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a b s t r a c t 

As having the closed form solution, the least squares support vector machine (LSSVM) has been widely 

used for classification and regression problems owing to its competitive performance compared with 

other types of SVMs. However, the LSSVM has two drawbacks: it is sensitive to outliers and its solution 

lacks sparseness. The robust L SSVM (R-L SSVM) partially overcomes the first drawback via its nonconvex 

truncated loss function, but it is unable to address the second drawback because its current algorithms 

produce dense solutions that are inefficient for training large-scale problems. In this paper, we interpret 

the robustness of the R-LSSVM from a re-weighted viewpoint and develop a primal R-LSSVM using the 

representer theorem. The new model may have a sparse solution. Then, we design a convergent sparse 

R-LSSVM (SR-LSSVM) algorithm to achieve a sparse solution of the primal R-LSSVM after obtaining a low- 

rank approximation of the kernel matrix. The new algorithm not only overcomes the two drawbacks of 

LSSVM simultaneously, it also has lower complexity than the existing algorithms. Therefore, it is very ef- 

ficient at training large-scale problems. Numerous experimental results demonstrate that the SR-LSSVM 

can achieve better or comparable performance to other related algorithms in less training time, especially 

when used to train large-scale problems. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

The least squares support vector machine (LSSVM) was intro-

duced by Suykens and Vandewalle [1] and has been a powerful

learning technique for classification and regression. It has been

successfully used in many real-world pattern recognition problems,

such as disease diagnosis [2] , fault detection [3] , image classifica-

tion [4] , partial differential equation solving [5] , and visual tracking

[6] . The LSSVM tries to minimize least squares errors on the train-

ing samples. The LSSVM is based on equality constraints rather

than inequality constraints, unlike other SVMs; therefore, it pro-

duces closed-form solutions by solving a system of linear equa-

tions instead of adopting the conventional SVM method of iter-

atively solving a quadratic programming (QP) problem. Thus, the

training of the LSSVM is simpler than that of other SVMs. 

However, the LSSVM has two main disadvantages. One is that it

is sensitive to outliers which always have large support values (the

values of a Lagrange multiplier). It means that the influence of out-

liers is larger than other samples with respect to the construction

of the decision function. The other disadvantage is that the solu-
∗ Corresponding author. 
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ion of the LSSVM lacks sparseness (i.e., almost all the elements in

he solution are nonzero), which limits the method when training

arge-scale problems. 

In order to overcome the problem of outlier sensitivity, Suykens

t al. [7] proposed a weighted L SSVM (W-L SSVM) model by dis-

ributing small weights to less important samples and outliers

n order to reduce their influence on the model. Several other

eight setting strategies were proposed as well; see [8,9] . The-

retical analyses and the experimental results indicate that such

ethods are highly effective at handling outliers. However, those

ethods must pre-solve the original LSSVM in order to set the

eights, so they are all not suitable for training large-scale prob-

ems. Another technique utilizes non-convex loss functions to im-

rove robustness. Non-convex loss gives a constant penalty for

ny outliers which have large penalty. For example, based on the

on-convex truncated least squares loss function, Wang and Zhong

10] and Yang et al. [11] presented the robust L SSVM (R-L SSVM)

odel. Their experimental results show that the R-LSSVM signifi-

antly reduces the influence of outliers; however, the solutions to

he R-LSSVM model achieved by the algorithms of Yang and Wang

ack sparseness. In addition, they require the entire kernel ma-

rix, K ∈ � 

m × m , to be computed beforehand, along with the inverse

f (λI + K) , where m is the number of training samples, λ∈ � is

he regularization parameter, and I ∈ � 

m × m is an identity matrix.

https://doi.org/10.1016/j.neucom.2017.10.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.10.011&domain=pdf
mailto:lilichenhappy@163.com
mailto:sszhou@mail.xidian.edu.cn
https://doi.org/10.1016/j.neucom.2017.10.011


L. Chen, S. Zhou / Neurocomputing 275 (2018) 2880–2891 2881 

T  

a  

t

 

S  

r  

v  

o  

a  

s  

a  

t  

p  

t  

e  

t  

t  

[  

L  

t  

k  

fi  

H  

s  

s  

o  

o  

m  

t  

e

 

L  

s  

s  

a

 

 

 

 

 

 

 

 

 

 

 

p  

R  

(  

T  

c  

m  

[  

P

 

o  

I  

a  

i  

r  

o  

Fig. 1. Plots of the least squares loss L sq ( ξ ) (dashed), the truncated least squares 

loss L τ ( ξ ) (solid) and their difference L 2 (ξ ) = L sq (ξ ) − L τ (ξ ) (dotted-dashed), where 

τ = 1 . 2 . 
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hus, they are both time-consuming for large-scale datasets. They

re even unable to manage datasets containing more than 10,0 0 0

raining samples on average computers. 

In order to promote sparsity in the solution of the LSSVM,

uykens et al. [12,13] proposed a pruning algorithm that iteratively

emoves a small number of samples (5%) with the smallest support

alues to impose sparseness. In this pruning algorithm, a retraining

f the LSSVM with the reduced training set is needed for each iter-

tion, which leads to a large computation cost. The fixed-size least

quares support vector machine (FS-LSSVM) [7] is another sparse

lgorithm. In this algorithm, some support vectors (SVs), referred

o as prototype vectors, are fixed in advance, and then they are re-

laced iteratively by samples that are randomly selected from the

raining set based on the quadratic Rényi entropy criterion. How-

ver, in each iteration, this method only computes the entropy of

he samples that are selected in the working set instead of the en-

ire dataset. This may result in sub-optimized solutions. Jiao et al.

