omega)t} \Big|_0^\infty = \frac{1}{\alpha + j\Omega}$$

1.1 Definition of CTFT

• If the Dirichlet Conditions are satisfied, then

$$\frac{1}{2\pi}\int_{-\infty}^{\infty}X_a(j\Omega)e^{j\Omega t}d\Omega$$

converges to $x_a(t)$ at values of t except at values of t where $x_a(t)$ has discontinuities

• It can be shown that if $x_a(t)$ is absolutely integrable, then $|X_a(j\Omega)| < \infty$ proving the existence of the CTFT

10

1.1 Definition of CTFT

1.1 Definition of CTFT

Example

• Find the CTFT of the following signal

$$x_{a}(t) = \delta(t) \leftrightarrow \Delta(j\Omega) = \int_{-\infty}^{\infty} \delta(t)e^{-j\Omega t}dt = 1$$

$$x_{a}(t) = \delta(t - t_{0})$$

$$\updownarrow$$

$$X_{a}(j\Omega) = \int_{-\infty}^{\infty} \delta(t - t_{0})e^{-j\Omega t}dt = e^{-j\Omega t_{0}}$$

13

15

1.2 Energy Density Spectrum

• Interchanging the order of the integrations, we get

$$\mathcal{E}_{x} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_{a}^{*}(j\Omega) \left[\int_{-\infty}^{\infty} X_{a}(t) e^{-j\Omega t} dt \right] d\Omega$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X_{a}^{*}(j\Omega) X_{a}(j\Omega) d\Omega$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| X_{a}(j\Omega) \right|^{2} d\Omega$$

1.2 Energy Density Spectrum

• The total energy \mathcal{E}_x of a finite energy continuous-time complex signal $x_a(t)$ is given by

$$\mathcal{E}_{x} = \int_{-\infty}^{\infty} \left| x_{a}(t) \right|^{2} dt = \int_{-\infty}^{\infty} x_{a}(t) x_{a}^{*}(t) dt$$

• The above expression can be rewritten as

$$\mathcal{E}_{x} = \int_{-\infty}^{\infty} x_{a}(t) \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} X_{a}^{*}(j\Omega) e^{-j\Omega t} d\Omega \right] dt$$

14

1.2 Energy Density Spectrum

• Hence

$$\int_{-\infty}^{\infty} \left| x_a(t) \right|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| X_a(j\Omega) \right|^2 d\Omega$$

• The above relation is more commonly known as the Parseval's relation for finite energy continuous-time signals

1.2 Energy Density Spectrum

• The quantity $|X_a(j\Omega)|^2$ is called the energy density spectrum of $x_a(t)$ and usually denoted as

$$S_{xx}(\Omega) = \left| X_a(j\Omega) \right|^2$$

• The energy over a specified range of frequencies $\Omega_a \leq \Omega \leq \Omega_b$ can be computed using

$$\mathcal{E}_{x,r} = \frac{1}{2\pi} \int_{\Omega_a}^{\Omega_b} S_{xx}(\Omega) d\Omega$$

17

1.3 Band-limited Continuous-Time Signals

• An ideal band-limited signal has a spectrum that is zero outside a finite frequency range $\Omega_a \leq |\Omega| \leq \Omega_b$, that is

$$X_{a}(j\Omega) = \begin{cases} 0, & 0 \le |\Omega| \le \Omega_{a} \\ 0, & \Omega_{b} \le |\Omega| \le \infty \end{cases}$$

• However, an ideal band-limited signal cannot be generated in practice (*Why*?)

1.3 Band-limited Continuous-Time Signals

- A full-band, finite-energy, continuous-time signal has a spectrum occupying the whole frequency range $-\infty < \Omega < \infty$
- A band-limited continuous-time signal has a spectrum that is limited to a portion of the frequency range $-\infty < \Omega < \infty$

18

1.3 Band-limited Continuous-Time Signals

- Band-limited signals are classified according to the frequency range where most of the signal's is concentrated
- A lowpass, continuous-time signal has a spectrum occupying the frequency range $|\Omega| \le \Omega_p < \infty$ where Ω_p is called the bandwidth of the signal

1.3 Band-limited Continuous-Time Signals

- A highpass, continuous-time signal has a spectrum occupying the frequency range $0<\Omega_p$ $\leq |\Omega|<\infty$ where the bandwidth of the signal is from Ω_p to ∞
- A bandpass, continuous-time signal has a spectrum occupying the frequency range $0 < \Omega_L$ $\leq |\Omega| \leq \Omega_H < \infty$ where $\Omega_H \Omega_L$ is the bandwidth
- A precise definition of the bandwidth depends on applications.

