
Proof

IEEE TRANS. ON FUZZY SYSTEMS, VOL. XX, NO. XX, DEC. 2019 1

New Membership Scaling Fuzzy C-Means
Clustering Algorithm

Shuisheng Zhou, Dong Li, Zhuan Zhang, and Rui Ping

Abstract—Fuzzy c-means (FCM) is one of the most frequently
used methods for clustering. However, with the increasing amount
of data, FCM suffers from a slow convergence and a large amount
of calculation, since all samples are involved in updating the
solutions per iteration without considering the current clustering
results. In this paper, based on an observation that the samples,
whose nearest cluster center is v, will help the convergence
of v and the rest samples will prevent the convergence of v,
we propose a new membership scaling FCM (MSFCM). In
the new algorithm, many samples which will not change their
closeness relationships in next iteration are chosen by the triangle
inequality; then a new scheme for scaling the membership degrees
of the chosen samples is suggested to boost the effect of the
in-cluster samples and weaken the effect of the out-of-cluster
samples in clustering process. The new scheme not only improves
the convergence of the algorithm but also keeps the high quality
of the clustering. Many experimental results on synthetic and
real data sets verify the effectiveness of the proposed algorithm
for improving the convergence of the fuzzy clustering. Especially,
comparing to FCM, MSFCM saves about 1/3 iterations without
significant increasing the cost per iteration.

Index Terms—FCM, Triangular inequality, membership de-
gree, membership scaling.

I. INTRODUCTION

DATA clustering is an important topic of machine learn-
ing. The clustering algorithm is unsupervised learning

method, whose aim is to divide a data set of physical or
abstract objects into similar groups by the similarity measures.
Cluster analysis is widely used in many fields, including data
mining, pattern recognition, image processing [1], [2], [3], [4],
[5] etc.

The classic c-means algorithm (Lloyds algorithm) [6],
which is a common method of data clustering, consists of two
steps: for an input of n data points and c initial cluster centers,
the assignment step assigns each point to its closest cluster, and
the update step renews each of the c cluster centers with the
centroid of the points assigned to that cluster. The algorithm
repeats itself until convergence. We do not plan to review more
researches on the c-means further. But the triangle inequality
for clustering, first in [7] and recently extend in [8], is a very
efficient tool to avoid unnecessary distance calculations and
leverage the performance of clustering algorithms. In this brief,
we firstly equip it with the fuzzy clustering, which will be
introduced next.
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The fuzzy clustering [9] is a relatively new trend for data
clustering, in which a sample item does not exclusively belong
to a single cluster, but is a member of every cluster with a
membership degree in [0, 1]. A well-known example of fuzzy
clustering algorithms is the fuzzy c-means (FCM) in [10]. Due
to its flexibility and robustness for ambiguity, FCM has been
widely used (see[1], [6], [9] and the references therein).

However, FCM suffers from the slow convergence since all
samples have effects on all cluster centers all the time.

There are many researches on those issues. For exam-
ple, fuzzy c-means clustering based on weights and gene
expression programming (WGFCM) [11] was proposed by
introducing a weight vectors based on entropy and an update
of cluster determined by the gene expression programming.
Hathaway and Hu [12] designed the density-weighted fuzzy
c-means (DWFCM) to improve the convergence by reducing
the larger data set to a weighted smaller one. Geometric
progressive fuzzy c-means (GOFCM) and minimum sample
estimate random fuzzy c-means (MSERFCM) in [13] accel-
erated FCM by progressive sampling and random sampling
ways respectively. An FCM algorithm based on morphological
reconstruction and membership filtering (FRFCM) [14] was
proposed to improve the speediness and robustness.

Some variant FCM algorithms are aimed to large scale
clustering problem. Such as,the gradient based fuzzy c-means
(GBFCM) [15] utilized the gradient descent to improve speed
and stability of convergence. Recently, the stochastic gradient
descent based fuzzy clustering (SGFCM) [16] with the mini-
batch scheme was recommended to improve the clustering
efficiency for large-scale data sets. Havens, Bezdek et al. have
presented LFCM and rseFCM algorithms in [17] for very
large data, including nonlinear clustering by kernel trick, to
decrease the clustering time with many types of relaxing of
the convergence conditions. Khoshkbarchi et al. [18] also sug-
gested a modified hybrid fuzzy clustering method (MHFCM)
for big data by the map-reduce technique and particle swarm
optimization. In [19], FCM was improved to deal with both
large scale and high dimensionality document categorization.

In this paper, we propose an improved fuzzy c-means called
the membership scaling FCM (MSFCM) which is originally
based on the triangle inequality and a new perspective of
membership to scale the membership degree. Compared to
some of FCM algorithms listed above, the new MSFCM has
the properties with less iterations, fast convergence, lower time
consumption, and the high quality of cluster. It also has the
potential possibility for very large scale clustering problem.

The remaining parts of this paper are organized as follows:
Section II gives a review and some new findings of FCM algo-
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rithm. In Section III, after introducing the triangle inequality
in clustering with a new geometric interpretation, we propose a
new membership degree scaling scheme, and hence give a new
clustering algorithm. The experimental results with discussion
are listed in Section IV and Section V concludes the paper.