14] presented the fast sparse approximation for the LSSVM (FSA-

SSVM). This approach utilizes an approximated decision function

hat is constructed iteratively by adding the basis function from a

ernel-based dictionary one by one until the ε criterion is satis-

ed. This algorithm obtains sparse classifiers at a rather low cost.

owever, by utilizing a very sparse setting, the experimental re-

ults in [15] show that FSA-LSSVM is not ideal when applied to

everal training datasets. Zhou [15] proposed the pivoting Cholesky

f primal LSSVM (PCP-LSSVM), which is an iterative method based

n the incomplete pivoting Cholesky factorization of the kernel

atrix. Theoretical analyses and the experimental results indicate

hat the PCP-LSSVM can obtain acceptable test accuracy with an

xtremely sparse solution. 

In this paper, we aim to obtain a sparse solution of the R-

SSVM model to overcome the two disadvantages of the LSSVM

imultaneously. The new algorithm solves the R-LSSVM in primal

pace as Zhou [15] did for the LSSVM, and our main contributions

re summarized as follows: 

• By introducing an equivalent form of the truncated least

squared loss function, we show that the R-LSSVM is equivalent

to a re-weighted LSSVM model, which explains the robustness

of the R-LSSVM. 

• We illustrate that the representer theorem is also held for the

non-convex loss function, and we propose the primal R-LSSVM

model, which has a sparse solution if the kernel matrix is a low

rank matrix. 

• We propose the SR-LSSVM algorithm to obtain a sparse solution

of the R-LSSVM by applying a low-rank approximation of the

kernel matrix. The complexity of the new algorithm is lower

than that of existing non-sparse R-LSSVM algorithms. 

• A large number of experiments demonstrate that the proposed

algorithm can process large-scale problems efficiently. 

Recently, Zhang et al. proposed a least-squares-based, non-

arametric method known as ProCRC (Probabilistic Collaborative

epresentation based Classifier) [16] , which is an improved CRC

Collaborative Representation based classification) method [17] .

he ProCRC uses the training samples directly to predict the

lass labels of unknown data. It has been successfully used in

ulti-class classification problems, particularly in face recognition

16–18] . In our experiments, we compared the performance of the

roCRC and our SR-LSSVM method in terms of accuracy and time. 

The rest of this paper is organized as follows. Brief descriptions

f the R-LSSVM and its existing algorithms are given in Section 2 .

n Section 3 , the robustness of the R-LSSVM is interpreted from

 re-weighted viewpoint. In Section 4 , the primal R-LSSVM and

ts smoothed version are discussed, and the novel sparse algo-

ithm is proposed. Subsequently, the convergence and complexity

f the new algorithm are analyzed. Section 5 includes several ex-
eriments to demonstrate the efficiency of the proposed algorithm.

ection 6 concludes this paper. 

. Robust LSSVM model and the existing algorithms 

In this section, we briefly summarize the R-LSSVM and existing

lgorithms. 

.1. Robust LSSVM 

Consider a training set with m pairs of samples { ( x i , y i ) } m 

i =1 ,

here x i ∈ � 

l are the input data and y i ∈ { −1 , +1 } or y i ∈ � are the

utput targets corresponding to the inputs for classification or re-

ression problems. The classical LSSVM model is described as fol-

ows: 

min 

 ∈� m ,b∈� 
λ

2 

w 

� w + 

1 

m 

m ∑ 

i =1 

L sq 

(
y i − w 

� ϕ ( x i ) − b 
)
, (1) 

here λ> 0 is the regularization parameter, ϕ( x ) is a map that

aps the input x into a high-dimensional feature space, espe-

ially for managing nonlinear learning problems, L sq (ξ ) = 

1 
2 ξ

2 is

he least squares loss with ξ = y − w 

� ϕ ( x ) − b being the predict

rror, w is the normal of the hyperplane, and b is the bias. 

By replacing L sq ( ξ ) in (1) with the truncated least squares loss

 τ ( ξ ): 

 τ ( ξ ) = 

1 

2 

min 

(
τ 2 , ξ 2 

)
= 

{ 

1 
2 
ξ 2 , if | ξ | ≤ τ, 

1 
2 
τ 2 , if | ξ | > τ, 

(2) 

ang and Zhong [10] and Yang et al. [11] introduced the R-LSSVM:

min 

 ∈� m ,b∈� 
λ

2 

w 

� w + 

1 

m 

m ∑ 

i =1 

L τ
(
y i − w 

� ϕ ( x i ) − b 
)
, (3) 

here τ > 0 is the truncated parameter that controls the errors of

he outliers. Fig. 1 plots the L τ ( ξ ) in (2) with τ = 1 . 2 , the least

quare loss L sq ( ξ ) and the difference between them L 2 ( ξ ). It is

lear that the losses of the outliers (samples with larger errors)

re bounded by L τ ( ξ ), hence it reduces the effects of the outliers

n the R-LSSVM. We will investigate the robustness of the R-LSSVM

rom a re-weighted viewpoint in Section 3.2 . 



