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a b s t r a c t

Robust least squares support vector regression (RLSSVR), minimizing the variance and mean of the
global modeling errors, has achieved the excellent performance in dealing with outliers. However,
generalizing the RLSSVR for solving the binary classification problems is easily misguided by the
outliers because the differences in the modeling errors of the different classes are not considered.
To address this issue, a robust least squares support vector classifier (RLSSVC) with optimal error
distribution is proposed. RLSSVC minimizes the mean and variance of the modeling errors class-wisely,
and considers the difference in the modeling errors of the different classes. Specifically, the binary
classification problems are considered at first, the variance analysis indicates that the variance of the
modeling errors of RLSSVC is smaller than that of RLSSVR. According to the validity in solving the
binary classification problems, RLSSVC is naturally generalized for solving the multiclass classification
problems by introducing multiple error adjusting factors. The robustness analysis provides a theoretical
guarantee for the robustness of RLSSVC, which delivers that RLSSVC assigns the smaller weights
for the training instances with the larger errors, while the larger weights for the training instances
with the smaller errors. Furthermore, our optimization objective function is strictly convex and thus
can obtain their corresponding closed-form solutions, resulting in higher computational performance.
Finally, the performance of RLSSVC is further improved by introducing the metric learning and kernel
trick. Theoretical and experimental results indicate that the proposed RLSSVC achieves the better
classification effect with the lower computational costs.

© 2020 Published by Elsevier B.V.
1. Introduction

Least squares regression (LSR) [1–4] finds the optimal predic-
ion function(s) for the training data by minimizing the squared
rrors, which has been widely used in machine learning because
ts formula is simple and easy to solve. Let the training set be T =

(x1, y1), . . . , (xn, yn)}, where xi ∈ ℜ
d is the training instance, and

i is the corresponding target of xi. LSR is formulated as

min
W

1
2

n∑
i=1

∥y i − W⊤xi∥2
2 +

λ

2
∥W∥

2
F , (1)

where the first item of (1) is the empirical risk measured by the
least squares loss, and the second one is the regularization part
with a regularization parameter λ. For clarity, the bias in LSR is
absorbed into the W⊤xi term.

According to the different attributes of y i, model (1) solves the
following different problems:
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• When y i ∈ ℜ is a continuous observation of xi, the model (1)
solves a regression problem. Then, the prediction function
for a test instance x becomes f (x) = W⊤x, where W ∈ ℜ

d

is the regression coefficient.
• When y i ∈ {+1, −1} is a discrete label of xi, the model (1)

solves the binary classification problem. Then, the decision
function for a test instance x becomes y = sgn(W⊤x), where
W ∈ ℜ

d is the hyperparameter of the decision boundary,
and sgn(·) is a symbol function.

• When y i is a c-dimensional binary codeword [5,6] for the
label of xi, the model (1) solves the multiclass classifica-
tion problem [5,7]. For a test instance x, it is classified by
argmaxk∈[c] W

⊤

:,kx, where W ∈ ℜ
d×c , and W :,k is the kth

column of W .

For the regression and binary classification tasks, LSR (1) is equiv-
alent to least squares support vector machine (LSSVM) [1,8].

In practice, the multiclass classification is becoming increas-
ingly important in pattern recognition. In past decades, many
multiclass classification methods based on support vector ma-
chine (SVM) [9] have been developed well. One way is decompos-

ing the multiclass classification problems into a series of binary
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lassification problems using the one-vs-one (OVO) or one-vs-
ll (OVA) schemes [10]. Brunner [11] employed the pairwise
VM for handling the large scale multiclass classification prob-
ems. Allwein et al. [6] proposed a general method for combining
he classifiers generated on the binary problems and proved
general empirical multiclass loss bound given the empirical

oss of the individual binary learning algorithms. Liu et al. [12]
sed the Error-correcting output coding to transform the orig-
nal multiclass classification problems into a series of binary
lassification problems, and mined the relationship between the
inary classifiers. Takenouchi et al. [13] decomposed the orig-
nal multiclass classification problems into the multiple binary
lassification problems based on the OVO method, and then de-
oded the outputs of the binary classifiers by minimization of
eighted mixture of the Bregman divergence. Although these
ethods are intuitive, the OVO scheme can lead to a tie-in-vote
roblem and the OVA approach suffers from inconsistency when
here is no dominant class [14]. Another way, considering all
he classes simultaneously, has been proposed to overcome these
rawbacks. As examples, Crammer et al. [15] and Tsochantaridis
t al. [16] generalized the concept of margin for the multiclass
roblems and formulated the multiclass classification problems
s a quadratic programming with constraints. Lee et al. [14] ex-
ended the SVM to the multiclass cases by devising a loss function
ith the suitable class codes. The detailed analysis and systematic
omparison of the above multiclass classification methods based
n SVM are provided in [17,18]. Subsequently, Xiang et al. [2]
roposed a discriminative LSR (DLSR) model for the multiclass
lassification, which can be formulated as a single LSR model
y using the ε-dragging technique. Zhang et al. [19] presented a
etargeted LSR (ReLSR) model, which resets the regression target
atrix and makes it have a large between-class margin. Wang
t al. [20] proposed a margin scalable DLSR (MSDLSR) model,
hich improves the classification performance by minimizing
he number of the support vectors of DLSR. Geng et al. [21]
roposed a metric learning-guided least squares classifier (MLG-
SC), which learns a symmetric positive definite (SPD) metric
atrix that yields the small distances for the LSR errors of the
ame class, while large ones for the LSR errors of the different
lasses. The above linear classification methods can be more
xpressive to deal with the more complex classification problems
ith the aid of metric learning [22,23], and can also effectively
eal with the nonlinear classification problems by introducing
he kernel trick [24]. Although the abovementioned algorithms
ave achieved great success, those are very sensitive to random
oise [25]. For example, the label noise [26,27] generated by in-
orrectly labeling the training instances may mislead the learning
f classifiers.
There are three types of approaches to improve the robustness

f the model. One is assigning the different weights to each
nstance. Suykens et al. [28] proposed a weighted LSSVM (W-
SSVM) model, which reduces the negative influence of outliers
y distributing the smaller weights to outliers. Liu et al. [29] pre-
ented the importance reweighting algorithms for classification
ith label noise by employing the inversed noise rates. Several
ther weight setting strategies are found in [30,31] and references
herein. The theoretical analysis and experimental results show
hat those methods are very effective in dealing with outliers.
evertheless, those methods need to solve LSSVM on the training
ata repeatedly, resulting in high computational complexity.
The second strategy is employing the robust surrogate loss

unctions. Ertekin et al. [32] and Ma et al. [33] proposed a non-
onvex online support vector machine algorithm based on the
amp loss. Wang et al. [34] presented a robust LSSVM model,
hich employs a non-convex least squares loss function to sup-

ress the influence of outliers. Yang et al. [35] and Chen et al. [36]

2

gave the robust LSSVM (RLSSVM) with truncated least squares
loss, which is illustrated to be more robust to outliers. Zhang
et al. [37] proposed a robust angle-based multiclass SVM
(RMSVM) model using truncated hinge loss and solved it with the
difference convex (DC) algorithm [38], which shows the excellent
performance in dealing with the outliers. However, solving the
non-convex loss function is not only time-consuming but also
requires more parameters to be preset [39].

Recently, Lu et al. [40] proposed a robust least squares support
vector machine for regression (RLSSVR), which simultaneously
minimizes the variance and mean of the global modeling errors
(see Eq. (2)). The theoretical analysis and experimental results
show that RLSSVR is less sensitive to outliers. The objective of
RLSSVR is convex, which brings the easy-to-solve closed-form
solutions and higher computational performance. Unfortunately,
RLSSVR is tailored for regression. More exactly, the mean of the
modeling errors of the different classes is considered to be equal
when RLSSVR is directly used for classification, which results in
the weakening of robustness.

In this paper, we attempt to construct a robust and simple
multiclass classifier directly. With this intent, a novel robust least
squares support vector classifier (RLSSVC) is proposed. Different
from the existing algorithms, RLSSVC minimizes the variance and
mean of the modeling errors of each class simultaneously, and can
be formulated as a compact LSR model. According to the convex-
ity of the objective of the RLSSVC, the closed-form solutions can
be obtained, which brings the high computational performance.
To the best of our knowledge, this is the first attempt to improve
the robustness of the LSSVM for solving the classification prob-
lems by optimizing the distribution of the modeling errors for
each class. Moreover, by introducing the geometric mean metric
learning (GMML) [23] and kernel trick [24], RLSSVC can be further
improved to solve the complex classification problems. The main
contributions are summarized as follows.

• A novel robust least squares support vector classifier
(RLSSVC) for the binary classification is proposed at first,
which tries to enhance the robustness of classifier by min-
imizing the mean and variance of the modeling errors for
each class. The theoretical analysis shows that the variance
of the modeling errors of RLSSVC is smaller than that of
RLSSVR in dealing with the binary classification problems.

• RLSSVC is generalized for solving the multiclass classifica-
tion problems. The robustness analysis provides a theoreti-
cal guarantee for the robustness of RLSSVC, which delivers
that RLSSVC assigns the smaller weights for the training
instances with the larger errors, while the larger weights for
the training instances with the smaller errors.

• RLSSVC is further improved for solving the complex classi-
fication problems with the aid of GMML and kernel.

• Experimental results verify our theoretical analysis, and il-
lustrate that our method achieves the better classification
effect with lower computational costs.