II. REVIEW AND SOME NEW FINDINGS OF FCM
Given the data set be X = {x1,x2, · · · ,xn} with xj ∈ Rp

being the j-th sample and the target clusters number c, FCM
clustering partitions the X into c clusters by the cluster centers
V = [v1,v2, · · · ,vc] ∈ Rp×c and the membership degree
matrix U = [uij ] ∈ Rc×n. For a given fuzziness weighting
exponent m > 1, V and U are solved iteratively according to
the following optimization problem

min
U,V

J(U,V) =
c∑

i=1

n∑
j=1

umij‖xj − vi‖2, (1)

s.t.
c∑

i=1

uij = 1, uij ≥ 0.

FCM scheme usually initializes U(0) and updates V and U
alternatively as

v
(t+1)
i =

n∑
j=1

(
u
(t)
ij

)m
xj

n∑
j=1

(
u
(t)
ij

)m , (2)

u
(t+1)
ij =

 c∑
k=1

(
‖xj − v

(t+1)
i ‖

‖xj − v
(t+1)
k ‖

) 2
m−1

−1 , (3)

until convergence. Next we prove the upper and lower bounds
of the membership degree uij and give it a new interpretation.

A. The bounds of the membership degree
For any sample xj , the distances between xj and the cluster

centers V are d
(t)
ij = ‖xj − v

(t)
i ‖, i = 1, 2, · · · , c. We

rearrange them in the ascending order and denote them by
D

(1)
j , D

(2)
j , · · · , D(c)

j , namely D
(1)
j ≤ D

(2)
j ≤ · · · ≤ D

(c)
j .

Then we have the following lemma.

Lemma 1. For the sample xj , its membership degrees uij
satisfy the following inequalities

0 ≤ uij ≤

1 + (c− 1)

(
d
(t)
ij

D
(c)
j

) 2
m−1

−1 , 1 ≤ i ≤ c. (4)

Especially,

1

c
≤ uI∗j j ≤

1 + (c− 1)

(
D

(1)
j

D
(c)
j

) 2
m−1

−1 , (5)

where I∗j = argmin
1≤i≤c

{dij}.

Proof: In view of (3) and the notation D
(k)
j above, we

have

uij =

[
c∑

k=1

(
d
(t)
ij /D

(k)
j

) 2
m−1

]−1
.

Inequalities (4) and (5) follow by the definition of D(k)
j and

the monotonicity of the involved functions.
In Section III, we will use those inequalities to scale the

membership degrees of some samples directly to improve the
convergence of the clustering and save the computing cost.

B. New interpretation about the membership degree

Firstly, we perform a set of experiments to evaluate the
effect of FCM on the size of the data set. There is a set
of data which contains two simple clusters C1 and C2 as in
Fig. 1. Both data sets are generalized by two-dimensional
Gaussian distribution with a standard deviation of 0.5, where
C1 is fixed with 200 samples, while C2 is varied with 200,
500, 1000 samples respectively. FCM is used in those three
situations with c = m = 2 and the same start points. Here we
mainly focus on the effect of the size of C2 to the convergence
trajectory of C1. The experimental results are plotted in Fig.
1.

From Fig. 1, it is clear that the size of C2 greatly af-
fects the convergence trajectory of C1. In order to explain
this phenomenon, let us have deep explore of the FCM
iterations. In view of (2), each sample in the data set has
an effect on the updating of any cluster center in ways
of the membership degree. In our case, we have v1 =

1∑
j um

1j

(∑
j∈C1 u

m
1jxj +

∑
j∈C2 u

m
1jxj

)
. It is clear that the

samples in C1 do the “right” thing to attract v1 approaching
to its target, which ensures the convergence of the algorithm.
On the contrary, all the samples in C2 do the “wrong” thing
to attract v1 to departure from its target. Since u1j ≥ u1j′ for
j ∈ C1, j′ ∈ C2 by (3), if the size of C2 is small, the “wrong”
effect on v1 by C2 is less as Fig. 1(a) shows. While the size of
C2 becomes large, the total “wrong” effect is very significant
as Fig. 1(c) shows. Namely, the samples in C1 let v1 close
to its target, while the samples in C2 prevent v1 close to its
target. This explains the finding of Fig. 1. Hence, we conclude
that the samples in C2 delay the convergence of v1. And the
similar analysis on v2 will reveal that the samples in C1 also
delay the convergence of v2.

For c > 2, the analysis will be similar. That is to say, the
update of v can be split into two aspects. In the first aspect,
the samples, whose nearest center is v, help the convergence
of v; and in the second aspect, the rest samples, whose nearest
center is not v, prevent the convergence of v. This is one of
the reasons for the slow convergence of FCM in the case of
the large data with multiple clusters. In order to improve the
convergence of FCM, we can manage to enhance the update
in the first aspect, and to weaken it in the second aspect.

To accomplish this, a initial thought is to increase the
membership degree uij if vi is the nearest center of xj , and
decrease uij if vi is not the nearest center of xj . However,
there are two difficulties need to overcome.