2882 L. Chen, S. Zhou / Neurocomputing 275 (2018) 2880–2891 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

w  

d  

b  

t  

T

T  

n  

s  

i  

�

a

T  

T  

o

 

f  

ϕ

α
 

T

3

 

t  

t  

L  

r

 

(  

L

L

L  

w

φ  

P

ω

M

ω  

 

h

2.2. Existing algorithms for R-LSSVM 

The truncated least squares loss, L τ ( ξ ), is non-convex and non-

smooth, and can be easily observed in Fig. 1 , but L τ ( ξ ) can be ex-

pressed as the difference between two convex functions L sq ( ξ ) and

L 2 ( ξ ) [10] , where 

L 2 ( ξ ) = 

{
0 , if | ξ | ≤ τ, 
1 
2 
(ξ 2 − τ 2 ) , if | ξ | > τ. 

(4)

Then, the R-LSSVM can be transformed to a difference of convex

(DC) programming: 

min 

w ∈� m ,b∈� 
λ

2 

w 

� w + 

1 

m 

m ∑ 

i =1 

L sq 

(
y i − w 

� ϕ ( x i ) − b 
)

− 1 

m 

m ∑ 

i =1 

L 2 
(
y i − w 

� ϕ ( x i ) − b 
)
. (5)

Wang and Zhong [10] and Yang et al. [11] solve the DC pro-

gramming (5) using the CCCP (Concave–Convex Procedure). Then,

through different methods, they both focus on solving the follow-

ing linear equations (6) iteratively. [
I m 

+ 

1 
mλ

K e 

e � 0 

][
β
b 

]
= 

[
y − γ (t) 

0 

]
, (6)

where K is the positive semi-definite kernel matrix satisfying

K i j = k 
(
x i , x j 

)
= ϕ ( x i ) 

� ϕ 

(
x j 

)
, ( i, j ∈ M = { 1 , . . . , m } ) , I m 

∈ � 

m × m is

an identity matrix, y = ( y 1 , . . . , y m 

) � , e = ( 1 , . . . , 1 ) � ∈ � 

m , and

γ (t) = ( γ (t) 
1 

, . . . , γ (t) 
m 

) � is the value of γ at the t th iteration sat-

isfying 

γ (t) 
i 

∈ ∂L 2 (ξ
(t) 
i 

) , i = 1 , . . . , m, (7)

where ξ (t) 
i 

= y i − K iM 

β(t) − b (t) , K iM 

= [ k ( x i , x 1 ) , . . . , k ( x i , x m 

) ] is

the i th row of the kernel matrix K . 

Through iteratively solving (6) with respect to β and

b until convergence, the output deterministic function is

f (x ) = 

1 
mλ

∑ m 

i =1 βi k (x i , x ) + b. 

In order to compute (7) , Wang and Zhong [10] neglect the non-

differentiability points in L 2 ( ξ ) and adopt the following formula:

γ (t) 
i 

= 

{
0 , if | ξ (t) 

i 
| ≤ τ, 

ξ (t) 
i 

, if | ξ (t) 
i 

| > τ, 
(8)

and Yang et al. compute (7) after smoothing the function L 2 ( ξ ) by

a piecewise quadratic function [11] . 

One limitation of these two algorithms is that the solution lacks

sparseness. That is because the coefficient matrix of (6) is a non-

singular symmetric dense matrix, and the vector on the right side

of the equations is also dense. Hence, the training speeds of these

two algorithms are slow and they cannot train large-scale prob-

lems efficiently. 

3. Sparse R-LSSVM algorithm 

In this section, we present the primal R-LSSVM and propose a

sparse algorithm to obtain a sparse solution of the R-LSSVM. In

addition, we illustrate that the R-LSSVM has robustness from a re-

weighted viewpoint. 

3.1. Primal R-LSSVM 

If the loss function is convex, such as in the LSSVM model (1) ,

by duality theory, the optimal solution w can be represented as 
 = 

m ∑ 

i =1 

αi ϕ ( x i ) , (9)

here αi ∈ � . If the loss function is nonconvex, strong duality

oes not hold, hence we cannot obtain (9) by duality. However,

y the following representer theorem [19,20] , it is easy to prove

hat (9) also holds for model (3) and (5) , which is described in

heorem 2 . 

heorem 1 ( Representer Theorem ) . [19 , 20] Suppose we are given a

onempty set χ , a mapping ϕ from χ to a Hilbert space, a training

ample (x 1 , y 1 ) , . . . , (x m 

, y m 

) ∈ χ × � , a monotonically nondecreas-

ng real-valued function g : � + → � and an arbitrary cost function f :

 

m → � ; then, minimizing the regularized risk functional 

f (〈 w , ϕ(x 1 ) 〉 , . . . , 〈 w , ϕ(x m 

) 〉 ) + g(‖ w ‖ ) 

dmits a representation of the form (9) . 

heorem 2. Assume that ϕ is a mapping from � 

l to a Hilbert space.

hen, there exists a vector α ∈ � 

m such that w = 

∑ m 

i =1 αi ϕ ( x i ) is an

ptimal solution of (3) and (5) . 

Substituting (9) into (3) , the R-LSSVM can be translated into the

ollowing model in primal space without the implicit feature map

( x ): 

min 

∈� m ,b∈� 
λ

2 

α� Kα + 

1 

m 

m ∑ 

i =1 

L τ ( y i − K iM 

α − b ) , (10)

he model (10) is called the primal R-LSSVM. 

.2. Robustness of R-LSSVM from a re-weighted viewpoint 

Wang and Zhong [10] illustrated the robustness of the R-LSSVM

hrough experimentation only. Yang et al. [11] explained it using

he relationship between the solutions of the R-LSSVM and the W-

SSVM [13] . In this section, we will show that the R-LSSVM has

obustness from a re-weighted viewpoint. 