21

2.1 Definition of DTFT

• From the definition:

$$X(e^{j(\omega+2k\pi)}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j(\omega+2k\pi)n}$$

$$=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}e^{-j2k\pi n}=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}=X(e^{j\omega})$$

• It should be noted that DTFT is a periodic function of ω with a period 2π

2.1 Definition of DTFT

Definition

• The discrete-time Fourier transform (DTFT) $X(e^{j\omega})$ of a sequence x[n] is given by

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

• In general, $X(e^{j\omega})$ is a continuous complex function of the real variable ω

22

2.1 Definition of DTFT

Example

• Determine the DTFT of the unit sample sequence $\{\delta[n]\}$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \delta[n]e^{-j\omega n} = \delta[0] = 1$$

• Consider the causal sequence $x[n] = \alpha^n u[n]$ | α |<1

$$X(e^{j\boldsymbol{\omega}}) = \sum_{n=0}^{\infty} \boldsymbol{\alpha}^n e^{-j\boldsymbol{\omega}n} = \frac{1}{1 - \boldsymbol{\alpha}e^{-j\boldsymbol{\omega}}}$$

2.1 Definition of DTFT

• The Inverse discrete-time Fourier transform (IDTFT) of $X(e^{i\omega})$ is given by

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{j\omega})$$
Proof

- It represents the Fourier series expansion of the periodic function $X(e^{j\omega})$.
- x[n] can be computed from $X(e^{j\omega})$ using the Fourier integral.

25

2.2 Basic Properties

• $X(e^{j\omega})$ can alternately be expressed as

$$X(e^{j\omega}) = |X(e^{j\omega})|e^{j\theta(\omega)}$$

where

$$\theta(\omega) = \arg\left\{X(e^{j\omega})\right\}$$

- $\square |X(e^{j\omega})|$ is called the magnitude function
- \Box $\theta(\omega)$ is called the phase function
- Both quantities are again real functions of ω

2.2 Basic Properties

• In general, $X(e^{j\omega})$ is a complex function of the real variable ω and can be written as

$$X(e^{j\omega}) = X_{re}(e^{j\omega}) + jX_{im}(e^{j\omega})$$

$$X_{re}(e^{j\omega}) = \frac{1}{2} \{X(e^{j\omega}) + X^*(e^{j\omega})\}$$

$$X_{im}(e^{j\omega}) = \frac{1}{2j} \{X(e^{j\omega}) - X^*(e^{j\omega})\}$$

• $X_{\rm re}(e^{j\omega})$ and $X_{\rm im}(e^{j\omega})$ are, respectively, the real and imaginary parts of $X(e^{j\omega})$, and are real functions of ω

26

2.1 Definition of DTFT

Simulation Results $x[n] = 0.5^n \mu[n]$

• The magnitude and phase of the DTFT

 $X(e^{j\omega})=1/(1-0.5e^{-j\omega})$ are shown below

2.2 Basic Properties

- In many applications, the DTFT is called the Fourier spectrum
- Likewise, $|X(e^{j\omega})|$ and $\theta(\omega)$ are called the magnitude and phase spectra

29

2.2 Basic Properties

• Unless otherwise stated, we shall assume that the phase function $\theta(\omega)$ is restricted to the following range of values:

$$-\pi \leq \theta(\omega) \leq \pi$$

called the principal value

2.2 Basic Properties

• Note that, for any integer k

$$X(e^{j\omega}) = |X(e^{j\omega})| e^{j\theta(\omega)}$$
$$= |X(e^{j\omega})| e^{j(\theta(\omega) + 2k\pi)}$$