The rest of this paper is organized as follows. In Section 2,
RLSSVR is to review briefly. In Section 3, RLSSVC is proposed and
compared with RLSSVR in dealing with the binary classification
problems. In Section 4, a framework of multiclass RLSSVC is
proposed and robustness analysis is provided . The performance
of RLSSVC is further improved by introducing the metric learning
and kernel trick in Section 5. Section 6 includes several sets of
experiments to demonstrate the effectiveness of the proposed
method. The conclusion is finally given in Section 7.
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Fig. 1. Plots for the classification boundaries of RLSSVR on the binary classification dataset without and with outliers. The training dataset on the left panel has no
outliers, whereas the training set on the right panel has six outliers simulated by labels flipping (five outliers marked as ‘+’ in class +1, and one outlier marked as
◦’ in the class −1). The test accuracies of RLSSVR on the dataset without and with outliers are 95.71% and 91.86%, respectively.
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. Review of RLSSVR

Lu et al. [40] proposed RLSSVR based on minimizing the vari-
nce and mean of the global modeling errors to deal with the
egression problems with outliers. Its regression model can be
ormulated as

min
w,ẽ

1
2n

n∑
i=1

(yi − w⊤xi−ẽ)2 +
λ1

2
∥w∥

2
2 +

λ2

2
ẽ2, (2)

where yi ∈ ℜ is the target of xi, w ∈ ℜ
d is the regression

coefficient, ẽ ∈ ℜ is a global error adjusting factor, λ1 and λ2
are the regularization parameters. According to the optimization
conditions, ẽ is the scaled mean value of the modeling errors,
and the scaling factor is 1

1+λ2
. Therefore, optimizing the model

2) actually minimizes the mean and variance of the modeling
rrors simultaneously, thereby reducing the negative impact of
utliers on the model. As a special case, when λ2 → ∞, model

(2) degenerates to the LSR model.
As discussed in Section 1, when yi ∈ {+1, −1} is a dis-

rete label of xi, RLSSVR is equivalent to the following binary
lassification model

min
w,ẽ

1
2n

⎛⎝∑
yi=+1

(1 − w⊤xi − ẽ)2 +

∑
yi=−1

(−1 − w⊤xi − ẽ)2

⎞⎠
+

λ1

2
∥w∥

2
2 +

λ2

2
ẽ2. (3)

Model (3) employs only one error adjustment factor ẽ to minimize
the variance and mean of the global modeling errors, and does
not consider the difference between classes, which weakens the
robustness of the classifier to outliers. A set of binary classifi-
cation experiments were conducted on an artificial dataset that
obeys the Gaussian distribution to show the influence of outliers
on the RLSSVR , as shown in Fig. 1. Where the instances of class
+1 and class −1 are drawn from N ([−0.4, −0.4], [0.1 0; 0 0.1])
and N ([0.4, 0.4], [0.1 0; 0 0.1]), respectively. The labels of six
instances are flipped to simulate the outliers, which are marked
as ‘+’ and ‘◦’. The Bayes optimal classifier [3] is chosen as the ref-
erence. Given the joint distribution P(X, Y ) for the data, the Bayes
ptimal classifier is defined as h (x) = argmax P[Y =
Bayes y∈{1,2,...,c}

3

y|X = x], where c is the number of the classes, and the posterior
probability P[Y = y|X = x] is calculated based on the P(X, Y ).

As shown in Fig. 1(a), the classification performance of RLSSVR
n the dataset without outliers is comparable to the Bayes op-
imal classifier. Actually, on the clean dataset, the mean of the
odeling errors is 0, and there is almost no difference between

he modeling errors of class +1 and class −1. This makes the
LSSVR equivalent to the LSSVM and can obtain the better classi-
ication results. In contrast, as shown in Fig. 1(b), the classification
oundary of RLSSVR on the dataset with outliers is seriously
eviated from the original position in Fig. 1(a), and the prediction
ccuracy deteriorates. This is because the appearance of outliers
ill cause the oscillations and differences in modeling errors of
he different classes, while RLSSVR only introduces one error
djustment factor, ignoring the differences between the classes.
herefore, it is desirable to reduce the error oscillation for such
utliers in RLSSVR by minimizing the mean and variance of the
odeling errors for each class.

. RLSSVC for binary classification

In this section, the binary classification problems will be con-
idered. By introducing two error adjustment factors to minimize
he variance and mean of the modeling errors for each class, a
obust least squares support vector classifier with optimal error
istribution is proposed. This new model is built in the following
ormula

min
w,ẽ1,ẽ2

1
2n

⎛⎝∑
yi=+1

(1 − w⊤xi−ẽ1)2 +

∑
yi=−1

(−1 − w⊤xi−ẽ2)2

⎞⎠
+

λ1

2
∥w∥

2
2 +

λ2

2

(n1

n
ẽ21 +

n2

n
ẽ22
)

, (4)

where ẽ1 ∈ ℜ and ẽ2 ∈ ℜ are the error adjustment factors for
class +1 and class −1, n1 and n2 are the number of instances
in class +1 and class −1. Fig. 2 illustrates the learning dynamics
induced by the model (4).
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Fig. 2. Illustration of the RLSSVC model for the binary classification problem. Here e1 and e2 record the modeling errors for class +1 and class −1, ẽ1 and ẽ2 are
he error adjustment factors for class +1 and class −1, E(e1) and E(e2) are the mean of the modeling errors for class +1 and class −1. As shown in the figure, the
ean values of the modeling errors of the class +1 and the class −1 are significantly different. Therefore, unlike RLSSVR, we minimize the mean and variance of

he modeling errors for each class.
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Because the objective of model (4) is convex, its closed-form
olutions can be easily obtained through the optimality condi-
ions.⎧⎪⎪⎪⎨⎪⎪⎪⎩

w = (nλ1Id +

2∑
j=1

X j
⊤L jX j)−1

2∑
j=1

X j
⊤L jy j

ẽj =
1

(1 + λ2)nj
1⊤

njej, j = 1, 2

(5)

here Id ∈ ℜ
d×d is an identity matrix, X1 ∈ ℜ

n1×d and X2 ∈
n2×d denote the instances of class +1 and class −1, L j = Inj −
1

nj(1+λ2)
1nj1

⊤
nj , 1nj denotes a nj-dimensional column vector of ones,

1 = [+1, +1, . . . ,+1]⊤ ∈ ℜ
n1 , y2 = [−1, −1, . . . ,−1]⊤ ∈ ℜ

n2 ,
nd ej = y j − X jw records the modeling errors of class j.
To estimate the robustness of the model (4), experimental

studies are carried out on the dataset in Fig. 1, applying the model
(4), and the results are shown in Fig. 3. From the comparison of
Fig. 3(a) and (b), it can be seen that the classification boundary of
the RLSSVC is almost unchanged, and its accuracy remains stable
before and after adding outliers. Although the outliers cause the
significant differences between the error distributions of class +1
and class −1, RLSSVC minimizes the variance and mean of the
modeling errors class by class, effectively reducing the negative
impact of outliers, but RLSSVR fails.

The above experiments intuitively demonstrate the superior-
ity of RLSSVC in dealing with the classification problems with
outliers. Next, we will theoretically prove that the variance of
the modeling errors for RLSSVC is smaller than that of RLSSVR
in dealing with the binary classification problems.

Proposition 3.1. Solving model (4) actually minimizes the variance
and mean of modeling errors for each class. When λ2 → ∞, the
model (4) will degenerate to the LSR model.

Proof. Let e1 and e2 record the modeling errors of class +1 and
class −1, respectively. We have ẽ =

1 E(e ) is the scaled mean
1 1+λ2 1

4

of modeling errors of class +1, and ẽ2 =
1

1+λ2
E(e2) is the scaled

mean of modeling errors of class −1. The first item in model(4)
can be relisted as

1
n

⎛⎝∑
yi=+1

(1 − w⊤xi−ẽ1)2 +

∑
yi=−1

(−1 − w⊤xi−ẽ2)2

⎞⎠
=

1
n

⎛⎝∑
yi=+1

(1 − w⊤xi−E(e1) +
λ2

1 + λ2
E(e1))2

+

∑
yi=−1

(−1 − w⊤xi−E(e2) +
λ2

1 + λ2
E(e2))2

⎞⎠
=

1
n

⎛⎝∑
yi=+1

(1 − w⊤xi−E(e1))2 +

∑
yi=−1

(−1 − w⊤xi−E(e2))2

+ n1(
λ2

1 + λ2
)2E2(e1) + n2(

λ2

1 + λ2
)2E2(e2)

⎞⎠
=

n1

n
D(e1) +

n2

n
D(e2) +

n1λ
2
2

n(1 + λ2)2
E2(e1) +

n2λ
2
2

n(1 + λ2)2
E2(e2),

(6)

here D(ej) denotes the variance of the modeling errors of class
. Therefore, the first and third terms of model (4) minimize
he variance and mean of the modeling errors for each class.
oreover, when λ2 → ∞, ẽ1 → 0 and ẽ2 → 0, the model (4)
egenerates to the LSR. □

heorem 3.2. The variance of the modeling errors of RLSSVC (the
irst term in model (4)) is smaller than that of RLSSVR (the first term
n model (3)), and they are equal if and only if the mean of the
odeling errors of class +1 and class −1 are equal.
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Fig. 3. Plots of the classification boundaries of RLSSVC on the binary classification dataset with and without outliers. The training dataset on the left panel has no
outliers, whereas the training set on the right panel has six outliers simulated by labels flipping (five outliers marked as ‘+’ in class +1, and one outlier marked as
◦’ in the class −1). The test accuracies of RLSSVC on the dataset without and with outliers are 95.71% and 95.43%, respectively.
w

roof. The variance term D(e) of the global modeling errors in
model (3) can be rewritten as

D(e) =
1
n

n∑
i=1

(yi − w⊤xi−ẽ)2

=
1
n

n∑
i=1

(yi − w⊤xi)2 − 2ẽ
1
n

n∑
i=1

(yi − w⊤xi) +
1
n

n∑
i=1

ẽ2

=
1
n

n∑
i=1

(yi − w⊤xi)2 −
1 + 2λ2

(1 + λ2)2

(
1
n

n∑
i=1

(yi − w⊤xi)

)2

=
1
n

⎛⎝ n∑
yi=+1

(yi − w⊤xi)2 +

n∑
yi=−1

(yi − w⊤xi)2

⎞⎠
−

1 + 2λ2

(1 + λ2)2

(
n1E(e1) + n2E(e2)

n

)2

=
n1D(e1) + n1E2(e1) + n2D(e2) + n1E2(e2)

n

−
1 + 2λ2

(1 + λ2)2

(
n1E(e1) + n2E(e2)

n

)2

=
n1

n
D(e1) +

n2

n
D(e2) +

n1λ
2
2

n(1 + λ2)2
E2(e1)

+
n2λ

2
2

n(1 + λ2)2
E2(e2) +

(1 + 2λ2)n1n2

(1 + λ2)2n2 (E(e1) − E(e2))2 (7)

where yi ∈ {+1, −1} is the label of xi. Combining (7) with (6),
the proof is provided. □

For the dataset with outliers in Fig. 1(b), the mean of the
modeling errors for class +1 are greater than those for class
−1, that is, E(e1) ≫ E(e2), which causes the variance term
in model (3) is much larger than that in model (4). Therefore,
for the classification problems with outliers, it is more effective
to minimize the mean and variance of the modeling errors for
each class than to minimize the mean and variance of the global
modeling errors.
5

4. RLSSVC for multiclass classification

Motivated by the effectiveness of RLSSVC in solving the bi-
nary classification problems, a multiclass RLSSVC learning frame-
work is proposed and some theoretical analysis is carried out
in this section. Let X = [x1, x2, . . . , xn]⊤ ∈ ℜ

n×d and Y =

[y1, y2, . . . , yn]
⊤

∈ ℜ
n×c denote the instance matrix and corre-

sponding label matrix, where c is the number of classes. Here, -1
or +1 is used to denote the regression label for each instance. For
example, if xi belongs to the class j, its label is defined as y i =

[−1, −1, . . . ,+1, −1, . . . ,−1]⊤ with only the jth element equal
to +1. For clarity, X j = [xj1, . . . , xjnj ]

⊤ and Y j = [y j1, . . . , y jnj ]
⊤

are employed to record the instance from class j and their corre-
sponding labels, where nj is the number of training instances in
class j. The instances and their corresponding labels that are not
in the class j are recorded as X j̄ and Y j̄, respectively.