The first one is how to choose the samples to increase or
decrease their membership degrees, since we do not know
the final clusters. vi is the nearest center of xj in current
iteration, but it is not always to be the nearest center of xj

in next iteration. The exception is that, if vi has been the
nearest center of xj many times, then it has a high probability
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Class1
Class2

(a) |C2|=200

Class1
Class2

(b) |C2|=500

Class1
Class2

(c) |C2|=1000

Fig. 1: The trajectories of cluster centers of C1 in the FCM iterations. Here, FCM converges within 7, 9 and 11 iterations and
costs 0.004, 0.006 and 0.010 seconds corresponding to the case (a), (b), and (c) respectively, where the blue star is the initial
point, the green triangle is the cluster center per iteration, and the black star is the target.

keeping the relationship. In Section III, we filter out some
samples xj , j ∈ J , which will not change their closeness
relationships in next iteration by the triangle inequality. For
those xj , we increase its membership degree corresponding
to the closest cluster, and simultaneously decrease the other
membership degrees. Many experimental results support that
this technique can improve the convergence of FCM.

The other difficult is how much the increment/decrement of
the chosen membership degree is. Since

∑c
i=1 uij = 1, we

should only focus on the increment of the membership degree
corresponding to the nearest cluster vI∗j . If the increment is
too small, the improvement will be insignificant; while the
increment is too large, such as set uI∗j j be 1 or very near 1,
the algorithm is degenerated into hard c-means. In this work,
in view of the new results in Lemma 1, we increase uI∗j j to
its upper bounds as it is the true FCM membership degree.

Those two issues are the motivation for us to propose a new
FCM algorithm in Section III.

III. NEW MEMBERSHIP SCALING FCM CLUSTERING

Some state-of-the-art researches [7], [8] on c-means (or
called k-means) show that the triangle inequality can speedup
the clustering algorithms by avoiding unnecessary distance
calculations. Motivated by the analysis above, we introduce
the triangle inequality in FCM clustering and propose a new
membership scaling fuzzy c-means algorithm, called MSFCM.
As far as we know, the idea and the method are all novel.

A. Triangle inequality in clustering

As they have done in works [7], [8], we can identify whether
a sample changes its cluster after an iteration or not with a
single comparison by the triangle inequality. For each sample
xj , if the algorithm maintains the distance to the closest cluster
center, D(1)

j , and the distance to the second-closest cluster
center, D(2)

j , then we can infer that which kinds of samples

will not change their clusters in next iteration by a statement
in [8]. We relist it here in our version for convenience.

Lemma 2. Let δi = d(v
(t+1)
i ,v

(t)
i ) be displacement of the

cluster center v
(t)
i (1 ≤ i ≤ c). A sample xj , whose nearest

cluster center is v
(t)
I∗j

with I∗j = argmin1≤i≤c{d(t)i,j}, will not
change its nearest cluster after another FCM update, if

D
(2)
j − max

1≤i≤c
δi ≥ D(1)

j + δI∗j . (6)

Namely, argmin
1≤i≤c

{d(t+1)
i,j } = I∗j keeps in this case.

The proof of Lemma 2 is similar in [8]. Here we just give
a new geometric explanation as Fig. 2 shows (See the caption
of Fig. 2 for details).

In hard k-means algorithm, after the new cluster centers
are obtained as v

(t)
i , i = 1, · · · , c, there needs a lot of cost

to determine the nearest cluster center of all samples xj , j =
1, · · ·n. However, by Eq. (6), they [7], [8] filter out many
samples, whose nearest cluster will not change according to
current V(t). Hence, much computational cost is saved and
the speed of algorithm is improved.

In FCM algorithm, we can also filter out some samples
whose nearest cluster will not change in next iteration by Eq.
(6). Then with those priori information, we design a scheme
to improve the clustering by the analysis in Section II-B. The
details will be posted in next subsection.

B. The membership degrees scaling scheme
For FCM, if the current cluster V(t) is obtained by (2), then

we need to compute U(t+1) by (3). By the analysis in Section
II-B, if we know which kinds of samples will not change their
cluster, we can use them to improve the convergence of the
algorithm. Specifically, let XJ = {xj |j ∈ J} be a subset of
the filtered samples by Eq. (6), where J ⊂ {1, · · · , n} is the
subscript set of the filtered samples. Namely, the index of the
nearest cluster center of xj , j ∈ J , will not change when the
cluster center matrix is updated from V(t) to Ṽ(t+1).
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O
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δi
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D
(1)
j

d(xj , A2) =

D
(1)
j + δ

I
(∗)
j

d(B1, B2) =
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D
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Fig. 2: Geometric explanation of Lemma 2. For xj , let v1

be its nearest center and v2 be its second-nearest center. The
radius of the green dotted circle is δi = d(v

(t+1)
i ,v

(t)
i ), and

the radius of the darkblue dotted circle is max
1≤i≤c

δi. Hence the

new vi(i ≥ 2) must be at the out of the purple solid arc,
and the new v1 must be inner the dark solid arc. In case (a),
since |Ov2| − max

1≤i≤c
δi ≥ |Ov1|+ δI∗j , which satisfies Lemma

2, xj must not change its nearest cluster in next iteration. In
case (b), since |Ov2| − max

1≤i≤c
δi < |Ov1| + δI∗j , we do not

know whether the nearest cluster of xj changes or not in next
iteration.