• $\theta(\omega)$ is also a a periodic function of ω with a period 2π

The phase function $\theta(\omega)$ cannot be uniquely specified for any DTFT

30

2.2 Basic Properties

• The relations between rectangular and polar forms of $X(e^{j\omega})$ are given below:

$$\begin{split} X_{\text{re}}(e^{j\omega}) &= \left| X(e^{j\omega}) \right| \cos \theta(\omega) \\ X_{\text{im}}(e^{j\omega}) &= \left| X(e^{j\omega}) \right| \sin \theta(\omega) \\ \left| X(e^{j\omega}) \right|^2 &= X(e^{j\omega}) X^*(e^{j\omega}) = X_{\text{re}}^2(e^{j\omega}) + X_{\text{im}}^2(e^{j\omega}) \\ \tan \theta(\omega) &= \frac{X_{\text{im}}(e^{j\omega})}{X_{\text{re}}(e^{j\omega})} \end{split}$$

2.3 Symmetry Relations

Complex Sequences

• For a given sequence x[n] with a Fourier transform $X(e^{j\omega})$, the Fourier transforms of its time-reversed sequence x[-n] and the complex conjugate sequence $x^*[n]$ are

$$x[-n] \leftrightarrow \sum_{n=-\infty}^{\infty} x[-n]e^{-j\omega n} = \sum_{m=\infty}^{\infty} x[m]e^{j\omega m} = X(e^{-j\omega})$$

$$x^*[n] \leftrightarrow \sum_{n=-\infty}^{\infty} x^*[n]e^{-j\omega n} = \left(\sum_{n=-\infty}^{\infty} x[n]e^{j\omega n}\right)^* = X^*(e^{-j\omega})$$

$$x^*[-n] \leftrightarrow \sum_{n=-\infty}^{\infty} x^*[-n]e^{-j\omega n} = \left(\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}\right)^* = X^*(e^{j\omega})$$
33

2.3 Symmetry Relations

Recall

- A complex sequence x[n] can be rewritten as $x[n] = x_{od}[n] + x_{ev}[n]$ $x[n] = x_{re}[n] + jx_{im}[n]$ $x[n] = x_{ce}[n] + x_{ce}[n]$
- An Fourier transform $X(e^{j\omega})$ can be rewritten

as
$$X(e^{j\omega}) = X_{ev}(e^{j\omega}) + X_{od}(e^{j\omega})$$
$$X(e^{j\omega}) = X_{re}(e^{j\omega}) + jX_{im}(e^{j\omega})$$
$$X(e^{j\omega}) = X_{cs}(e^{j\omega}) + X_{ca}(e^{j\omega})$$

35

2.3 Symmetry Relations

Complex Sequences

• A Fourier transform $X(e^{j\omega})$ is defined to be a conjugate-symmetric function of ω if

$$X(e^{j\omega}) = X^*(e^{-j\omega})$$

• The Fourier transform $X(e^{j\omega})$ is a conjugateantisymmetric function of ω if

$$X(e^{j\omega}) = -X^*(e^{-j\omega})$$

34

2.3 Symmetry Relations (Complex sequences)

Sequence	Discrete-Time Fourier Transform	
x[n]	$X(e^{j\omega})$	
x[-n]	$X(e^{-j\omega})$	
$x^*[-n]$	$X^*(e^{j\omega})$	
$Re\{x[n]\}$	$X_{cs}(e^{j\omega}) = \frac{1}{2} \{ X(e^{j\omega}) + X^*(e^{-j\omega}) \}$	
$j\operatorname{Im}\{x[n]\}$	$X_{ca}(e^{j\omega}) = \frac{1}{2} \{ X(e^{j\omega}) - X^*(e^{-j\omega}) \}$	
$x_{cs}[n]$	$X_{re}(e^{j\omega})$	
$x_{ca}[n]$	$jX_{im}(e^{j\omega})$	36

2.3 Symmetry Relations

Real Sequences

- The real part $X_{re}(e^{j\omega})$ and imaginary part $X_{im}(e^{j\omega})$ of the Fourier transform of a real sequence are, respectively, even and odd functions of ω .
- $|X(e^{j\omega})|$ is an even function of ω . $\theta(\omega)$ is an odd function of ω .

37

2.4 Convergence Condition

• The Fourier transform $X(e^{j\omega})$ of x[n] is said to exist if the series

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

converges in some sense.