In order to explain the robustness of the preceding model

10) more clearly, we propose an equivalent form of L τ in

emma 1 from the idea in [21,22] . 

emma 1. L τ (ξ ) = 

1 
2 min { ξ 2 , τ 2 } can be expressed as 

 τ (ξ ) = min 

ω∈� + 
1 

2 

ω ξ 2 + φ(ω ) (11)

here 

(ω) = 

τ 2 

2 

(1 − ω) + . (12)

roof. 

min 

∈� + 
1 

2 

ω ξ 2 + φ(ω ) = min 

ω∈� + 

{ 

1 
2 
(ξ 2 − τ 2 ) ω + 

1 
2 
τ 2 , if 0 ≤ ω ≤ 1 , 

1 
2 
ωξ 2 , if ω > 1 , 

= 

{ 

1 
2 
ξ 2 , if | ξ | ≤ τ, 

1 
2 
τ 2 , if | ξ | > τ, 

= L τ ( ξ ) . 

oreover, 

 

∗ := arg min 

ω∈� + 

{ 

1 

2 

ω ξ 2 + φ(ω ) 
} 

= 

{
1 , if | ξ | ≤ τ, 

0 , if | ξ | > τ. 
(13)

�

By Lemma 1 and the research of re-weighted LSSVM in [23] , we

ave 
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Fig. 2. Plots of the truncated least squares loss L τ ( ξ ) (solid) and the smoothed trun- 

cated least squares loss L smooth 
τ (ξ ) (dashed) with p = 5 . 
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roposition 1. Any stationary point of the R-LSSVM (10) can be ob-

ained by solving an iteratively re-weighted LSSVM as follows: 

min 

∈� m ,b∈� 
λ

2 

α� Kα + 

1 

2 m 

m ∑ 

i =1 

ω 

(t) 
i ( y i − K iM 

α − b ) 
2 
, (14) 

here ω 

(t) 
i 

is the value of t-th iteration of the weight ω i . 

roof. Substituting (11) into (10) , we have 

min 

∈ � m + ,α∈ � m ,b∈� 
J(α, b, ω) := 

λ

2 

α� Kα + 

1 

m 

m ∑ 

i =1 

1 

2 

ω i ξ
2 
i + 

1 

m 

m ∑ 

i =1 

φ(ω i )

(15) 

here ξi = y i − K iM 

α − b. Since J ( α, b, ω) is nonconvex. There may

e more than one local optimum for (15) , but we only consider one

f its stationary points. Let ( α∗, b ∗) be one of the stationary points

f (10) . By Lemma 1 , there exists ω 

∗ ∈ arg min ω∈ � m + J(α∗, b ∗, ω)

uch that ( α∗, b ∗, ω 

∗) be the solution of (15) . On the other hand,

f ( α∗, b ∗, ω 

∗) is any stationary point of (15) , then (α∗, b ∗) =
rg min α∈ � m ,b∈� J(α, b, ω 

∗) also solves (10) . Hence, we can itera-

ively solve (15) by alternating direction method (ADM) [24] as fol-

ows: 

(α(t) , b (t) ) = arg min 

α∈ � m ,b∈� 
J(α, b, ω 

(t−1) ) (16) 

 

(t) ∈ arg min 

ω∈ � m + 

J(α(t) , b (t) , ω) (17) 

bviously, the optimization problem in (17) has the closed form

olution (13) . The optimization problem in (16) is just the re-

eighted LSSVM (14) . �

Because ξ i denotes the predicted error, similar to the robust-

ess analysis in article [25] , the larger | ξ i | is, the more likely it

s that the instance pair ( x i , y i ) will be an outlier. From (13) and

14) , it is observed that when the | ξ i | is sufficiently large for the

utlier instance ( x i , y i ), the corresponding weight ω i in (14) will

e zero. That is, the truncated least squares loss function L τ can

educe the influence of samples that are far away from their true

argets. This explains the robustness of the R-LSSVM from the re-

eighted viewpoint. 

.3. Sparse solution for primal R-LSSVM 

Substituting (9) into (5) , we obtain a DC programming with re-

ard to α and b as follows: 

min 

∈� m ,b∈� 
H ( α, b ) = H 1 ( α, b ) − H 2 ( α, b ) (18) 

ith convex functions H 1 ( α, b ) = 

λ
2 α

� Kα + 

1 
m 

∑ m 

i =1 

 sq ( y i − K iM 

α − b ) and H 2 ( α, b ) = 

1 
m 

∑ m 

i =1 L 2 ( y i − K iM 

α − b ) . We

all the model (18) or its equivalent form (10) as the primal

-LSSVM for convenience. 

Using the CCCP method in [10,11,26] , the solution to the prob-

em (18) can be obtained by iteratively solving the following con-

ex QP until it converges: (
α( t+1 ) , b ( t+1 ) 

)
= arg min 

α∈� m ,b∈� 

{
H 1 ( α, b ) − 〈 [ α� , b] � , ∂H 2 (α

( t ) , b ( t ) ) 〉 }
= arg min 

α∈� m ,b∈� 

{ 

H 1 ( α, b ) + 

1 

m 

m ∑ 

i =1 

γ (t) 
i ( K iM 

α + b ) 

} 

, (19) 

here γ (t) 
i 

is the same as (7) with ξ (t) 
i 

= y i − K iM 

α(t) − b (t) . 