4.1. Model construction and optimization

For a c-class classification problem, we introduce c error ad-
justment factor vectors to minimize the variance and mean of the
modeling errors for each class. As a result, we have the following
multiclass RLSSVC model:

min
W ,ẽj

1
2n

c∑
j=1

∥Y j − X jW−1nj ẽ
⊤

j ∥
2
F +

λ1

2
∥W∥

2
F +

λ2

2

c∑
j=1

nj

n
∥ẽj∥2

2, (8)

where ẽj ∈ ℜ
c×1 is the error adjustment factor vector for class

j, λ1 and λ2 are the regularization parameters. With model (8),
the first-order statistics (mean value) and second-order statistics
(variance) are employed to characterize the distribution of the
modeling errors for each class, so as to the distribution of the
modeling errors for each class is optimal. The objective of model
(8) is convex, its closed-form solutions can be easily obtained
through the optimality conditions, as follows⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

W =

⎛⎝nλ1Id +

c∑
j=1

X j
⊤L jX j

⎞⎠−1
c∑

j=1

X j
⊤L jY j,

ẽ⊤

j =
1

nj(1 + λ2)
1⊤

nj (Y j−X jW ), j ∈ [c],

(9)

here L j = Inj −
1

nj(1+λ2)
1nj1

⊤
nj . To reduce the costs of calculating

the inverse of H = nλ I +
∑c X ⊤L X in the cases of n ≪ d,
1 d j=1 j j j
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herman–Morrison-Woodbury (SMW) identity [41] can be used
o simplify the calculation of H−1, as described below
−1

=
1

nλ1
Id −

1
nλ1

X⊤(nλ1L−1
+ XX⊤)−1X,

here L = diag(L1, L2, . . . , Lc), and L−1
j can be further simplified

by the SMW identity.
In the optimization process, the model (8) enjoys the following

four valuable features:

• ẽj is actually the scaled mean of the modeling errors for
class j, which will be proved in Section 4.2. Thus, minimizing
the first term 1

2n

∑c
j=1 ∥Y j − X jW − 1nj ẽ

⊤

j ∥
2
F will optimize

the variance of the modeling errors for each class, thereby
reducing the error oscillations caused by the outliers and
enhancing the stability of the model.

• The second regularization term λ1
2 ∥W∥

2
F is introduced to

relieve overfitting by imposing prior constraints on W .
• Minimizing the third term λ2

2

∑c
j=1

nj
n ∥ẽj∥2

2 will minimize the
mean of the modeling errors for each class. Hence, it can
improve the classification accuracy.

• When c = 2, that is, the regression label for xi is [+1 −

1]⊤ or [−1 + 1]⊤, the sum of the two columns of the
optimal solution W of the model (8) is 0, which leads to
the model (8) is equivalent to the model (4) in dealing with
the binary classification problems. In short, model (8) is a
natural generalization of model (4) for solving the multiclass
classification problems, inheriting the good properties of the
model (4).

Based on the learned optimal W and ẽj, each test instance x is
classified by

argmin
k∈[c]

(yk
− W⊤x − ẽk)⊤(yk

− W⊤x − ẽk), (10)

where yk denotes a column vector whose kth element is +1 and
the rest of elements is −1.

4.2. Robustness analysis

In this subsection, a robust analysis for RLSSVC from the per-
spective of the contribution weights of the instances is proposed.
It can be first proven that the optimal error adjustment factor ẽj
is the scaled mean of the modeling errors for class j.

Proposition 4.1. The error adjustment factor vector ẽj is the scaled
mean of the modeling errors of class j.

Proof. Based on the optimality conditions for model (8), we have

ẽ⊤

j =
1

nj(1 + λ2)
1⊤

nj (Y j − X jW )

=
1

(1 + λ2)
E(E j), j ∈ [c],

here E j = Y j − X jW records the modeling errors of class j,
nd λ2 ≥ 0 is the regularization parameter. Therefore, the error
djustment factor ẽj is the scaled mean of the modeling errors of
lass j. □

From Proposition 4.1, it can be concluded that a multiclass
regression model with minimization of the mean and variance
of the modeling errors for each class can be obtained through
optimizing the model (8). Now, we prove that compared to LSR,
RLSSVC assigns the smaller weights for the training instances
with the larger errors, while the larger weights for the training
instances with the smaller errors.
6

Theorem 4.2. Compared with LSR, in the optimization process
for the RLSSVC model, the normal instances are assigned the larger
contribution weights, while the outliers are assigned the smaller
contribution weights.

Proof. Let xjk be the kth instance in class j, ejk is the modeling
error of xjk, and E j = [ej1, . . . , ejk, . . . , ejnj ] records the modeling
rrors of the instances from class j. For simplicity, it is assumed
hat an instance xjk satisfying ∥ejk∥2 ≤ 0.5∥ẽj∥2 is regarded as
normal instance, otherwise it is regarded as an outlier. The
roof for [40, Theorem 1] is adapted to complete the proof of
heorem 4.2. The contribution weights of xjk in LSR and RLSSVC
re defined as

jk
LSR =

∥ejk∥2
2∑nj

i=1 ∥eji∥2
2

, (11)

nd

jk
RLSSVC =

∥ejk − ẽj∥2
2 + λ2∥ẽj∥2

2∑nj
i=1 ∥eji − ẽj∥2

2 + λ2nj∥ẽj∥2
2

. (12)

o compare the contribution weights of xjk in LSR and RLSSVC, the
ifference between C jk

LSR and C jk
RLSSVC is defined as △

jk
= C jk

RLSSVC −
jk
LSR. By substituting (11) and (12) into △

jk, we have

jk
=

(µ∥ẽj∥2
2 − 2ẽTj ejk)

∑nj
i=1 ∥eji∥2

2 + njµ∥ẽj∥2
2∥ejk∥

2
2∑nj

i=1 ∥eji∥2
2(
∑nj

i=1 ∥eji − ẽj∥2
2 + λ2nj∥ẽj∥2

2)
, (13)

here µ = 1 + λ2. When ∥ejk∥2 ≤ 0.5∥ẽj∥2, the numerator on
he right side of (13) can be derived as

µ∥ẽj∥2
2 − 2ẽTj ejk)

nj∑
i=1

∥eji∥2
2 + njµ∥ẽj∥2

2∥ejk∥
2
2

≥ λ2∥ẽj∥2
2

nj∑
i=1

∥eji∥2
2 + nj(1 + λ2)∥ẽj∥2

2∥ejk∥
2
2

≥ 0. (14)

his means that for a normal instance, the contribution weight
ssigned by RLSSVC is greater than that assigned by LSR. On the
ther hand, the training instances of class j satisfy

∑nj
k=1 C

jk
LSR =

nj
k=1 C

jk
RLSSVC = 1. Thus, we have∑

∥ejk∥2≤0.5∥ẽj∥2

C jk
RLSSVC ≥

∑
∥ejk∥2≤0.5∥ẽj∥2

C jk
LSR∑

∥ejk∥2>0.5∥ẽj∥2

C jk
RLSSVC <

∑
∥ejk∥2>0.5∥ẽj∥2

C jk
LSR. □ (15)

Theorem 4.2 shows that compared with LSR, RLSSVC gives
he smaller weights to the training instances with the larger
rrors (∥ejk∥2 > 0.5∥ẽj∥2), and gives the larger weights to the
raining instances with the smaller errors (∥ejk∥2 ≤ 0.5∥ẽj∥2).
rom the above theoretical analysis, it can be concluded that the
roposed RLSSVC can reduce the negative impact of outliers on
he classifier to some extent.

.3. Complexity analysis

The optimization processes for DSLR, MSDSLR and ResLSR
re very similar, and their main computational costs come from
he matrix inversion and matrix multiplication. The closed-form
olutions of RLSSVC can be obtained by the optimality conditions.
n Eq. (9), the computational complexity for solving the opti-
al W and ej are O

(
d3 + nd2 + ncd

)
and O(njdc), respectively.

n summary, the total computational complexity of RLSSVC is
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Table 1
Computational complexity of the comparison methods.
Method Computational complexity

DLSR [2] O
(
d3 + 2nd2 + T × 2ndc

)
RMSVM [37] O

(
T × (c3n2d + t × c2n2)

)
RLSSVM [35] O

(
T × cn3

)
MSDLSR [20] O

(
d3 + 2nd2 + T × 2ndc

)
ReLSR [19] O

(
d3 + 2nd2 + T × 2nc2d

)
MLG-LSC [21] O(d3 + 2nd2 + 2ndc + 2nc2)

RLSSVC O
(
d3 + nd2 + 2ncd

)

O
(
d3 + nd2 + 2ncd

)
. The formulation of RMSVM involves a non-

ifferentiable non-convex optimization problem with nc con-
traints. The authors therefore use the DC algorithm with the
oordinate descent method. Where the computational complexity
f each outer iteration for DC algorithm is O(c3n2d) and the
omputational complexity of each inner iteration for coordinate
escent algorithm is O(c2n2). The objective of RLSSVM is neither
ifferentiable nor convex, the DC algorithm is employed, and
rom [35], the computational complexity of RLSSVM is O(cn3) for
ach iteration. Let T be the iterative number of the DLSR, RMSVM,
LSSVM, MSDLSR and ReLSR, and t be the iterative number for
olving the subproblems in RMSVM, then the computational com-
lexity of these methods can be compared in detail, as shown in
able 1. It is note that the number of iterations T for each method
ay be different.

. Improvement of RLSSVC based on metric learning and ker-
el

In this section, RLSSVC is further improved by using the Ge-
metric mean metric learning (GMML) [23] and kernel method
24]. Specifically, GMML can be used as a simple and effective
ost-processing for RLSSVC, meanwhile the kernel trick can assist
LSSVC to deal with the nonlinear classification problems.