In this situation, we propose a new algorithm with two
different kinds of schemes to update U(t+1), but not only
dependent on (3). One is for the samples in XJ , whose
membership degrees u(t+1)

i,j are adjusted by a new technique
described in next paraph, where much computational cost
is saved. The other is for the sample xj , j /∈ J , whose
membership degrees are still computed by (3), which is very
important for the algorithm to maintain the advantages of
FCM. Especially at the very beginning of the algorithm with-
out the well-chosen initial centers, most of the membership
degrees are updated by this way.

For the sample xj ∈ XJ , its membership degrees to the
cluster centers V(t) are the vector u

(t)
j = (u1,j , · · · , uc,j)>.

We will obtain u
(t+1)
j by a simple scheme to improve the

convergence of the algorithm. Let I∗j be the index of the
nearest cluster center of xj . Based on the new interpretation
on the membership degree in Section II-B, we simply increase
u
(t)
I∗j ,j

to u
(t+1)
I∗j ,j

by multiplying a factor αj larger than 1 (Of

course, u(t+1)
I∗j ,j

≤ 1 must be kept), and decrease u(t)i,j to u(t+1)
i,j

for i 6= I∗j by multiplying a factor βj less than 1. In view of
Lemma 1, we can increase u(t)I∗j ,j

to its upper bounds

Mj =

1 + (c− 1)

(
D

(1)
j

D
(c)
j

) 2
m−1

−1 . (7)

Namely, u(t+1)
I∗j ,j

=Mj and αj =
Mj

u
(t)

I∗
j
,j

. Thus, we have

βj =
1−Mj

1− u(t)I∗j ,j

. (8)

As the result, our new update scheme for U(t+1) is

u
(t+1)
i,j =


Mj , j ∈ J, i = I∗j ,

βju
(t)
i,j , j ∈ J, i 6= I∗j ,

u
(t)
i,j ,

j /∈ J,
1 ≤ i ≤ c,

(9)

where d
(t)
ij = ‖xj − v

(t)
i ‖. Notice that for the samples xj

(j /∈ J), the distances between the samples and the cluster
centers, d(t)ij , had already been calculated, and there no needs
any extra cost.

C. The proposed algorithm

Now we propose a new membership degree scaling FCM
algorithm integrating with traditional one. In new algorithm,
after a traditional FCM iteration, we adjust the current U and
V using the scaling scheme in Subsection III-B. The proposed
algorithm, called the membership scaling FCM (MSFCM), is
listed as Algorithm 1.

Algorithm 1 MSFCM

Input: Dataset X = {x1,x2, · · · ,xn}, cluster number c;
Output: Membership degree matrix U and cluster center

matrix V.
1: Initialize fuzzy exponent m, convergence threshold ε,

compute the cluster center V(1) by the initial membership
degree matrix U(0) ∈ Rc×n according to (2); Set t := 1.

2: Compute d(t)i,j = ‖xj − v
(t)
i ‖ for 1 ≤ i ≤ c, 1 ≤ j ≤ n;

3: Compute U(t) with u(t)ij =

[∑c
k=1

(
d
(t)
ij

d
(t)
kj

) 2
m−1

]−1
;

4: Compute Ṽ(t+1) with ṽ
(t+1)
i =

∑n
j=1

(
u
(t)
ij

)m
xj∑n

j=1

(
u
(t)
ij

)m ;

5: Compute δi(i = 1, · · · , c) using V(t) and Ṽ(t+1);
6: Filter out the subset XJ according to (6);
7: Update U(t+1) with new scheme according to (9);

8: Compute V(t+1) with v
(t+1)
i =

n∑
j=1

(
u
(t+1)
ij

)m
xj

n∑
j=1

(
u
(t+1)
ij

)m ;

9: if |XJ | < n and ‖V(t+1) −V(t)‖ ≥ ε then
10: Set t := t+ 1, Goto Step 2;
11: else
12: return U = U(t+1), V = V(t+1);
13: end if

Now we do some explanations of the new MSFCM:
• The difference between the proposed MSFCM and FCM

can be illustrated as the next follow chart:

→ V(t) (3)−→ U(t)
(2)−→Ṽ(t+1)

−−−−−−−→
(6), (9)

U(t+1) (2)−→ V(t+1) → .

Compared with the traditional FCM, MSFCM only insert-
s the boxed part, corresponding to Step 5-7 in Algorithm
1, to update a new U(t+1) by a novel scheme.

• The complexity of the new inserted Step 5-7 is very
low, since d

(t)
ij (or D(1)

j and D
(2)
j ) in (6) and (9) has

been calculated in Step 2 and the cost of computing
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δi(i = 1, · · · , c) is only O(cp). The extra cost of MSFCM
over FCM per iteration is on Step 4, whose cost is
O(ncp). Compared to FCM, whose cost is O(2ncp) per
iteration, the cost of MSFCM is O(3ncp) per iteration.
However, the inserted part improves the convergence of
the algorithm greatly, and the iteration number of the new
algorithm is no more than one third of FCM, which will
be illustrated by many experiments in Section IV. Hence,
the total cost is saved.