However, the computation of γ (t) 
i 

is not simple, because L 2 ( ξ )

s non-differentiable at some points. Inspired by the idea in [27] ,

e smooth L ( ξ ) by the entropy penalty function. Let 
2 
¯
 2 ( ξ ) = 

1 

2 

max 
{

0 , ξ 2 − τ 2 
}

+ 

1 

2 p 
log 

(
1 + exp 

(
−p| ξ 2 − τ 2 | )). 

(20) 

hen, we have L̄ 2 ( ξ ) → L 2 ( ξ ) whenever p → + ∞ . L̄ 2 ( ξ ) is the

mooth approximation of L 2 ( ξ ), and the upper bound of the differ-

nce between L̄ 2 ( ξ ) and L 2 ( ξ ) is log 2 
p . If we set p sufficiently large

uch as p = 10 4 , the difference between them can be neglected.

ig. 2 shows the comparison between L τ ( ξ ) and the smoothed

runcated least squares loss function L smooth 
τ (ξ ) = L sq (ξ ) − L̄ 2 ( ξ )

ith p = 5 . 

The derivative of L̄ 2 ( ξ ) is: 

¯
 

′ 
2 ( ξ ) = ξ ·

min 

{
1 , exp 

[
p 
(
ξ 2 − τ 2 

)]}
1 + exp 

(
−p | ξ 2 − τ 2 | ) . (21) 

eplacing L 2 ( ξ i ) with L̄ 2 ( ξi ) in (7) , the γ ( t ) 
i 

in (19) is calculated as

ollows: 

(t) 
i 

= 

ξ (t) 
i 

min 

{ 

1 , exp 

[ 
p 

(
ξ (t) 

i 

2 − τ 2 

)] } 

1 + exp 

(
−p 

∣∣∣ξ (t) 
i 

2 − τ 2 

∣∣∣) (22) 

Yang et al. [11] also adopted a smoothing procedure, but their

ethod required that the smoothing parameter be tuned in order

o be most effective. That makes the parameter adjustment pro-

edure complex. In comparison, our smoothing strategy (based on

he entropy penalty function) does not require the tuning of any

arameter. What we need to do is set a large value for p in (22) . 

.4. Sparse solution for primal R-LSSVM 

After obtaining γ (t) 
i 

by (22) , (α(t+1) , b (t+1) ) in (19) are the so-

utions of the following system of linear equations: 

mλK + K K 

� Ke 
e � K 

� m 

][
α
b 

]
= 

[
K 

e � 

](
y − γ (t) 

)
. (23) 

It appears that (23) is more complicated than (6) upon first

mpression. However, the coefficient matrix of (6) is a nonsingu-

ar symmetric dense matrix, which leads to a non-sparse solution

f (6) . In comparison, the coefficient matrix of (23) may be low

ank if the related kernel matrix, K , has low rank or can be ap-

roximated by a low-rank matrix. In this situation, (23) may have

 sparse solution, which partially overcomes the limitation of the

revious methods. 
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Fig. 3. Comparison of the proposed approach SR-L SSVM with L SSVM, W-L SSVM and R-L SSVM for linearly inseparable classification dataset with and without outliers. The 

numbers of the support vectors (SVs) are both 2 for datasets with and without outliers for SR-LSSVM in Fig.3(d). We do not mark SVs in the subgraphs (a)–(c), because 

almost all of training samples are SVs for LSSVM, W-LSSVM and R-LSSVM. For dataset without outliers, the test accuracy are all 91.50% for these four algorithms, and for 

dataset with outliers, the test accuracy are 89.50%, 90.00%, 91.50% and 91.50% for LSSVM, W-LSSVM, R-LSSVM and SR-LSSVM respectively. 
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Now, we discuss the sparse optimization solution of (23) as

soon as the kernel matrix can be approximated by a low-rank ma-

trix. 

Using the second equation of (23) , we obtain

b = 

1 
m 

[
e � (y − γ (t) ) − e � Kα

]
. After eliminating b , (23) is sim-

plified to the following linear equation: 

(mλK + KK − 1 
m 

Kee � K) α = K 

[ 
(y − γ (t) ) − e � (y −γ (t) ) 

m 

e 

] 
. (24)

Nyström Approximation is the most popular method available

for obtaining a low-rank approximation of kernel matrix K (see

[15,28–32] ). Here, we employ Zhou’s incomplete pivoting Cholesky

factorization method in [15] . It costs O ( mr 2 ) to obtain the best

rank- r Nyström type approximation of K under the trace norm. Us-

ing this method, the set B ⊂ M (the number of elements in B is

r , i.e. | B | = r) and the full column rank matrix P ∈ � 

m × r satisfying

P P � = K MB K 

−1 
BB 

K 

� 
MB are obtained, where K MB ∈ � 

m × r is a sub-matrix

of K whose elements are K ij for i ∈ M and j ∈ B , and K BB ∈ � 

r × r is

also a sub-matrix of K whose elements are K ij for i ∈ B and j ∈ B .

Moreover, only the well-chosen r columns of the kernel matrix

and its diagonal elements are needed in the algorithm. If K MB is

obtained by some other low-rank approximation methods [29–32] ,

let P = K MB K 

− 1 
2 

BB 
and the following analysis is the same. 