- Uniform convergence
- Mean-square convergence

2.3 Symmetry Relations (Real sequences)

Sequence	Discrete-Time Fourier Transform		
x[n]	$X(e^{j\omega}) = X_{re}(e^{j\omega}) + jX_{im}(e^{j\omega})$		
$x_{ev}[n]$	$X_{re}(e^{j\omega})$		
$x_{od}[n]$	$jX_{im}(e^{j\omega})$		
Symmetry relatin	$X(e^{j\omega}) = X^*(e^{-j\omega})$		
	$X_{re}(e^{j\omega}) = X_{re}(e^{-j\omega})$		
	$X_{im}(e^{j\omega}) = -X_{im}(e^{-j\omega})$		
	$\left X(e^{j\omega})\right = \left X(e^{-j\omega})\right $		
	$\arg\{X(e^{j\omega})\} = -\arg\{X(e^{-j\omega})\}$ 38		

2.4 Convergence Condition

• If x[n] is an absolutely summable sequence, i.e., if

i.e., if
$$\sum_{n=\infty}^{\infty} |x[n]| < \infty$$
Then
$$|X(e^{j\omega})| = \left|\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}\right| < \sum_{n=-\infty}^{\infty} |x[n]| < \infty$$

• Thus, the absolute summability of x[n] is a *sufficient condition* for the existence of the DTFT

39

2.4 Convergence Condition

2.4 Convergence Condition

Example

• The sequence $x[n] = \alpha^n \mu[n]$ for $|\alpha| < 1$ is absolutely summable as

$$\sum_{n=-\infty}^{\infty} \left| \alpha^n \mu[n] \right| = \sum_{n=0}^{\infty} \left| \alpha^n \right| = \frac{1}{1 - |\alpha|} < \infty$$

and its DTFT $X(e^{j\omega})$ therefore converges to $1/(1-\alpha e^{-j\omega})$ uniformly.

<u>Example</u>

• Consider the DTFT

$$H_{LP}(e^{j\omega}) = \begin{cases} 1, & 0 \le |\omega| \le \omega_c \\ 0, & \omega_c < |\omega| \le \pi \end{cases}$$

shown below

42

2.4 Convergence Condition

41

Example

• The inverse DTFT of $H_{IP}(e^{j\omega})$ is given by

$$h_{LP}[n] = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega$$

$$= \frac{1}{2\pi} \left(\frac{e^{j\omega_c n}}{jn} - \frac{e^{-j\omega_c n}}{jn} \right) = \frac{\sin \omega_c n}{\pi n}, \quad -\infty < n < \infty$$

• $h_{LP}[n]$ is a finite-energy sequence, but it is not absolutely summable.

2.4 Convergence Condition

• The mean-square convergence property of the sequence $h_{LP}[n]$ can be further illustrated by examining the plot of the function

$$H_{LP,K}(e^{j\omega}) = \sum_{n=-K}^{-K} \frac{\sin \omega_c n}{\pi n} e^{-j\omega n}$$

for various values of *K* as shown next

47

45

2.4 Convergence Condition

• As *K* goes to infinity, the condition

$$\lim_{K\to\infty}\int_{-\pi}^{\pi} \left| H_{LP}(e^{j\omega}) - H_{LP,K}(e^{j\omega}) \right|^2 d\omega = 0$$

holds indicating the convergence of $H_{LP,K}(e^{j\omega})$ to $H_{LP}(e^{j\omega})$

• The oscillatory behavior of $H_{LP,K}(e^{j\omega})$ approximating $H_{LP}(e^{j\omega})$ in the mean square sense at a point of discontinuity is known as the Gibbs phenomenon.

2.4 Convergence Condition

- As can be seen from these plots, there are ripples in the plot of $H_{LP,K}(e^{j\omega})$ around both sides of the point $\omega = \omega_c$
- The number of ripples increases as *K* increases with the height of the largest ripple remaining the same for all values of *K*.

46

2.4 Convergence Condition

- The Fourier transform can also be defined for a certain class of sequences that are neither absolutely summable nor square-summable.
 - □ the unit step sequence
 - the sinusoidal sequence
 - the complex exponential sequence
- For this type of sequences, DTFT representation is possible using the Dirac delta function $\delta(\omega)$

2.4 Convergence Condition

- A Dirac delta function $\delta(\omega)$ is a function of ω with infinite height, zero width, and unit area
- It is the limiting form of a unit area pulse function $p_{\Lambda}(\omega)$ as Λ goes to zero satisfying

$$\lim_{\Delta \to 0} \int_{-\infty}^{\infty} p_{\Delta}(\omega) d\omega = \int_{-\infty}^{\infty} \delta(\omega) d\omega$$