• There exists another possible scheme to implement our
scaling idea for FCM. It is neglecting standard FCM
update in Step 2 and Step 4, and only uses the process
from Step 5-8. This version works very quickly, but it
losses some advantages of FCM. Hence, it often has a
little lower accuracy. Therefore, the proposed algorithm
is good tradeoff between the speed and the accuracy.

• One shortcoming of MSFCM is clear. It cannot maintain
the monotone of J(U,V) in the iteration, since we mod-
ified some values derived by the ordinary optimization
theory. However, we can prove that the corresponding
objective of the hard-clustering, defined as

Ĵ(U,V) =
n∑

j=1

‖xj − vI∗j ‖
2, (I∗j = max

1≤i≤c
uij), (10)

is the monotonic decreasing as FCM in the iteration. This
is owing to Lemma 2, which guarantees our modification
without changing the hard-clustering. All those will be
illustrated by experiments in Section IV.

Next section, we perform many experiments to illustrate the
efficiency of the proposed algorithm.

IV. EXPERIMENTAL RESULTS

To estimate the effectiveness and efficiency of the proposed
MSFCM, experimental studies are conducted on synthetic data
sets and real word data sets respectively. Four state-of-the-art
clustering algorithms, FCM [10], Mini-batch SGFCM [16],
LFCM and resFCM [17], are employed in these experiments
to compare with the proposed MSFCM. The reason of the
selections is that these algorithms have their own advantages.
For example, Mini-batch SGFCM shows comparable or better
accuracy with significant less time consumption [16]. LFCM
and resFCM have a fast convergence for very large data sets
[17]. All the experiments are run on a Personal Computer
with a Intel Core i7-6700 CPU and a maximum of 8Gbytes
of memory available for all processes. The computer runs
Windows 7 with Matlab R2017a. In all experiments, we set the
termination parameter ε = 10−6 and the fuzziness weighting
exponent m = 2 in all the experiments for simplicity.

A. Experiments on Synthetic data sets

In the first set of experiments, we have redone the exper-
iments according to Fig. 1 with our proposed MSFCM for
comparison. All the settings are same as the experiments in
Fig. 1. The results are plotted in Fig. 3.

Comparing Fig. 3 with Fig. 1, we can observe that the
convergence trajectories of C1 with MSFCM are reduced

significantly, and the effect of the C2 is weakened. All the
observations are in accordance with the previous analysis,
which shows that MSFCM can achieve a fast convergence by
boosting the effect of the in-cluster samples and weakening
the effect of the out-of-cluster samples.

The other synthetic data set is D31, in which 31 clusters are
generalized by the normal distribution with a same standard
deviation 0.5 and their cluster centers are randomly placed
in R2 as Fig. 4 shows. Each cluster has 200 samples. This
similar dataset also appears in [20], [21]. We perform FCM
and MSFCM on this data set and the results are illustrated in
Fig. 4(a) and Fig. 4(b).

From the plotting of Fig. 4, we firstly see that, with the
similar initial points, the clustering results of two algorithms
are identical. Both algorithms can find all 31 cluster centers.
However, the costs of two algorithm are greatly different.
The iterations and the time of the proposed MSFCM are less
than one third of those of FCM. The new scaling scheme
can great improve the convergence speed of FCM clustering.
Furthermore, comparing with Fig. 4(a) and 4(b), it is clear
that the convergence trajectories of MSFCM are simpler than
those of FCM. This is again because the new scaling scheme
is boosting the effect of the in-cluster samples and weakening
the effect of the out-of-cluster samples.

B. Experiments on Real world data sets

In order to evaluate the performance of different cluster
algorithms, three external metrics, including the overall F-
measure for the entire data set (F ∗), Normalized Mutual
Information (NMI) and Adjusted Rand Index (ARI) [16],
[13], [19], [22], are used in this subsection. All three criteria,
the larger the better, are used to measure the agreement of
the ground truth and the clustering results produced by an
algorithm. Specifically, let n be the total number of samples,
{C1, C2, · · · , Cc} be the partition of the ground truth, and
{Ĉ1, Ĉ2, · · · , Ĉĉ} be the partition by an algorithm. Denote that
n̂i = |Ĉi| is the number of samples in Ĉi, nl = |Cl| is the
number of samples in Cl, and nli = |Cl ∩ Ĉi| is the number
of the common objects in Cl and Ĉi, where i = 1, 2, · · · , ĉ
and l = 1, 2, · · · , c. Then the measure F (l, i) = 2nl

i

nl+n̂i
is the

harmonic mean of Precision and Recall of Cl and its potential
prediction Ĉi. Therefore, the overall F-measure F∗, NMI and
ARI are defined as the following equations.