Substituting PP � into (24) instead of K , (24) is simplified as: 

(mλI r + P � P − 1 
m 

P � ee � P ) P � α = P � 
[ 
(y − γ (t) ) − e � (y −γ (t) ) 

m 

e 

] 
, 

(25)
here I r ∈ � 

r × r is an identity matrix. By permuting rows of matrix

 , we obtain [ P � 
B 

, P � 
N 

] � , where P B ∈ � 

r × r is a full rank and lower

riangular matrix if P is obtained as [15] , and P N is comprised by

he rest m − r rows of P . Correspondingly, let α = [ α� 
B 

, α� 
N 

] � , then

e have 

 

αB = 

(
P � B 

)−1 
J −1 P � 

(
y − γ ( t ) − e � ( y −γ (t) ) 

m 

e 

)
, 

αN = 0 

(26)

s the sparse solution of (25) , where 

 = 

(
mλI r + P � P 

)
− 1 

m 

(
e � P 

)� 
e � P . (27)

herefore, the sparse R-LSSVM (SR-LSSVM) algorithm is obtained

y iteratively updating (α(t+1) , b (t+1) ) as follows: 

 

 

 

 

 

α(t+1) 
B 

= 

(
P � B 

)−1 
J −1 P � 

(
y − γ ( t ) − e � ( y −γ (t) ) 

m 

e 

)
, (28) 

α(t+1) 
N 

= 0 , 

b (t+1) = 

1 
m 

[
e � 

(
y − γ (t) 

)
− e � P P � B α

(t+1) 
B 

]
. (29) 

.5. Sparse R-LSSVM algorithm 

From the above analysis, our SR-LSSVM algorithm is listed as

lgorithm 1 . 

After obtaining the optimal αB and b by Algorithm 1 , the deci-

ion function for regression is: 
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Algorithm 1 SR-LSSVM —S parse R-LSSVM . 

Input: Training set T = { (x i , y i ) } m 

i =1 
, kernel function k (x, z) , the reg- 

ularization parameter λ > 0 , the truncated parameter τ , the 

stop criterion ε > 0 , r = | B | . 
Output: αB and b. 

1: Find P and B such that K ≈ P P � , γ (0) = 0 ∈ � 

m ; 

2: Compute J as (27). Set t = 0 ; 

3: Update α(t+1) 
B 

and b (t+1) by (28) and (29); 

4: Set ξ (t+1) = y − P P � 
B 
α(t+1) 

B 
− b (t+1) , and compute γ (t+1) 

i 
by 

(22); 

5: if 
∥∥γ (t+1) − γ (t) 

∥∥ < ε then 

6: stop with αB = α(t+1) 
B 

and b = b (t+1) ; 

7: else 

8: let t = t + 1 , go to step 3. 

9: end if 
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Table 1 

Comparison of different algorithms on medium-scale benchmark classification 

datasets with outliers (10%). The standard deviations are given in brackets. ’nSVs’ 

refers to the average number of support vectors. m and n are the numbers of train- 

ing and testing samples respectively, l is the dimension of data. The best values are 

highlighted in bold. 

Data Algorithms Training times(s) nSVs Accuracy(%) 

Splice ProCRC 0.03 (0.00) – 85.65 (0.01) 

m = 1 , 0 0 0 C-SVC 0.12(0.01) 820.8(8.3) 76.38(0.08) 

n = 2 , 175 LSSVM 0.19(0.01) 10 0 0(0) 75.99(0.10) 

l = 60 W-LSSVM 0.20(0.01) 10 0 0(0) 76.04(0.10) 

FS-LSSVM 0.42(0.02) 100 (0) 76.66(0.07) 

R-LSSVM 0.22(0.01) 947.6(19.5) 80.50(0.04) 

SR-LSSVM 0.19(0.01) 100 (0) 81.27(0.03) 

Pendigits ProCRC 0.0 02 (0.0 0) – 99.81(0.002) 

m = 1 , 466 C-SVC 0.36(0.02) 433.5(7.7) 99.95(0.001) 

n = 733 LSSVM 0.12(0.01) 1466(0) 99.26(0.005) 

l = 16 W-LSSVM 0.18(0.01) 1464.6(1.7) 99.92(0.002) 

FS-LSSVM 0.19(0.01) 73 (0) 99.90(0.001) 

R-LSSVM 0.19(0.01) 1436.8(8.0) 99.09(0.005) 

SR-LSSVM 0.03(0.00) 73 (0) 99.96 (0.001) 

Satimage ProCRC 0.02 (0.00) – 98.05(0.002) 

m = 2 , 110 C-SVC 0.25(0.01) 693.5(13.6) 99.86(0.001) 

n = 931 LSSVM 0.76(0.01) 2109.6(0.7) 99.23(0.002) 

l = 36 W-LSSVM 0.90(0.02) 1897.5(2.1) 99.91(0.001) 

FS-LSSVM 0.50(0.02) 105 (0) 97.93(0.008) 

R-LSSVM 0.87(0.03) 1916.5(15.1) 99.88(0.001) 

SR-LSSVM 0.27(0.00) 105 (0) 99.97 (0.001) 

USPS ProCRC 0.79 (0.02) – 99.36(0.0 0 0) 

m = 2 , 199 C-SVC 0.92(0.02) 646.9(14.4) 99.34(0.001) 

n = 623 LSSVM 2.53(0.01) 2198.7(0.5) 99.34(0.002) 

l = 256 W-LSSVM 2.67(0.01) 1973.8(3.1) 99.49(0.001) 

FS-LSSVM 1.21(0.01) 109(0) 98.28(0.006) 

R-LSSVM 2.60(0.02) 2002.4(14.9) 99.52 (0.0 0 0) 

SR-LSSVM 1.91(0.01) 108.7 (0.3) 99.52 (0.0 0 0) 