.1. RLSSVC with metric learning

Motivated by MLG-LSC [21], we learn a SPD metric matrix M
or the centralized modeling errors of RLSSVC such that matrix

can yield small distances for the same class, while large ones
or the different classes. After obtaining the optimal W and ẽj
hrough Eq. (9), the centralized modeling errors of the class j
nd the centralized modeling errors excluding the class j are
alculated as follows

j = Y j − X jW −
1
2
(Y j + 1nj1

⊤

c )Ẽ,

C j̄ = Y j̄ − X j̄W −
1
2
(Y j̄ + 1nj̄1

⊤

c )Ẽ, j ∈ [c], (16)

here Ẽ = [ẽ1, ẽ2, . . . , ẽc]⊤ ∈ ℜ
c×c , nj̄ = n − nj, C j and C j̄ record

he centralized modeling errors for the instances included and
xcluded in the class j, respectively.
Then, a SPD matrix M for the centralized errors is learned by

the following optimization objective

min
M≻0

(1 − α)ρ2
R (M, S−1) + αρ2

R (M,D), (17)

where α ∈ [0, 1] is a parameter that determines the balance,
S =

∑c
j=1 C

⊤

j C j and D =
∑c

j=1 C
⊤

j̄ C j̄, ρR stands for the Riemannian
distance between two SPD matrices, which is defined as follows

ρ (X, Z) := ∥ log(Z−1/2XZ−1/2)∥ for X, Z ≻ 0
R F

7

As discussed in [21], the closed-form solutions of (17) is obtained:

M = S−1/2(S1/2DS1/2)αS−1/2. (18)

Based on the learned optimal W , ẽj and M , each test instance
is classified by

argmin
k∈[c]

(yk
− W⊤x − ẽk)⊤M(yk

− W⊤x − ẽk), (19)

here yk denotes a column vector whose kth element is +1, and
he rest of elements is −1.

.2. Scalable kernel RLSSVC

Another improvement of RLSSVC is to solve the nonlinear
lassification problems by introducing kernel trick [24]. In kernel
ethod, the original instance xi is transformed to a higher dimen-
ional or even infinite dimensional feature vector φ(xi), where
is a nonlinear function accomplished k(xi, xj) = ⟨φ(xi), φ(xj)⟩.

Let Φ = [φ(x1), φ(x2), . . . , φ(xn)]⊤ and Φ j = [φ(xj1), φ(xj2), . . . ,
φ(xjnj )]

⊤ record the transformed features of all instances and the
instances in class j. By the representer theorem [42], W can be
expressed as a linear combination of the transformed instances

W = Φ⊤A, (20)

where A = [α1, α2, . . . ,αc]
⊤

∈ ℜ
n×c is a linear combination co-

efficient matrix. Inserting (20) into the model (8), kernel RLSSVC
can be formulated as

min
A,ẽj

1
2n

c∑
j=1

∥Y j−K jA−1nj ẽ
⊤

j ∥
2
F +

λ1

2
tr(A⊤KA)+

λ2

2

c∑
j=1

nj

n
∥ẽj∥2

2 (21)

here K = ΦΦ⊤
∈ ℜ

n×n is the kernel matrix, and K j = Φ jΦ
⊤

∈
nj×n.
Solving (21) for the large datasets is challenging. To scale up

21) on limited resources, one common approach is to approxi-
ate the kernel learning problem with a linear learning problem.
he popular methods including Nyström [43,44], random fea-
ures [45], and their numerous extensions. Here, the Nyström
ethod is introduced to approximate the kernel matrix K , that

s

≈ KMBK−1
BBK

⊤

MB, (22)

here M = {1, 2, . . . , n} is the index set of the input instances,
⊂ M is a landmark set of r(= |B|) instances, KMB ∈ ℜ

n×r is the
ubmatrix of K , whose elements are k(xi, xj) for i ∈ M and j ∈ B,
nd KBB ∈ ℜ

r×r has the similar meanings. Actually, Nyström
ethod provides a natural approximation to the optimal rank-
kernel map φ̃ accomplished φ̃(x) = K xBU rΣ

−1/2
r . Here K xB =

k(x, x1), . . . , k(x, xi), . . . , k(x, x|B|)]⊤ represents the approximate
ernel map of x based on the selected landmark set B, Σ r is a
iagonal matrix where the diagonal entries are the eigenvalues
f KBB, and U r are the corresponding eigenvectors. Then, kernel
LSSVC is reduced as

min
W ,ẽj

1
2n

c∑
j=1

∥Y j − Φ̃ jW − 1nj ẽ
⊤

j ∥
2
F +

λ1

2
∥W∥

2
F +

λ2

2

c∑
j=1

nj

n
∥ẽj∥2

2,

(23)

here Φ̃ j = [φ̃(xj1), φ̃(xj2), . . . , φ̃(xjnj )]
⊤

∈ ℜ
nj×r is the ker-

el approximation of the instances in class j. By the optimality
onditions, the following equation is obtained.

W =

⎛⎝nλ1Id +

c∑
j=1

Φ̃
⊤

j L jΦ̃ j

⎞⎠−1
c∑

j=1

Φ̃
⊤

j L jY j,

ẽ⊤

j =
1

1⊤

nj (Y j−Φ̃ jW ), j ∈ [c].

(24)
nj(1 + λ2)
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For a new test instance x ∈ ℜ
d, it is assigned to class k,

depending on

argmin
k∈[c]

(yk
− W⊤φ̃(x) − ẽk)⊤(yk

− W⊤φ̃(x) − ẽk), (25)

where yk denotes a column vector whose kth element is +1 and
the rest of elements is −1.

6. Experiments

In this section, we investigate the performance of our pro-
posed RLSSVC using the artificial and benchmark datasets. The
experiment results in [19,20] show that the classification per-
formance of MSDLSR and ReLSR is better than that of DLSR [2],
L1-SVM, L2-SVM [15] and logistic regression [46] on the most
datasets. The classification experiments in [35] show that RLSSVM
is better than W-LSSVM [28] in terms of the classification accu-
racy and training time. Therefore, we compare our RLSSVC with
several state-of-the-art multiclass learning methods:

• MSVM [15,16]: Generalizes the notions of margin and large
margin loss to the multiclass problems, and casts the learn-
ing problem into a single quadratic program. Codes are
available in https://www.cs.cornell.edu/people/tj/svm_light/
svm_multiclass.html.

• RMSVM [37]: A robust angle-based multiclass SVM
(RMSVM) model using truncated hinge loss with L2 regu-
larization. As what has been done in [37], we also set the
truncated parameter s in RMSVM to −1/(c − 1), where c is
the number of classes. As recommended in [37], we employ
the DC algorithm to solve the nonconvex problem via a
sequence of convex subproblems, and apply the coordinate
descent method [47] to solve the sub-problems. In our
experiment, the code for RMSVM is written according to the
pseudo-code in [37,47].

• RLSSVM [35]: Uses a truncated least squares loss to deal
with the outliers. The truncated parameter τ in RLSSVM
is selected from the interval of [0.2:0.3:3]. Our code for
RLSSVM is written according to the RLSSVM algorithm in
[35].

• MLG-LSC [21]: Based on the geometric mean metric learn-
ing, a metric matrix for the errors of LSR is learned, which
yields small distances for the same class, while large ones
for the different classes. The weight parameters α in met-
ric learning is selected from the set {10−6, 10−5, 10−4, . . . ,

10−1
}. The codes for MLG-LSC are available in https://github.

com/ChuanxingGeng/MLG-LSC.
• MSDLSR [20]: Imposes an regularization with respect to the

margin on the DLSR to control the number of support vec-
tors. The margin scalable parameter β in MSDLSR is selected
from the interval of [0:0.005:0.05]. The code for MSDLSR is
written according to the pseudo-code in [20].

• ReLSR [19]: This method directly learns the regression target
and projection matrix from the training data, which guar-
antees a large margin constraint for the requirement of the
correct classification for each instance. The code for ReLSR
is written according to the pseudo-code in [19].

The regularization parameters λ1, λ2 in RLSSVC, and λ in MSVM,
RMSVM, MLG-LSC, MSDLSR, and ReLSR are selected from the set
{10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 100

}. All the parameters in
these methods are selected from the corresponding candidate set
by the five-fold cross-validation technique on the corresponding
training datasets. All the experiments are implemented in Matlab
R2017a environment on a PC with an Intel core i7-4790 processor
(3.60 GHz) and 8 GB RAM.
8

Table 2
Brief description of the twelve benchmark datasets.
Data set Classes Features Total num. Train num.

Cora_OS 4 6737 1246 997
Coil20 20 256 1440 1152
DNA 3 180 2586 1400
Satimage 6 36 6435 4435
Usps 10 256 9298 7291
Letter 26 16 15500 10500
Shuttle 7 9 58000 43500
Sensorless 11 48 58509 48509
Connect-4 3 126 67557 54046
Hand-poses 5 37 78096 62477
Acoustic 3 50 98528 78823
Covtype 7 54 580382 464180

6.1. Experimental results with artificial data

To demonstrate the numerical performance of our new classi-
fier, we compare the proposed RLSSVC with LSR, MLG-LSC, MSVM,
RLSSVM and RMSVM on a three classification dataset that in-
cludes 120 training instances and 180 test instances. The dataset
obeys the Gaussian distribution. Specifically, the instances of class
j satisfy X j ∼ N (µj, σ ), where µ1 = (0, 1), µ2 = (−

√
3/2, −1/2),

µ3 = (
√
3/2, −1/2) and σ = [0.15 0; 0 0.15]. In particular, we

contaminate the dataset with outliers as following: 1) selecting
six instances from class 2; 2) relabeling the three instances as
class 1, and the remaining as class 3. The Bayes optimal classi-
fier [3] is also chosen as the baseline method. Fig. 4 shows the
experimental results.

From the comparisons of Fig. 4(a)–(f), it can be seen that
for the dataset without outliers, the classification boundaries of
MLG-LSC, MSVM, RLSSVM, RMSVM and RLSSVC are closer to
that of the Bayes optimal classifier, and the classification accu-
racies are higher than that of LSR. Further, Fig. 4 shows that the
classification boundaries of LSR, MLG-LSC and MSVM are more
shifted toward the outliers than RLSSVM, RMSVM and RLSSVC. For
example, in Fig. 4(a)–(c), the classification boundaries between
the class 1 and class 2, the class 2 and class 3 slopes very
sharply toward the six outliers (the three instances marked as
‘◦’ are located in the area of the ‘+’ class but are labeled as the
‘◦’ class, and the three instances marked as ‘△’ are located in
the area of the ‘+’ class but are labeled as the ‘△’ class), while
the classification boundaries of RLSSVM, RMSVM and RLSSVC are
almost unchanged, as shown in Fig. 4(d)–(f). It can be concluded
that our RLSSVC is insensitive to outliers.