F∗ =
c∑

l=1

nl
n

max{F (l, i)|i = 1, · · · , ĉ}, (11)

NMI =

ĉ∑
i=1

c∑
l=1

nli log(
n·nl

i

n̂i·nl
)√(

ĉ∑
i=1

n̂i log(
n̂i

n )

)(
c∑

l=1

nl log(
nl

n )

) , (12)

ARI =

ĉ∑
i=1

c∑
l=1

(
nl
i
2

)
−

ĉ∑
i=1

(
ti
2

) c∑
l=1

(
sl
2

)
/
(
n
2

)
1
2

(
ĉ∑

i=1

(
ti
2

)
+

c∑
l=1

(
sl
2

))
−

ĉ∑
i=1

(
ti
2

) c∑
l=1

(
sl
2

)
/
(
n
2

) , (13)
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Class1
Class2

(a) |C2| = 200

Class1
Class2

(b) |C2| = 500

Class1
Class2

(c) |C2| = 1000

Fig. 3: The trajectories of the cluster centers of C1 in the MSFCM iterations. In this case, MSFCM algorithm is converged
with 2, 3 and 4 iterations and costs 0.002, 0.003 and 0.006 seconds corresponding to (a), (b) and (c) respectively. In figures,
the blue star is the initial point, the green triangle is the cluster center per iteration, and the black star is the target.

(a) D31 by FCM (b) D31 by MSFCM

Fig. 4: Clustering the synthetic data sets D31 by FCM and MSFCM. The initial points are randomly generated by initializing
U. The red solid triangles are the cluster centers per iteration and the black solid stars are the resulted cluster centers. (a)
Clustering result of D31 by FCM, in which FCM converges within 286 iterations and costs 59.33 seconds; (b) Clustering result
of D31 by MSFCM, where MSFCM converges only within 72 iterations and costs 5.58 seconds.

where
(
n
i

)
= n!

i!(n−i)! , sl =
∑ĉ

i=1 n
l
i, and ti =

∑c
l=1 n

l
i.

The chosen clustering methods are applied to seven real
word data sets, which are obtained on the UCI machine
learning repository1. The detailed information of the data sets
is listed in the first column of TABLE I, where n is the number
of training size, p is the dimension of the sample, and c is the
given cluster number.

We perform the traditional FCM, LFCM and resFCM in
[17], SGFCM [16] with batch size as 1%n, 2.5%n and 5%n,
and our proposed MSFCM. The experimental results are listed
in TABLE I. All the results in TABLE I are averaged on ten
trials with random initializations, and the standard deviations
are also presented after the means. The best results are in bold.

1https://archive.ics.uci.edu/ml/index.php

From the experimental results in TABLE I, we have the
following findings.

• Firstly from the results in last column, it observes that
MSFCM almost wins on all data sets in term of F ∗,
ARI, NMI, training time and iteration in our setting.
Hence the new proposed algorithm not only accelerates
the clustering process of FCM, but also keeps a higher
clustering quality.

• Comparing with FCM, the iterations of MSFCM are al-
ways less than one forth of those of FCM with the compa-
rable clustering performance. Hence by the computational
complexity analyzed in Section III, approximately at least
one third of the training time is saved. At the same time,
the cluster qualities of MSFCM are always better than or

https://archive.ics.uci.edu/ml/index.php
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TABLE I: Experimental results on seven real world data sets with different algorithms. All the values are averaged on ten
trials with random initializations, where the standard deviations are presented after the means linked with ±. Best results are
in bold.

Data sets Evaluate FCM LFCM rseFCM Mini-batch SGFCM MSFCMcriteria 1% 2.5% 5%

Wine F ∗ 0.699±0.001 0.699±0.001 0.701±0.005 0.667±0.032 0.666±0.061 0.682±0.050 0.720±0.001
(n=178 ARI 0.354±0.001 0.354±0.001 0.352±0.006 0.332±0.029 0.345±0.066 0.355±0.030 0.375±0.001
p=13 NMI 0.417±0.001 0.417±0.001 0.419±0.006 0.392±0.002 0.401±0.050 0.411±0.030 0.432±0.001
c=3) Time/s 0.073±0.001 0.043±0.009 0.036±0.004 0.062±0.005 0.058±0.003 0.061±0.006 0.035±0.001

Iteration 62.5±4.3 53.9±2.9 50.1±17.2 53.5±5.1 90.3±19.9 82.9±31.6 17.1±2.3

Vehicle F ∗ 0.451±0.001 0.451±0.001 0.451±0.001 0.439±0.032 0.446±0.019 0.450±0.006 0.453±0.001
(n=846 ARI 0.118±0.001 0.118±0.001 0.118±0.001 0.110±0.020 0.103±0.021 0.113±0.002 0.118±0.001
p=18 NMI 0.180±0.001 0.180±0.001 0.181±0.001 0.166±0.009 0.172±0.013 0.180±0.002 0.184±0.001
c=4) Time/s 0.187±0.030 0.187±0.053 0.181±0.024 0.321±0.053 0.589±0.082 0.209±0.136 0.130±0.022

Iteration 95.5±5.4 63.9±7.6 56.7±10.3 135.6±50.5 399.1±79.6 301.9±191.8 30.6±4.9

Segment F ∗ 0.590±0.032 0.539±0.036 0.589±0.007 0.519±0.059 0.559±0.050 0.572±0.034 0.612±0.037
(n=2310 ARI 0.352±0.001 0.335±0.060 0.366±0.010 0.312±0.051 0.356±0.026 0.355±0.053 0.391±0.008
p=19 NMI 0.473±0.036 0.455±0.035 0.472±0.051 0.450±0.061 0.479±0.021 0.466±0.034 0.530±0.002
c=7) Time/s 3.610±1.587 3.152±0.899 2.028±0.569 4.961±0.178 4.653±0.792 5.970±3.125 0.764±0.012