Mushrooms ProCRC 0.13 (0.01) – 99.87(0.002) 

m = 5 , 614 C-SVC 2.33(0.04) 2244.8(27.1) 99.99(0.0 0 0) 

n = 2 , 708 LSSVM 5.75(0.08) 5415.8(0.4) 98.67(0.002) 

l = 112 W-LSSVM 7.41(0.19) 4837.8(12.2) 99.90(0.001) 

FS-LSSVM 2.69(0.02) 268.9 (0.7) 99.66(0.003) 

R-LSSVM 7.48(0.18) 4928(16.9) 99.71(0.001) 

SR-LSSVM 1.28(0.01) 270(0) 100 (0) 

Protein ProCRC 2.58 (0.24) – 66.26(0.0 0 0) 

m = 8 , 186 C-SVC 55.64(0.47) 5486.8(27.1) 77.98(0.004) 

n = 3 , 509 LSSVM 22.67(0.30) 8185.9(0.32) 78.22(0.002) 

l = 357 W-LSSVM 27.77(0.30) 8185.7(0.67) 78.24 (0.003) 

FS-LSSVM 27.55(0.61) 408.1 (1.20) 77.0 0(0.0 03) 

R-LSSVM 25.17(0.81) 7876.7(46.6) 78.23(0.004) 

SR-LSSVM 11.65(0.03) 409(0) 78.04(0.002) 
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b  

i  
f (x ) = 

∑ 

i ∈ B 
αi k ( x i , x ) + b. (30)

or classification, the decision function is sgn f (x ) . We provide

ome comments about Algorithm 1 . 

For Algorithm 1 , the computation cost of step 1 and step 2

re both O ( mr 2 ) ( r � m ) [15] . The complexity of iteratively calcu-

ating step 3 is O ( T s mr ), where T s is the total iterative number

f the SR-LSSVM. Thus, the overall complexity of this algorithm

s O 

(
mr 2 + T s mr 

)
. In contrast, the computational complexities of

he Wang and Yang R-LSSVM algorithms in [10] and [11] are both

 ( T d m 

3 ), where T d is the iterations of their algorithms. It is obvi-

us that our method has simpler computational complexity than

xisting approaches. 

omment 1 . When t = 0 , the first cycle of Algorithm 1 is equiv-

lent to the optimization of the P-LSSVM [15] . That is because if
(t) = 0 , (24) is the same as the equation system derived by pri-

al LSSVM (P-LSSVM) in [15] . 

omment 2 . To promote computational efficiency, (28) can be

ewritten as: 

(t+1) 
B 

= α(0) 
B 

− G 

(
P � S t 

γ (t) 
S t 

− e � γ (t) 

m 

ˆ p 

)
, (31) 

here G = 

(
P � 

B 

)−1 
J −1 ∈ � 

r×r , ˆ p = P � e ∈ � 

r , α(0) 
B 

= G ( P � y− e � y 
m 

ˆ p ) ∈ � 

r 

s the sparse solution of the primal LSSVM, S t ⊂ M is the index set

f nonzero elements of γ ( t ) , γ (t) 
S t 

is a vector comprised of nonzero

lements of γ ( t ) , P S t is comprised by several rows of P , and the

ndexes of these rows in P correspond to the elements in S t . 

Then, step 2 and 3 in Algorithm 1 can be replaced with the

ollowing: 

Step 2’: Compute J, G, ˆ p and αLS . Set t = 0 ; 

Step 3’: Update α(t+1) 
B 

and b (t+1) by (31) and (29) respectively. 

Hence, when G, ˆ p and α(0) 
B 

are pre-calculated, the computa-

ional complexity of Step 3 in Algorithm 1 is reduced from O ( mr )

o O (| S t | r ) (the most cost of (31) is from P � 
S t 
γ (t) 

S t 
). Therefore, the

ethod described in this comment can improve the efficiency of

lgorithm 1 . 

omment 3 . In Algorithm 1 , the parameter τ limits the upper

ound of the loss function. τ should not be set to a too large or

oo small value. An improper τ value results in poor generaliza-

ion performance. To overcome the sensitivity of the loss function

o τ , we can tone τ as follows. Firstly, we set a slightly larger τ ,

uch as τ = δ ∗ max {| ξ1 | , . . . , | ξm 

|} , where 0 < δ < 1. Then add the

ollowing step between the step 3 and step 4 in Algorithm 1 : re-

uce τ if 
∥∥γ (t+1) − γ (t) 

∥∥ is small until τ ≤ τmin , where τmin is the

inimum of τ we set. 

omment 4 . Parallel computing potential. In Algorithm 1 , several

alculations are easy to perform, thus serial computing is appro-
riate for them. However, for several costly calculations, we can

tilize parallel computing to further improve computing efficiency.

he main computational cost of Algorithm 1 is from computing

 

� P , which can be implemented in parallel. For example, P can

e partitioned into k chunks according to the row satisfying P � =
 P � 1 , . . . , P 

� 
k 

] , thus P � P = 

∑ k 
i =1 P 

� 
i 

P i which can be efficiently calcu-

ated by the parallel algorithm of matrix multiplication, where P i 
s the i- th block of the matrix P . 

.6. Convergence analysis 

The CCCP is globally or locally convergent; see [26,33,34] . Simi-

ar to the convergence proof of the DCA (DC Algorithm) for general

C programming in article [35] , we have the following Lemma. 

emma 2. If the optimal value of the problem (18) is finite, and the

nfinite sequences ( α( t ) , b ( t ) ) and ∂H 2 ( α
( t ) , b ( t ) ) are bounded, then ev-

ry limit point ( ̃  α, ̃  b ) of the sequence ( α( t ) , b ( t ) ) is a generalized KKT

Karush–Kuhn–Tucker) point of H 1 (α, b) − H 2 (α, b) . 