49

2.4 Convergence Condition

• Consider the complex exponential sequence

$$x[n] = e^{j\omega_0 n}$$

• Its DTFT is given by

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2k\pi)$$

where $\delta(\omega)$ is an impulse function of ω and

$$-\pi \leq \omega_0 \leq \pi$$

51

2.4 Convergence Condition

50

2.4 Convergence Condition

• The function

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2k\pi)$$

is a periodic function of ω with a period 2π and is called a periodic impulse train

• To verify that $X(e^{j\omega})$ given above is indeed the DTFT of $x[n] = e^{j\omega_0 n}$, we compute the inverse DTFT of $X(e^{j\omega})$

2.4 Convergence Condition

Thus

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2k\pi) e^{j\omega_0 n} d\omega$$

$$=\int_{-\pi}^{\pi}2\pi\delta(\omega-\omega_0)e^{j\omega_0n}d\omega=e^{j\omega_0n}$$

where we have used the sampling property of the impulse function $\delta(\omega)$

53

3 DTFT Computation Using MATLAB

- The Signal Processing Toolbox in Matlab includes a number of M-files to aid in the DTFT-based analysis of discrete-time signals.
- Specifically, the functions that can be used are freqz, abs, angle, and unwrap.
- In addition, the built-in Matlab functions real and imag are also useful in some applications.

Commonly Used DTFT Pairs

Some Common Discrete-Time Fourier Transform Pairs				
Sequence	Transform			
$\delta[n]$	1			
$\delta[n-n_0]$	$e^{-j\omega n_0}$			
$1(\forall n)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$			
u[n]	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\omega + 2\pi k)$			
$\frac{\sin(\omega_0 n}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1, & \omega < \omega_0 \\ 0, \omega_0 < \omega < \pi \end{cases}$			
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$			
$\cos(\omega_0 n + \phi)$	$\pi \sum_{k=-\infty}^{\infty} \left[e^{j\phi} \delta(\omega - \omega_0 + 2\pi k) + e^{-j\phi} \delta(\omega + \omega_0 + 2\pi k) \right]$			
$x[n] = \begin{cases} 1, & 0 \le n \le M \\ 0, & \text{Otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$			

3 DTFT Computation Using MATLAB

• The function freqz can be used to compute the values of the DTFT of a sequence, described as a rational function in the form of

$$X(e^{j\omega}) = \frac{p_0 + p_1 e^{-j\omega} + \dots + p_M e^{-j\omega M}}{d_0 + d_1 e^{-j\omega} + \dots + d_N e^{-j\omega N}}$$

at a prescribed set of discrete frequency points $\omega = \omega_1$

3 DTFT Computation Using MATLAB

• For example, the statement

$$H = freqz(num, den, \omega)$$

returns the frequency response values as a vector \mathbf{H} of a DTFT defined in terms of the vectors \mathbf{num} and \mathbf{den} containing the coefficients $\{p_i\}$ and $\{d_i\}$, respectively at a prescribed set of frequencies between 0 and 2π given by the vector ω .

• For example $p=[0.008 -0.033 \ 0.05 -0.033 \ 0.008]$ $d=[1 \ 2.37 \ 2.7 \ 1.6 \ 0.41]$

4.1 DTFT Theorems

- Linearity
- Time-Reversal

$$g[-n] \Leftrightarrow G(e^{-j\omega})$$

• Shifting (in time and in frequency domain)

$$g[n-n_0] \Leftrightarrow e^{-j\omega n_0}G(e^{j\omega})$$

$$e^{j\omega_0 n}g[n] \Leftrightarrow G(e^{j(\omega-\omega_0)})$$

59

3 DTFT Computation Using MATLAB

• Exercise: Program 3 1.m

4.1 DTFT Theorems

Differentiation

$$ng[n] \Leftrightarrow j \frac{dG(e^{j\omega})}{d\omega}$$

• Convolution (in time and in frequency domain)

$$g[n] * h[n] \Leftrightarrow G(e^{j\omega}) \cdot H(e^{j\omega})$$
$$g[n]h[n] \Leftrightarrow \frac{1}{2\pi} \int_{-\pi}^{\pi} G(e^{j\theta}) H(e^{j(\omega-\theta)}) d\theta$$