6.2. Experimental results with benchmark datasets

In this subsection, the proposed RLSSVC is then tested on
several benchmark datasets. The information of the datasets are
listed in Table 2, and the details about the datasets are described
as follows.

(1) Cora_OS is a subset containing the research papers about
operating system [48].

(2) The dataset of Coil20 includes 20 objects [49],1 each of
which has 72 gray images, which are taken from the differ-
ent view directions. Each image is down-sampled to have
16 × 16 pixels. Thus, the dimensionality is 256.

(3) Hand-poses dataset consists of 5 static gestures (hand
poses) captured for 12 users, which has 62477 training
instances and 15619 test instances. Each instance has 37

1 www.cs.columbia.edu/CAVE/software/softlib/coil-20.php

https://www.cs.cornell.edu/people/tj/svm_light/svm_multiclass.html
https://www.cs.cornell.edu/people/tj/svm_light/svm_multiclass.html
https://www.cs.cornell.edu/people/tj/svm_light/svm_multiclass.html
https://github.com/ChuanxingGeng/MLG-LSC
https://github.com/ChuanxingGeng/MLG-LSC
https://github.com/ChuanxingGeng/MLG-LSC
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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Fig. 4. Plots for comparing the classification boundaries of LSR, MLG-LSC, MSVM, RLSSVM, RMSVM and RLSSVC on the artificial dataset without and with outliers.
or the dataset without outliers, the test accuracies of these six algorithms are 95.56%, 96.11%, 96.11%, 96.11%, 96.11% and 96.11%, respectively. For the dataset with
utliers, the test accuracies of LSR, MLG-LSC, MSVM, RLSSVM, RMSVM and RLSSVC are 91.67%, 93.89%, 93.96%, %96.11%, 96.11% and 96.11%, respectively.
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features. Which can be taken from UCI machine learning
data repository.2

(4) The rest of the datasets (DNA, Satimage, Usps, Letter, Shut-
tle, Sensorless, Connect-4, Acoustic, Covtype) is taken from
the LIBSVM machine learning data repository.3

.2.1. Comparison of robustness
In order to evaluate the robustness of the proposed method to

arying degrees of outliers, we demonstrate the performances of
ll the methods with respect to the different degrees of outliers
n the benchmark datasets, as shown in Fig. 5. Specifically, we
nject the label noises into the training datasets as following:
1) randomly selecting {0%, 5%, 10%, 15%, 20%} of the training
nstances from each class; (2) randomly relabeling them into the
ther classes. All the plots were averaged over 10 random trials.
he only exception is to repeat the experiments 3 times for the
MSVM because it is computationally very expensive. In addition,
he experimental result of the RMSVM on the Covtype data is
issing because the training time is too long.
As shown in Fig. 5, it is obvious that the average test accuracy

f every method for all the datasets descends with the increase of
he outlier ratio. However, the average test accuracies of RLSSVC,
MSVM and RLSSVM on all the datasets are much more stable
han the remaining methods. Given any degree of outlier, the
verage test accuracy of RLSSVC is higher than that of the other
ethods on the most datasets. For the Shuttle, Connect-4 and
coustic, although the RLSSVC performs inferior to the other
ethods under the low outlier ratio, RLSSVC still surpass the

2 https://archive.ics.uci.edu/ml/index.php
3 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
 l

9

other methods based on LSR under the higher error ratio. For the
DNA, Shuttle and Acoustic, the classification accuracy of RMSVM
is slightly higher than that of RLSSVC, but RMSVM is much slower
than RLSSVC. Especially for the Shuttle and Acoustic, the training
time of RMSVM is more than 10,000 times slower than that of
RLSSVC. It is noteworthy that our method is rather stable even
for the training data with the serious outliers, which empirically
validates the robustness of our method for outliers.

In order to compare the performance of all the methods ob-
jectively and fairly, Macro averaged F1 scores (FMacro

1 ) [50] and
atthews correlation coefficient (MCC) [51] are also adopted
s the evaluation criteria. For each dataset, RMSVM was run
times, and the remaining methods were run 10 times. The

verage and standard deviation of the accuracy, FMacro
1 and MCC

or these methods on the benchmark datasets with outliers (20%)
re reported in Table 3. From the results, we can see that our
roposed method with minimizing the mean and variance of
he modeling errors for each class is very competitive in terms
f both accuracy, FMacro

1 and MCC, especially when the dataset
s contaminated by the outliers. This is because minimizing the
ean and variance of the modeling errors for each class can

educe the error oscillations caused by the outliers.

.2.2. Comparison of training time
Next, we mainly compare the computational performance

mong our RLSSVC, MSVM, RMSVM, RLSSVM, MLG-LSC, MSDLSR
nd ReLSR. Table 4 reports the training time of the seven meth-
ds on the benchmark datasets. It can be seen that RLSSVC
s the fastest algorithm among the compared approaches. Our
LSSVC is almost 100 times faster than the ReLSR on some
arge datasets, such as Letter, Shuttle and Covtype. Compared

https://archive.ics.uci.edu/ml/index.php
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Fig. 5. Robustness experiments with different degrees of outliers. From a comparison between the plots of related algorithms, it is clear that the RLSSVC is more
stable under any outlier ratio on the most datasets, while those methods based on the least square loss become worse with increase of outliers. The experimental
result of the RMSVM on the Covtype data is missing because the training time is too long.
a

with MSVM, RLSSVM, MLG-LSC and MSDLSR, RLSSVC is also very
competitive in terms of the training time. This is because the
objective of RLSSVC is convex, and the closed-form solutions can
be obtained only through the KKT condition, resulting in the high
computational performance. In particular, with the help of SMW
identity [41], the training time of RLSSVC on the Cora_OS dataset
is significantly reduced compared with the other methods. This
scales our approach up to the high-dimensional data effectively.
In contrast, RMSVM has to deal with a non-differentiable non-
convex optimization problem with nc constraints. Even if the
ifference convex algorithm and coordinate descent method are
mployed to solve RMSVM, it is still computationally very expen-
ive. Even for the smaller datasets, the training time of RMSVM
s almost 1000 times slower than our RLSSVC. For the Covtype
ata, the training procedure of RMSVM already takes more than
wo days.

.2.3. Statistical comparisons by friedman test
In order to compare the multiple methods systematically, the

riedman test [52] is employed to compare the test accuracies of
he seven methods over the first 11 (the experimental result of
he RMSVM on the Covtype data is missing because the training
ime is too long) benchmark datasets with the different degrees
f outliers. For the different degrees of outliers, Friedman test at
ignificance level α = 0.05 rejects the null hypothesis of equal
erformance, which leads to the use of post-hoc tests to find out
hich algorithms are actually different. Specifically, Nemenyi test

s used where the performance of two algorithms is significantly
10
different if their average ranks over all datasets differ by at least
one critical difference (CD= qα

√
K (K+1)

6N ), where critical values qα

re based on the studentized range statistic divided by
√
2, K is

the number of comparison algorithms, and N is the number of
datasets. For clarification, Fig. 6 illustrates the CD diagrams [52]
for the seven comparison methods on the eleven benchmark
datasets with the different degrees of outliers, where the average
rank of each comparing method is marked along the axis. The axis
is turned so that the lowest (best) ranks are to the right. Groups
of algorithms that are not significantly different according to
Nemenyi test are connected with a red line. The critical difference
(CD = 2.7155 at 0.05 significance level) is also shown above the
axis in each subfigure.

To sum up, out of all the 30 comparisons (6 algorithms to
compare ×5 degrees of outliers), RLSSVC achieves the statisti-
cally comparable performance in only 36.67% cases, i.e. the 11
comparisons against the RMSVM on the datasets with outliers,
against the MLG-LSC on the datasets including 0% and 5% outliers,
against the MSDLSR on the datasets including 0% outliers, against
the MSVM on the datasets including 0% outliers, and against the
RLSSVM on the datasets including 10% and 15% outliers. Rather
impressively, RLSSVC achieves the statistically superior perfor-
mance in all the other 63.33% cases and no algorithms have once
outperformed RLSSVC.

Based on the above analyses, we conclude that our proposed
method (RLSSVC) is more suitable for the classification problems
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able 3
xperimental results of each comparing method (mean ± standard deviation) on the twelve benchmark datasets with outliers (20%). The best values are highlighted
n bold. The ’-’means the experimental results are missing, because the training time is too long.
Data Evaluation criterion MSVM RMSVM RLSSVM MLG-LSC MSDLSR ReLSR RLSSVC

Cora_OS
Accuracy (%) 64.36 ± 0.62 71.29 ± 0.74 69.59 ± 0.88 63.72 ± 0.67 63.21 ± 0.72 60.67 ± 0.56 73.51 ± 0.51
Macro-F1(%) 56.16 ± 0.68 62.97 ± 0.72 62.21 ± 0.83 55.86 ± 0.68 55.37 ± 0.63 52.03 ± 0.61 65.16 ± 0.58
MCC(%) 51.88 ± 0.81 59.33 ± 0.71 55.04 ± 0.85 50.79 ± 0.81 50.11 ± 0.77 47.67 ± 0.65 61.38 ± 0.61

Coil20
Accuracy (%) 91.31 ± 0.55 94.47 ± 0.66 94.40 ± 0.91 93.01 ± 0.66 92.02 ± 0.63 90.96 ± 0.96 95.88 ± 0.50
Macro-F1(%) 90.21 ± 0.78 94.13 ± 0.72 94.04 ± 0.87 91.00 ± 0.64 89.50 ± 0.60 88.01 ± 1.04 94.50 ± 0.53
MCC(%) 90.16 ± 0.92 94.27 ± 0.88 94.18 ± 0.96 91.15 ± 1.26 89.63 ± 1.06 88.17 ± 1.02 94.60 ± 0.55