Iteration 371.6±80.8 152.5±36.8 157.7±51.2 1583.1±535.7 2536.7±109.3 4631.9±537.1 48.2±10.1

Satimage F ∗ 0.553±0.001 0.553±0.001 0.553±0.001 0.572±0.035 0.561±0.021 0.567±0.013 0.608±0.004
(n=6435 ARI 0.292±0.001 0.292±0.001 0.292±0.001 0.290±0.003 0.299±0.013 0.321±0.015 0.350±0.001
p=36 NMI 0.450±0.001 0.458±0.001 0.458±0.001 0.455±0.032 0.454±0.002 0.463±0.005 0.486±0.011
c=6) Time/s 2.627±0.326 2.283±0.539 3.728±0.581 4.826±3.762 5.662±2.113 6.991±3.692 0.884±0.093

Iteration 157.9±12.1 55.5±7.6 45.6±8.2 968.3±277.9 1992.5±368.8 1556.3±522.1 39.2±31.3

Avila F ∗ 0.277±0.001 0.275±0.001 0.276±0.002 0.269±0.002 0.263±0.027 0.279±0.050 0.306±0.023
(n=20867 ARI 0.010±0.001 0.009±0.001 0.009±0.002 0.011±0.020 0.015±0.036 0.020±0.002 0.022±0.001
p=10 NMI 0.039±0.001 0.038±0.001 0.038±0.001 0.040±0.012 0.047±0.011 0.050±0.001 0.065±0.001
c=12) Time/s 657.4±35.2 303.3±9.6 179.6±15.6 89.6±20.6 86.9±9.3 99.3±29.6 20.5±6.6

Iteration 3957.9±199.6 1053.9±25.5 1096.7±50.9 6639.1±521.5 6766.9±810.7 6593.4±598.3 153.5±36.6

Shuttle F ∗ 0.504±0.001 0.504±0.001 0.503±0.002 0.499±0.007 0.493±0.013 0.490±0.030 0.512±0.012
(n=58000 ARI 0.114±0.001 0.114±0.001 0.114±0.001 0.102±0.013 0.109±0.031 0.115±0.002 0.153±0.027
p=9 NMI 0.244±0.001 0.244±0.001 0.246±0.005 0.248±0.009 0.263±0.013 0.269±0.002 0.271±0.009
c=7) Time/s 38.9±7.2 70.9±19.1 53.5±17.5 59.3±29.2 59.3±29.1 48.3±29.1 17.6±5.5

Iteration 206±20.5 221.6±19.9 199.0±25.5 3329.2±396.3 4561.2±179.6 4695.7±299.6 70.7±16.5

Seismic F ∗ 0.448±0.001 0.448±0.001 0.448±0.001 0.436±0.020 0.439±0.006 0.443±0.030 0.451±0.001
(n=78823 ARI 0.038±0.001 0.038±0.001 0.038±0.001 0.036±0.002 0.036±0.009 0.035±0.006 0.038±0.001
p=50 NMI 0.043±0.001 0.043±0.001 0.043±0.001 0.043±0.002 0.037±0.011 0.038±0.009 0.043±0.001
c=3) Time/s 52.8±3.9 81.9±5.3 53.1±7.6 39.3±9.1 42.1±10.3 31.6±8.1 13.3±1.2

Iteration 259.6±2.9 209.6±31.9 200.9±15.6 2690.2±296.1 3165.5±513.9 2937.7±399.6 50.5±3.5

similar with those of FCM.
• Sometimes Mini-batch SGFCM is faster than MSFCM,

but its clustering qualities, measured by F ∗, ARI and
NMI, are always lower than those of MSFCM. And it
is clear that the variances of SGFCM are always large,
hence the variance-reduced version SGD [23] may be
helpful to improve this type of algorithms on this aspect.

• Compared with the LFCM and resFCM on larger data
sets, as Avila, Shuttle, and Seismic, it observes that their
clustering qualities are comparable. At the same time, the
proposed MSFCM always has fewer iterations and less
training time. Since LFCM and resFCM [17] are designed
for very large data sets, our MSFCM should also have
the potential possibility to modify to train the very large
data sets. We have not discussed this because our current
computer has not meet the needs of the very large data
sets.

All of those findings again illustrate that the new scaling
scheme can great improve not only the convergence speed

of FCM clustering but also the clustering quality. Thus, the
scheme of boosting the effect of the in-cluster samples and
weakening the effect of the out-of-cluster samples works also
well on real world data sets.

C. The detailed analysis of the proposed algorithm

In this section, we perform experiments to show some
detailed characters of the new proposed MSFCM.

1) The monotonicity of MSFCM: In this part, we do exper-
iment to reveal the the monotonic characteristic of MSFCM,
where the fuzzy objective J(U,V) in (1) and the hard c-
means objective Ĵ(U,V) in (10) are discussed. A typical
trial of FCM and MSFCM on seven data sets as listed in
Table I is given in Fig.5(a) and (b) respectively. And the
corresponding hard c-means results are plotted in Fig. 5(c) and
(d). In experiments, two algorithms have the same initialization
for every data set. In order to plot all results of different data
set in one figure, the y-axis is the ratio of objectives to its
initial value.
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Fig. 5: Plots of J(U,V)
J(U0,V0)

and Ĵ(U,V)

Ĵ(U0,V0)
with respect to iterations on seven data sets, where FCM and MSFCM have the same

initialization for every data set. The plots reveal that the fuzzy objectives of MSFCM are not as monotone decreasing as those
of FCM, while the corresponding hard c-means objectives are all monotone decreasing.