4.1 DTFT Theorems

• Area Theorem (simple but useful)

$$x[0] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) d\omega \quad X(e^{j0}) = \sum_{n=-\infty}^{\infty} x[n]$$

• Parseval's Theorem

$$\sum_{n=-\infty}^{\infty} g[n]h^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} G(e^{j\omega}) H^*(e^{j\omega}) d\omega$$

Corollary—Energy is preserved

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$$

4.1 DTFT Theorems

Example

Determine the DFT $Y(e^{j\omega})$ of $y[n]=(n+1)a^nu[n]$ (|a|<1)

Step 1: Let $x[n]=a^nu[n]$. Therefore y[n]=nx[n]+x[n]

Step 2: Calculate the DTFT $X(e^{j\omega})$

$$X(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}}$$

Type of Property	Sequence	DTFT
	$g(n) \ h(n)$	$G\!\!\left(\!e^{j\omega} ight) \ H\!\!\left(\!e^{j\omega} ight)$
Linearity	$\alpha g(n) + \beta h(n)$	$\alpha G(e^{j\omega}) + \beta H(e^{j\omega})$
Time-shifting	$g(n-n_0)$	$e^{-j\omega n_0}G\!\!\left(\!e^{j\omega} ight)$
Frequency- shifting	$e^{j\omega_0 n}g(n)$	$G\!\!\left(\!e^{j(\omega-\omega_0)} ight)$
Differentiation in frequency	ng(n)	$jrac{dG\!ig(e^{i\omega}ig)}{d\omega}$
Convolution	g(n)*h(n)	$G\!\!\left(\!e^{j\omega}\!\right)\!\!H\!\!\left(\!e^{j\omega}\!\right)$
Modulation	g(n)h(n)	$\frac{1}{2\pi}\int_{-\pi}^{\pi}G(e^{j\theta})H(e^{j(\omega-\theta)})d\theta$
Parseval's relation	$\sum_{n=-\infty}^{\infty} g(n) h^*(n)$	$= \frac{1}{2\pi} \int_{-\pi}^{\pi} G(e^{j\omega}) H^*(e^{j\omega}) d\omega \qquad 62$

4.1 DTFT Theorems

Step 3: Calculate the DTFT of nx[n]

$$j\frac{dX(e^{j\omega})}{d\omega} = j\frac{-aje^{-j\omega}}{\left(1 - ae^{-j\omega}\right)^2} = \frac{ae^{-j\omega}}{\left(1 - ae^{-j\omega}\right)^2}$$

Step 4: Calculate the DTFT $Y(e^{j\omega})$ of y[n]

$$Y(e^{j\omega}) = \frac{ae^{-j\omega}}{(1 - ae^{-j\omega})^2} + \frac{1}{1 - ae^{-j\omega}} = \frac{1}{(1 - ae^{-j\omega})^2}$$

Example

4.1 DTFT Theorems

as

• Determine the DTFT $V(e^{j\omega})$ of the sequence v[n] defined by

$$d_0v[n] + d_1v[n-1] = p_0\delta[n] + p_1\delta[n-1]$$

Solution: Using the time-shifting property, we observe that the DTFT of $\delta[n-1]$ is $e^{-j\omega}$ and the DTFT of v[n-1] is $e^{-j\omega}V(e^{j\omega})$

• Solving the above equation we get

$$V(e^{j\omega}) = \frac{p_0 + p_1 e^{-j\omega}}{d_0 + d_1 e^{-j\omega}}$$

• Using the linearity property we then obtain

 $d_0v[n] + d_1v[n-1] = p_0\delta[n] + p_1\delta[n-1]$

 $d_0V(e^{j\omega}) + d_1e^{-j\omega}V(e^{j\omega}) = p_0 + p_1e^{-j\omega}$

the frequency-domain representation of

66

4.2 Linear Convolution Using DTFT

65

• According to the convolution theorem

$$y[n] = x[n] * h[n] \Leftrightarrow Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$$

An implication of this result is that the linear convolution y[n] of the sequences x[n] and h[n] can be performed as follows:

4.2 Linear Convolution Using DTFT

Step 1: Compute the DTFTs $X(e^{j\omega})$ and $H(e^{j\omega})$ of the sequences x[n] and h[n], respectively.

Step 2: Form the DTFT $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$

Step 3: Compute the IDTFT y[n] of $Y(e^{j\omega})$

67