DNA
Accuracy (%) 88.07 ± 0.71 93.57 ± 0.62 92.29 ± 0.88 89.07 ± 1.07 87.86 ± 0.95 88.24 ± 1.72 92.97 ± 0.52
Macro-F1(%) 85.42 ± 0.67 93.13 ± 0.68 91.87 ± 0.61 86.91 ± 0.73 85.47 ± 0.84 85.67 ± 1.43 92.56 ± 0.53
MCC(%) 82.86 ± 0.91 90.77 ± 0.63 89.73 ± 1.41 84.78 ± 1.52 82.51 ± 1.66 83.09 ± 1.71 90.04 ± 0.67

Satimage
Accuracy (%) 73.92 ± 0.91 81.21 ± 0.75 80.02 ± 1.26 74.83 ± 1.15 75.28 ± 1.06 74.01 ± 1.31 80.81 ± 0.70
Macro-F1(%) 64.42 ± 0.83 72.85 ± 0.79 70.43 ± 1.06 66.50 ± 0.96 67.00 ± 0.93 64.84 ± 0.99 71.54 ± 0.88
MCC(%) 65.86 ± 1.01 77.38 ± 0.85 74.55 ± 1.17 70.91 ± 0.92 72.01 ± 1.03 66.12 ± 1.12 76.03 ± 1.03

Usps
Accuracy (%) 83.10 ± 0.87 88.32 ± 0.62 87.93 ± 0.57 85.13 ± 0.68 86.32 ± 0.51 83.43 ± 1.22 89.77 ± 0.69
Macro-F1(%) 82.17 ± 0.83 87.33 ± 0.61 85.54 ± 0.62 84.03 ± 0.73 85.17 ± 0.58 82.61 ± 1.15 88.90 ± 0.71
MCC(%) 81.03 ± 1.04 87.17 ± 0.91 84.95 ± 1.23 83.93 ± 1.42 84.84 ± 1.00 81.22 ± 1.62 88.86 ± 0.89

Letter
Accuracy (%) 64.71 ± 0.91 67.86 ± 1.12 66.66 ± 1.25 64.12 ± 1.06 65.01 ± 1.26 65.00 ± 1.79 68.42 ± 0.70
Macro-F1(%) 57.62 ± 1.07 65.73 ± 1.21 64.78 ± 1.11 56.34 ± 1.27 60.74 ± 1.32 60.66 ± 1.56 66.63 ± 0.77
MCC(%) 56.21 ± 1.12 64.68 ± 1.37 63.69 ± 1.57 55.34 ± 1.34 60.66 ± 1.43 60.33 ± 2.01 65.00 ± 0.81

Shuttle
Accuracy (%) 85.55 ± 0.93 91.08 ± 0.78 86.81 ± 0.77 86.75 ± 0.65 85.61 ± 0.93 85.41 ± 1.13 90.60 ± 0.23
Macro-F1(%) 70.62 ± 1.02 77.89 ± 0.77 73.58 ± 0.72 73.01 ± 0.60 71.33 ± 0.82 69.98 ± 0.95 76.56 ± 0.24
MCC(%) 71.21 ± 1.10 78.38 ± 0.81 74.21 ± 1.48 73.56 ± 1.23 71.78 ± 1.73 70.21 ± 1.21 77.33 ± 0.44

Sensorless
Accuracy (%) 76.01 ± 1.14 81.88 ± 0.92 73.62 ± 1.12 80.45 ± 1.25 73.68 ± 1.05 74.01 ± 1.32 83.11 ± 0.60
Macro-F1(%) 74.82 ± 1.10 80.57 ± 1.03 71.87 ± 1.10 78.57 ± 1.10 72.03 ± 1.00 73.21 ± 1.24 82.29 ± 0.59
MCC(%) 72.21 ± 1.33 77.95 ± 1.78 70.13 ± 2.27 75.68 ± 2.26 71.37 ± 2.15 71.87 ± 2.52 80.05 ± 1.20

Connect-4
Accuracy (%) 68.23 ± 0.96 72.36 ± 1.31 69.31 ± 0.91 70.15 ± 0.53 71.18 ± 0.69 67.01 ± 1.03 73.30 ± 0.47
Macro-F1(%) 39.64 ± 1.16 45.59 ± 0.88 40.51 ± 0.91 41.27 ± 0.66 42.07 ± 0.71 35.63 ± 0.96 47.55 ± 0.56
MCC(%) 34.65 ± 1.27 40.93 ± 1.67 35.23 ± 1.62 36.78 ± 1.21 37.77 ± 1.28 32.11 ± 1.37 42.33 ± 0.94

Hand-poses
Accuracy (%) 68.33 ± 0.85 76.83 ± 0.97 74.58 ± 1.91 69.85 ± 1.08 70.78 ± 1.22 68.01 ± 2.00 76.12 ± 0.67
Macro-F1(%) 67.64 ± 1.32 74.16 ± 1.79 71.78 ± 1.78 69.57 ± 1.24 70.34 ± 1.85 66.66 ± 1.30 73.28 ± 1.11
MCC(%) 62.65 ± 1.28 68.38 ± 1.66 66.71 ± 1.82 63.92 ± 1.39 65.18 ± 1.96 61.85 ± 1.58 67.26 ± 1.25

Acoustic
Accuracy (%) 65.21 ± 0.73 69.10 ± 0.57 68.88 ± 0.78 65.31 ± 0.88 66.08 ± 0.76 63.11 ± 1.32 69.37 ± 0.51
Macro-F1(%) 59.04 ± 1.01 61.86 ± 0.58 61.53 ± 0.83 59.16 ± 0.95 60.33 ± 0.79 58.66 ± 1.30 62.55 ± 0.52
MCC(%) 45.68 ± 1.03 48.38 ± 1.27 48.11 ± 1.12 45.87 ± 1.25 46.56 ± 1.07 41.37 ± 1.65 49.31 ± 1.01

Covtype
Accuracy (%) 62.69 ± 1.54 – 68.43 ± 0.91 65.01 ± 1.15 65.28 ± 1.05 62.71 ± 1.37 68.91 ± 0.75
Macro-F1(%) 26.54 ± 1.33 – 32.01 ± 1.21 27.68 ± 1.22 30.31 ± 1.07 26.88 ± 1.56 32.15 ± 1.02
MCC(%) 45.07 ± 1.55 – 48.80 ± 1.56 46.36 ± 1.38 47.33 ± 1.32 45.13 ± 1.61 49.11 ± 1.12
Table 4
Training time (seconds) of each comparing algorithm on the benchmark datasets. The best values are highlighted in bold. The ’-’means the experimental results are
missing, because the training time is too long.
Data MSVM RMSVM RLSSVM MLG-LSC MSDLSR ReLSR RLSSVC

Cora OS 4.14 ± 0.66 462.83 ± 2.31 4.85 ± 0.21 1.79 ± 0.10 41.43 ± 0.70 53.97 ± 0.81 0.46 ± 0.01
Coil20 0.16 ± 0.02 751.7 ± 2.63 0.03 ± 0.00 0.02 ± 0.00 0.26 ± 0.01 0.87 ± 0.02 0.01 ± 0.00
DNA 0.09 ± 0.01 39.92 ± 0.78 0.04 ± 0.00 0.02 ± 0.00 0.39 ± 0.01 0.88 ± 0.03 0.01 ± 0.00
Satimage 0.12 ± 0.01 100.1 ± 1.77 0.02 ± 0.00 0.02 ± 0.01 0.18 ± 0.01 1.37 ± 0.03 0.01 ± 0.00
Usps 56.35 ± 0.31 4524 ± 1.43 0.33 ± 0.01 0.24 ± 0.01 7.84 ± 0.19 10.68 ± 0.22 0.23 ± 0.01
Letter 9.52 ± 0.11 10436 ± 2.78 0.20 ± 0.01 0.05 ± 0.00 0.21 ± 0.02 12.43 ± 0.36 0.03 ± 0.00
Shuttle 0.77 ± 0.54 14957 ± 3.61 0.04 ± 0.00 0.03 ± 0.01 0.37 ± 0.02 17.65 ± 0.61 0.02 ± 0.00
Sensorless 25.81 ± 0.64 94851 ± 3.56 0.22 ± 0.02 0.14 ± 0.01 3.90 ± 0.12 29.99 ± 0.75 0.13 ± 0.01
Connect-4 16.81 ± 0.34 14316 ± 2.67 0.26 ± 0.02 0.21 ± 0.02 4.19 ± 0.22 17.22 ± 0.58 0.19 ± 0.01
Hand-poses 8.81 ± 0.24 15939 ± 2.31 0.05 ± 0.00 0.03 ± 0.00 0.49 ± 0.01 10.13 ± 0.27 0.02 ± 0.00
Acoustic 15.02 ± 0.24 14195 ± 2.17 0.38 ± 0.02 0.22 ± 0.01 6.82 ± 0.15 21.16 ± 0.58 0.19 ± 0.01
Covtype 47.35 ± 1.12 – 2.98 ± 0.12 1.26 ± 0.04 20.76 ± 0.67 192 ± 11.20 1.23 ± 0.03
with outliers, as it has higher test accuracy, requires less training
time than the other methods.

6.3. Improvement of RLSSVC on the hard benchmark datasets

In this subsection, several experiments were conducted on the
ast four hard benchmark datasets to verify the effectiveness of
he improvement of RLSSVC with metric learning and kernel trick.

.3.1. RLSSVC with metric learning
MLG-LSC has adopted the metric learning in the second stage,

o MSVM, RMSVM, RLSSVM, MSDLSR, ReLSR and RLSSVC are im-
roved by introducing the metric learning. Specifically, for MSVM,
11
RMSVM, RLSSVM, MSDLSR and ReLSR, the metric matrix M can
be learned through (17) (where Ẽ = 0), and each test instance
is classified by (10), after obtaining the optimal projection matrix
W . For clarity, the improvements of these comparison methods
are referred to ML-MSVM, ML-RMSVM, ML-RLSSVM, ML-MSDLSR,
ML-ReLSR and ML-RLSSVC for short. The experimental results
with average and standard deviation of these methods on the
last four benchmark datasets with outliers(20%) are reported in
Table 5.