By the plots in Fig. 5(a) and (b), we clearly observe that
the fuzzy objectives of MSFCM are not as monotonically
decreasing as those of FCM, since we modified the values
derived by optimization method. However,they keep decreas-
ing or convergence in most cases. On the other hand, the
corresponding hard c-means objectives maintain the monotone
decreasing characteristic as those of FCM (see Fig. 5(c) and
(d)). At the same time, we observe that MSFCM obtains
the better or similar hard c-means objective values with less
iterations comparing to FCM.

This set of experiments is again on the selected data sets in
Table I. It is designed to reveal how much the new scaling
scheme can improve the clustering process by the triangle
inequality (6). Let n̂t = |Jt| be the number of samples filtered
by the triangle inequality (6) in iteration t. For all seven data
sets, we plot the curves of n̂t

n with respect to iteration t in
Fig. 6, where the log-scale of x-axis is to clearly show the
differences of iterations at the very beginning on different data
sets .

From the plots in Fig. 6, we can clearly observe that the
triangle inequality can filter out a large amount of samples
that will not change their nearest clusters in next iteration.
Furthermore, since at least 40% of samples are filtered out
after about 10 iterations, the new update scheme (9) is always
accomplished very efficiently.

From those experimental results, we can conclude that the
success of MSFCM is because we have iteratively obtained

100 101 102
0

0.2

0.4

0.6

0.8

1

Wine
Vehicle
Segment
Staimage
Avila
Shuttle
Seismic

Fig. 6: Plots of n̂
n with respect to iterations.

plenty of priori information by Lemma 2 and used them to
scale the fuzzy membership coefficients reasonably according
to Lemma 1. Hence, the convergence of the clustering process
is definitely improved.

3) Varying fuzziness parameter m: The fuzziness parameter
m is a key parameter that can affect the result of FCM
clustering [24], [25]. This set of experiments is designed to
illustrate that the performance of MSFCM is also fluctuating
according to the fuzziness parameter m. For the parameter m
ranged from 1.2 to 3.6 by step of 0.2, F ∗ scores of seven data
sets are plotted in Fig. 7. In Fig. 7, the lines of the same color
are obtained on the identical data set with the same random
initialization by FCM and MSFCM, where the dotted lines are
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obtained by FCM and the solid lines are obtained by MSFCM.
All results are averaged on ten trials.

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
0.2

0.3

0.4

0.5

0.6

0.7

0.8
Wine-FCM

Wine-MSFCM

Vehicle-FCM

Vehicle-MSFCM

Segment-FCM

Segment-MSFCM

Satimage-FCM

Satimage-MSFCM

Avila-FCM

Avila-MSFCM

Shuttle-FCM

Shuttle-MSFCM

Seismic-FCM

Seismic-MSFCM

Fig. 7: Plots of F ∗ with respect to fuzziness parameter m.
The lines of the same color are obtained on one data set by
FCM and MSFCM with the same random initialization, where
the dotted lines are obtained by FCM and the solid lines are
obtained by MSFCM.

From the results in Fig. 7, we have the following findings.
Firstly, we observes that MSFCM is also fluctuating with
respect to m as FCM does. Hence, we also need to tune
the parameter m for different data sets. At the same time,
it shows that, if m small enough, the performance of those
two algorithms is very similar, since all of them will incline
to hard c-means algorithm.

From the statistical point of view, the F ∗ scores of MSFCM
are better than those of FCM, since the solid line is plotted
above the dotted line with the same color in most case.
However, there are two data sets, Shuttle and Seismic, on
which FCM is better than MSFCM for different m. So it
recommends that the new MSFCM is not a substitute of FCM,
but a good supplement.

Of course, the advantage of MSFCM is again on its training
speed as Table I shows. Such as for plotting Fig. 7 (totally
7*13*10 trials), FCM needs 397,108 iterations and 455.2
minutes in clustering totally. However, MSFCM only costs
143,239 iterations and 293.9 minutes in all.

V. CONCLUSION

In this paper, we propose a new membership scaling FCM
and verify its effectiveness in the synthetic data sets and real
world data sets. We firstly use the triangle inequality to filter
out many samples that will not change their nearest clusters
in next iteration, and scale the fuzzy membership coefficients
according to a new scheme, in which the effect of the in-
cluster samples is boosted and the effect of the out-of-cluster
samples is weakened. Many experimental results show that the
new algorithm is more efficient than or comparable with the
state-of-the-art fuzzy clustering methods. Hence, it is a good
supplement to fuzzy clustering.

In the experiments, we also find that new algorithm is
comparable with some algorithms designed for clustering the
very large data sets. Hence we will amend the new algorithm
further also for very large data sets in the future. Another
interesting aspect is to generalize our idea to nonlinear fuzzy
clustering with Kernel FCM as [17] did.
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