In Table 5, it can be observed that the results are better for the
improvements of the six methods based on metric learning. This
fact demonstrates the virtues of the metric learning for solving



J. Ma, S. Zhou and D. Li Knowledge-Based Systems 215 (2021) 106652

i
t
φ

Fig. 6. CD diagrams of the five comparison models on the twelve benchmark datasets with different degrees of outliers. It is clear that RLSSVC achieves the statistically
superior performance on the datasets with the different outlier ratios.
Table 5
Experimental results of each comparing algorithm with metric learning (mean ± standard deviation) on the last four hard benchmark datasets with outliers (20%).
The best values are highlighted in bold. The ’-’means the experimental results are missing, because the training time is too long.
Data Evaluation criterion ML-MSVM ML-RMSVM ML-RLSSVM ML-MSDLSR ML-ReLSR ML-RLSSVC

Connect-4
Accuracy (%) 71.27 ± 0.73 73.18 ± 0.68 71.14 ± 0.95 72.19 ± 0.67 70.81 ± 1.21 74.11 ± 0.55
Macro-F1(%) 41.33 ± 0.83 48.27 ± 0.77 41.26 ± 0.99 43.31 ± 0.78 37.55 ± 1.12 49.35 ± 0.61
MCC(%) 37.78 ± 1.12 42.35 ± 1.14 37.33 ± 1.24 40.23 ± 1.17 35.46 ± 1.33 44.22 ± 0.72

Hand-poses
Accuracy (%) 74.54 ± 1.27 83.11 ± 1.32 81.97 ± 1.22 78.57 ± 1.06 73.14 ± 1.37 82.78 ± 0.95
Macro-F1(%) 72.91 ± 1.15 80.17 ± 1.45 77.78 ± 1.17 75.86 ± 1.23 70.29 ± 1.54 79.01 ± 1.02
MCC(%) 65.49 ± 1.36 74.55 ± 1.57 71.24 ± 1.23 69.45 ± 1.35 64.82 ± 1.51 73.92 ± 1.08

Acoustic
Accuracy (%) 67.54 ± 1.27 71.78 ± 0.68 70.16 ± 0.62 67.91 ± 0.65 64.18 ± 1.01 72.16 ± 0.55
Macro-F1(%) 62.26 ± 0.92 65.17 ± 0.87 64.01 ± 0.66 62.32 ± 0.68 60.44 ± 1.03 66.85 ± 0.57
MCC(%) 46.93 ± 1.18 50.55 ± 1.24 49.66 ± 0.71 47.79 ± 0.87 42.25 ± 1.22 51.58 ± 0.62

Covtype
Accuracy (%) 64.44 ± 1.43 – 69.78 ± 1.33 66.55 ± 1.21 64.62 ± 1.39 70.32 ± 1.12
Macro-F1(%) 28.31 ± 1.36 – 33.83 ± 1.41 32.24 ± 1.23 27.77 ± 1.51 34.87 ± 1.16
MCC(%) 47.72 ± 1.27 – 51.43 ± 1.52 50.13 ± 1.30 47.98 ± 1.58 52.31 ± 1.22
k
f

the multiclass classification problems. The results in Table 5 show
that ML-RLSSVC outperforms the other methods on the most
datasets. Therefore, our proposed RLSSVC has good expansibility.

6.3.2. Scalable kernel RLSSVC
In this subsection, the robustness of the scalable kernel RLSSVC

s verified in dealing with hard datasets with outliers. In all
he experiments, the original instance x is first transformed to
˜ (x) using the Nyström method, and then used as the input to
12
the seven compared models discussed in Section 6.2. For clar-
ity, we refer to the scalable kernel versions of the models dis-
cussed in Section 6.2 as NMSVM, NRMSVM, NRLSSVM, NMLG-LSC,
NMSDLSR, NReLSR and NRLSSVC, respectively. The Gauss kernel
k(x, z) = exp(−‚∥x − z∥2) is used as the kernel function. The
ernel spread parameter γ was chosen roughly by the five-
old cross-validation with γ ∈ {2−9, . . . , 23

}. The number r of
landmark points is set to 700.
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able 6
xperimental results of each scalable kernel version of comparing algorithm (mean ± standard deviation) on the last four hard benchmark datasets with outliers
20%). The best values are highlighted in bold. The ’–’ means the experimental results are missing, because the training time is too long.
Data Evaluation criterion NMSVM NRMSVM NRLSSVM NMLG-LSC NMSDLSR NReLSR NRLSSVC

Connect-4
Accuracy (%) 75.49 ± 0.74 76.66 ± 0.87 74.14 ± 0.58 75.08 ± 0.65 76.19 ± 0.75 73.81 ± 0.71 77.51 ± 0.45
Macro-F1(%) 49.38 ± 0.91 50.24 ± 0.83 46.67 ± 0.72 48.04 ± 0.62 49.81 ± 0.68 42.30 ± 0.77 51.16 ± 0.61
MCC(%) 45.65 ± 0.88 46.33 ± 0.79 42.86 ± 0.71 44.12 ± 0.70 45.55 ± 0.73 40.88 ± 0.81 47.62 ± 0.68

Hand-poses
Accuracy (%) 84.79 ± 1.21 91.76 ± 1.04 88.97 ± 1.31 84.12 ± 0.97 86.57 ± 1.17 83.14 ± 1.76 90.53 ± 0.88
Macro-F1(%) 81.41 ± 1.36 88.71 ± 1.47 86.78 ± 1.52 82.49 ± 1.15 85.86 ± 1.35 80.29 ± 1.65 87.01 ± 0.94
MCC(%) 75.85 ± 1.33 82.07 ± 1.59 79.24 ± 1.63 76.38 ± 1.28 77.45 ± 1.42 74.82 ± 1.50 80.92 ± 1.03

Acoustic
Accuracy (%) 73.59 ± 1.19 77.36 ± 0.92 76.16 ± 0.81 73.57 ± 0.91 73.91 ± 0.87 72.18 ± 1.46 78.16 ± 0.61
Macro-F1(%) 70.76 ± 1.17 72.24 ± 0.91 72.01 ± 0.85 70.35 ± 0.96 71.32 ± 0.93 69.44 ± 1.42 73.73 ± 0.63
MCC(%) 55.67 ± 1.16 58.87 ± 1.37 58.33 ± 1.21 55.11 ± 1.33 56.46 ± 1.55 52.25 ± 1.71 60.03 ± 1.05

Covtype
Accuracy (%) 68.59 ± 1.19 – 75.13 ± 1.27 70.25 ± 1.37 71.55 ± 1.20 68.35 ± 1.44 76.53 ± 1.03
Macro-F1(%) 46.32 ± 1.36 – 50.77 ± 1.55 47.32 ± 1.58 49.24 ± 1.19 45.77 ± 1.67 51.23 ± 1.46
MCC(%) 56.67 ± 1.46 – 61.92 ± 1.63 58.29 ± 1.73 60.88 ± 1.31 55.98 ± 1.79 62.02 ± 1.57
The last four datasets, described in Table 2, are employed to
valuate the robustness of the proposed scalable kernel RLSSVC.
he accuracy, FMacro

1 and MCC on all the four datasets (700 land-
mark points) with the outliers at 20% are reported in Table 6.
Table 6 clearly show that the NRLSSVC with the variance reduc-
tion yields better classification results than the other compared
models on the most datasets, with respect to both F1-measure
scores and Matthews correlation coefficient. This validate that
our NRLSSVC is effective for solving the nonlinear classification
problems.

7. Conclusion

In this paper, a novel robust least squares support vector
classifier (RLSSVC), minimizing the variance and mean of the
modeling errors for each class, is proposed. The theoretical anal-
ysis shows that the variance of the modeling errors of RLSSVC is
smaller than that of RLSSVR in dealing with the binary classifica-
tion problems. According to the validity of the RLSSVC for solving
the binary classification problems, RLSSVC is then generalized
for solving the multiclass classification problems. The robustness
analysis provides a theoretical guarantee for the robustness of
RLSSVC, which delivers that RLSSVC assigns the smaller weights
for the training instances with the larger errors, while the larger
weights for the training instances with the smaller errors. Experi-
mental results show that the proposed RLSSVC achieves the better
classification effect with the lower computational costs.

CRediT authorship contribution statement

Jiajun Ma: Conceptualization, Methodology, Data curation,
Writing - original draft. Shuisheng Zhou: Theoretical guidance,
Experimental review. Dong Li: Language editing, Grammar proof-
reading.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

This work was supported by the National Natural Science
Foundation of China under Grant 61772020.

References

[1] J.A.K. Suykens, J. Vandewalle, Least squares support vector machine
classifiers, Neural Process. Lett. 9 (3) (1999) 293–300.
13
[2] Shiming Xiang, Feiping Nie, Gaofeng Meng, Chunhong Pan, Changshui
Zhang, Discriminative least squares regression for multiclass classification
and feature selection, IEEE Trans. Neural Netw. Learn. Syst. 23 (11) (2012)
1738–1754.

[3] Shai Shalev-Shwartz, Shai Ben-David, UnderstandIng Machine Learning:
From Theory To Algorithms, Cambridge University press, 2014.

[4] Aymeric Dieuleveut, Nicolas Flammarion, Francis Bach Harder, Better,
faster, stronger convergence rates for least-squares regression, J. Mach.
Learn. Res. 18 (101) (2017) 1–51.

[5] J.A.K. Suykens, J. Vandewalle, Multiclass least squares support vector
machines, in: International Joint Conference on Neural Networks, 1999,
pp. 900–903.

[6] Erin L.Allwein, Robert E.Schapire, Yoram Singer, Reducing multiclass to
binary: A unifying approach for margin classifiers, J. Mach. Learn. Res. 1
(2000) 113–141.

[7] Divya Tomar, Sonali Agarwal, A comparison on multi-class classification
methods based on least squares twin support vector machine, Knowl.
Based Syst. 81 (2015) 131–147.

[8] Shuisheng Zhou, Sparse LSSVM in primal using Cholesky factorization for
large-scale problems, IEEE Trans. Neural Netw. Learn. Syst. 27 (4) (2016)
783–795.

[9] Corinna Cortes, V.N. Vapnik, Support-vector networks, Mach. Learn. 20 (3)
(1995) 273–297.

[10] A. Rocha, S.K. Goldenstein, Multiclass from binary: Expanding one-versus-
all, one-versus-one and ECOC-based approaches, IEEE Trans. Neural Netw.
Learn. Syst. 25 (2) (2017) 289–302.

[11] Carl Brunner, Andreas Fischer, Klaus Luig, Thorsten Thies, Pairwise support
vector machines and their application to large scale problems, J. Mach.
Learn. Res. 13 (1) (2012) 2279–2292.

[12] M. Liu, D. Zhang, S. Chen, H. Xue, Joint binary classifier learning for ECOC-
based multi-class classification, IEEE Trans. Pattern Anal. Mach. Intell. 38
(11) (2016) 2335–2341.

[13] Takashi Takenouchi, Shin Ishii, Binary classifiers ensemble based on Breg-
man divergence for multi-class classification, Neurocomputing 273 (2018)
424–434.

[14] Yoonkyung Lee, Yi Lin, Grace Wahbay, Multicategory support vector
machines, theory, and application to the classication of microarray data
and satellite radiance data, J. Amer. Statist. Assoc. 99 (465) (2004) 67–81.

[15] Koby Crammer, Yoram Singer, On the algorithmic implementation of
multiclass kernel-based vector machines, J. Mach. Learn. Res. 2 (2) (2001)
265–292.

[16] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, Yasemin
Altun, Large margin methods for structured and interdependent output
variables, J. Mach. Learn. Res. 6 (2) (2006) 1453–1484.

[17] Chih Wei Hsu, Chih Jen Lin, A comparison of methods for multiclass
support vector machines, IEEE Trans. Neural Netw. Learn. Syst. 13 (2)
(2000) 415–425.

[18] Ürün Doğan, Tobias Glasmachers, Christian Igel, A unified view on multi-
class support vector classification, J. Mach. Learn. Res. 17 (45) (2016)
1–32.

[19] X. Zhang, L. Wang, S. Xiang, C. Liu, Retargeted least squares regression
algorithm, IEEE Trans. Neural Netw. Learn. Syst. 26 (9) (2015) 2206–2213.

[20] L. Wang, X. Zhang, C. Pan, MSDLSR: Margin scalable discriminative least
squares regression for multicategory classification, IEEE Trans. Neural
Netw. Learn. Syst. 27 (12) (2016) 2711–2717.

[21] Chuanxing Geng, Songcan Chen, Metric learning-guided least squares
classifier learning, IEEE Trans. Neural Netw. Learn. Syst. 29 (12) (2018)
6409–6414.

[22] Kilian Q. Weinberger, Lawrence K. Saul, Distance metric learning for large
margin nearest neighbor classification, J. Mach. Learn. Res. 10 (1) (2009)
207–244.

http://refhub.elsevier.com/S0950-7051(20)30781-4/sb1
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb1
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb1
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb2
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb2
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb2
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb2
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb2
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb2
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb2
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb3
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb3
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb3
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb4
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb4
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb4
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb4
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb4
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb6
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb6
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb6
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb6
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb6
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb7
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb7
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb7
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb7
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb7
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb8
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb8
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb8
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb8
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb8
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb9
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb9
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb9
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb10
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb10
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb10
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb10
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb10
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb11
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb11
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb11
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb11
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb11
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb12
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb12
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb12
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb12
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb12
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb13
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb13
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb13
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb13
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb13
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb14
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb14
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb14
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb14
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb14
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb15
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb15
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb15
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb15
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb15
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb16
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb16
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb16
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb16
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb16
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb17
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb17
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb17
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb17
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb17
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb18
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb18
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb18
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb18
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb18
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb19
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb19
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb19
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb20
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb20
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb20
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb20
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb20
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb21
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb21
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb21
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb21
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb21
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb22
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb22
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb22
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb22
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb22


J. Ma, S. Zhou and D. Li Knowledge-Based Systems 215 (2021) 106652
[23] Pourya Zadeh, Reshad Hosseini, Suvrit Sra, Geometric mean metric learn-
ing, in: International Conference on Machine Learning, pages, 2016, pp.
2464–2471.

[24] Bernhard Schölkopf, Learning with kernels: Support vector machines,
regularization, optimization, and beyond, IEEE Trans. Neural Netw. Learn.
Syst. 16 (3) (2005) 781.

[25] Philip M.L.ong, Rocco A.S.ervedio, Random classification noise defeats all
convex potential boosters, Mach. Learn. 78 (3) (2010) 287–304.

[26] Benoît Frénay, Michel Verleysen, Classification in the presence of label
noise: a survey, IEEE Trans. Neural Netw. Learn. Syst. 25 (5) (2013)
845–869.

[27] Ruxin Wang, Tongliang Liu, Dacheng Tao, Multiclass learning with partially
corrupted labels, IEEE Trans. Neural Netw. Learn. Syst. 29 (6) (2017)
2568–2580.

[28] J.A.K. Suykens, J. De Brabanter, L. Lukas, J. Vandewalle, Weighted Least
Squares Support Vector Machines: robustness and sparse approximation,
Neurocomputing 48 (1) (2002) 85–105.

[29] Tongliang Liu, Dacheng Tao, Classification with noisy labels by importance
reweighting, IEEE Trans. Pattern Anal. Mach. Intell. 38 (3) (2016) 447–461.

[30] József Valyon, Gábor Horváth, A weighted generalized LS-SVM, Period.
Polytech. Electr. Eng. 47 (2003) 229–252.

[31] Lü You, Jizhen Liu, Yaxin Qu, A new robust least squares support vector
machine for regression with outliers, Procedia Eng. 15 (2011) 1355–1360.

[32] Seyda Ertekin, Leon Bottou, C.L.ee Giles, Nonconvex online support vector
machines, IEEE Trans. Pattern Anal. Mach. Intell. 33 (2) (2011) 368–381.

[33] Jiajun Ma, Shuisheng Zhou, Li Chen, Weiwei Wang, Zhuan Zhang, A sparse
robust model for large scale multi-class classification based on K-SVCR,
Pattern Recognit. Lett. 117 (1) (2019) 16–23.

[34] Kuaini Wang, Ping Zhong, Robust non-convex least squares loss function
for regression with outliers, Knowl. Based Syst. 71 (1) (2014) 290–302.

[35] Xiaowei Yang, Liangjun Tan, H.E. Lifang, A robust least squares support vec-
tor machine for regression and classification with noise, Neurocomputing
140 (2014) 41–52.

[36] Li Chen, Shuisheng Zhou, Sparse algorithm for robust LSSVM in primal
space, Neurocomputing 275 (2018) 2880–2891.

[37] Chong Zhang, Minh Pham, Sheng Fu, Yufeng Liu, Robust multicategory sup-
port vector machines using difference convex algorithm, Math. Program.
169 (1) (2018) 277–305.

[38] Thi Hoai Le An, Dinh Pham Tao, Solving a class of linearly constrained
indefinite quadratic problems by DC algorithms, J. Global Optim. 11 (3)
(1997) 253–285.
14
[39] Chuanfa Chen, Changqing Yan, Yanyan Li, A robust weighted least
squares support vector regression based on least trimmed squares,
Neurocomputing 168 (2015) 941–946.

[40] X. Lu, W. Liu, C. Zhou, M. Huang, Robust least-squares support vector
machine with minimization of mean and variance of modeling error, IEEE
Trans. Neural Netw. Learn. Syst. 29 (7) (2018) 2909–2920.

[41] G.H. Golub, C.F. Van Loan, Johns Hopkins Studies in the Mathematical
Sciences, Johns Hopkins University Press, 1996.

[42] Bernhard Schölkopf, Ralf Herbrich, Alex J. Smola, A generalized representer
theorem, in: International Conference on Computational Learning Theory,
2001, pp. 416–426.

[43] Christopher K.I.W.illiams, Matthias Seeger, Using the Nyström method to
speed up kernel machines, in: Neural Information Processing Systems,
2001, pp. 682–688.

[44] A.J. Smola, B. Schölkopf, P. Langley, Sparse greedy matrix approximation
for machine learning, in: International Conference on Machine Learning,
2000, pp. 911–918.

[45] Ali Rahimi, Benjamin Recht, Random features for large-scale ker-
nel machines, in: Neural Information Processing Systems, 2008, pp.
1177–1184.

[46] Joseph D.Conklin, Applied logistic regression, Technometrics 44 (1) (2002)
81–82.

[47] Cho Jui Hsieh, Kai Wei Chang, Chih Jen Lin, Sathiya S. Keerthi, S. Sun-
dararajan, A dual coordinate descent method for large-scale linear SVM,
in: International Conference on Machine Learning, 2008, pp. 408–415.

[48] Andrew Kachites Mccallum, Kamal Nigam, Jason Rennie, Kristie Seymore,
Automating the construction of internet portals with machine learning, Inf.
Retr. 3 (2) (2000) 127–163.

[49] Samer A. Nene, Shree K. Nayar, Hiroshi Murase, Columbia Object Image
Library (COIL-20), Technical Report CUCS-005-96, Department of Computer
Science, Columbia University, 1996.

[50] Harikrishna Narasimhan, Harish Ramaswamy, Aadirupa Saha, Shivani Agar-
wal, Consistent multiclass algorithms for complex performance measures,
in: International Conference on Machine Learning, 2015, pp. 2398–2407.

[51] J. Gorodkin, Comparing two K-category assignments by a K-category
correlation coefficient, Comput. Biol. Chem. 28 (5) (2004) 367–374.

[52] Janez Demsar, Statistical comparisons of classifiers over multiple data sets,
J. Mach. Learn. Res. 7 (2006) 1–30.

http://refhub.elsevier.com/S0950-7051(20)30781-4/sb24
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb24
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb24
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb24
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb24
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb25
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb25
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb25
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb26
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb26
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb26
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb26
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb26
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb27
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb27
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb27
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb27
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb27
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb28
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb28
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb28
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb28
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb28
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb29
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb29
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb29
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb30
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb30
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb30
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb31
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb31
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb31
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb32
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb32
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb32
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb33
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb33
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb33
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb33
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb33
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb34
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb34
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb34
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb35
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb35
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb35
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb35
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb35
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb36
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb36
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb36
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb37
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb37
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb37
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb37
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb37
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb38
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb38
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb38
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb38
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb38
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb39
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb39
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb39
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb39
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb39
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb40
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb40
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb40
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb40
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb40
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb41
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb41
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb41
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb43
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb43
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb43
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb43
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb43
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb45
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb45
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb45
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb45
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb45
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb46
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb46
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb46
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb48
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb48
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb48
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb48
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb48
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb49
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb49
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb49
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb49
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb49
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb51
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb51
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb51
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb52
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb52
http://refhub.elsevier.com/S0950-7051(20)30781-4/sb52

	Robust multiclass least squares support vector classifier with optimal error distribution
	Introduction
	Review of RLSSVR
	RLSSVC for binary classification
	RLSSVC for multiclass classification
	Model construction and optimization
	Robustness analysis
	Complexity analysis

	Improvement of RLSSVC based on metric learning and kernel
	RLSSVC with metric learning
	Scalable kernel RLSSVC

	Experiments
	Experimental results with artificial data
	Experimental results with benchmark datasets
	Comparison of robustness
	Comparison of training time
	Statistical comparisons by friedman test

	Improvement of RLSSVC on the hard benchmark datasets
	RLSSVC with metric learning
	Scalable kernel RLSSVC


	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References