Obviously, the objective function of (18) and (10) is bounded

elow. Assume the prediction error variable ξ (t) 
i 

is bounded, which

s reasonable in a real application, then γ (t) 
i 

is bounded by (22) .
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Table 2 

Comparison of different algorithms on large-scale benchmark classification data sets with outliers (10%). The stan- 

dard deviations are given in brackets. ‘nSVs’ refers to average number of support vectors. m and n are the numbers 

of training and testing samples respectively, l is the dimension of data. 

Datasets Algorithms Training time(s) nSVs Accuracy(%) 

IJCNN1 ProCRC 0.22 (0.0) – 90.50(0.0 0 0) 

m = 49 , 990 C-SVC 84.3(1.6) 17103(75.6) 92.16(0.0 0 0) 

n = 91 , 701 FS-LSSVM 34.9(0.8) 398.8(1.0) 94.17(0.014) 

l = 22 CSI 63.0(1.2) 400(0) 95.10(0.002) 

PCP-LSSVM 2.8(0.1) 215.6(1.6) 95.39(0.002) 

SR-LSSVM 2.8(0.1) 215(0) 95.47 (0.002) 

Cod-RNA ProCRC 0.14 (0.0) – 92.29(0.001) 

m = 59 , 535 C-SVC 86.3(0.8) 22095(42.6) 94.91(0.0 0 0) 

n = 271 , 617 FS-LSSVM 36.0(0.8) 399.7(0.5) 94.84(0.001) 

l = 8 CSI 78.6(0.4) 400(0) 94.99(0.001) 

PCP-LSSVM 6.0(0.0) 400(0) 94.78(0.001) 

SR-LSSVM 6.4(0.1) 400(0) 95.04 (0.001) 

SensIT Vehicle ProCRC 1.04 (0.0) – 71.46(0.012) 

(acoustic) C-SVC 278.3(5.6) 28302(107.0) 74.87(0.001) 

m = 60 , 562 FS-LSSVM 75.1(0.5) 399.2(1.0) 78.17 (0.002) 

n = 15 , 125 CSI 74.3(0.2) 400(0) 77.62(0.003) 

l = 50 PCP-LSSVM 40.1(0.1) 400(0) 77.52(0.001) 

SR-LSSVM 41.4(0.1) 400(0) 77.73(0.001) 

Skin-nonskin ProCRC 0.11 (0.0) – 94.60(0.003) 

m = 163 , 371 C-SVC 1329.4(10.6) 59910(146.7) 99.30(0.001) 

n = 81 , 686 FS-LSSVM 42.6(0.7) 199.2 1 (0.8) 99.82(0.0 0 0) 

l = 3 CSI 42.9(0.7) 100 2 (0) 99.84(0.0 0 0) 

PCP-LSSVM 32.7(0.6) 400(0) 99.86 (0.0 0 0) 

SR-LSSVM 34.8(2.5) 400(0) 99.86 (0.0 0 0) 

Checkerboard(1M) ProCRC 0.88 (0.4) – 60.01(0.002) 

m = 1 , 0 0 0 , 0 0 0 C-SVC 3 – – –

n = 60 0 , 0 0 0 FS-LSSVM 139.9(5.9) 299(0.9) 99.36(0.001) 

l = 2 CSI 154.4(16.2) 56.6(2.1) 96.51(0.003) 

PCP-LSSVM 80.8(0.4) 300(0) 99.37 (0.0 0 0) 

SR-LSSVM 129.3(0.5) 300(0) 98.12(0.0 0 0) 

1 The working set size was set as 200 for FS-LSSVM, because if we set the working set size at 400, the software 

cannot operate normally. 
2 The maximal rank of CSI algorithm was 100 for Skin-nonskin dataset. If we set this number bigger, the procedure 

may make an error. 
3 Training time is too long. 
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Therefore ( α( t ) , b ( t ) ) and ∂H 2 (α
(t) , b (t) ) = [ γ (t) � K, γ (t) � e ] � are also

bounded because of the boundedness of (P � B ) 
−1 , J −1 and P � in (28)

and (29). By Lemma 2 , we get the following theorem. 

Theorem 3. Assume the predict error ξ = y − w 

� ϕ ( x ) − b is

bounded for all given samples ( x , y ) with selected parameters w and

b, then limit point of the sequence ( α( t ) , b ( t ) ) is the generalized KKT

point of the problem (18) , that is, Algorithm 1 is convergent. 

4. Numerical experiments and discussions 

In order to verify the effectiveness of the proposed algorithm,

we compare the following algorithms with our SR-LSSVM: 

• ProCRC: the Probabilistic Collaborative Representation based

Classifier method in [16] . The training time for ProCRC in

our tables refers to the total running time because it is a

non-parametric classifier. We adopted the Sherman-Morrison-

Woodbury (SMW) formula [36,37] to raise the operating effi-

ciency in the experiment. 

• C-SVC and ε-SVR: the Support Vector Machine for Classification

and Regression respectively in [38] are implemented in LIBSVM

software and coded in the C programming language 1 . 

• LSSVM: the Least Square Support Vector Machine in [1] . The so-

lution is deduced by KKT conditions. Our code utilizes Cholesky

factorization in solving the solution to LSSVM. 
1 Codes are available in https://www.csie.ntu.edu.tw/ ∼cjlin/libsvm/ . p
• W-LSSVM: the Weighted Least Square Support Vector Machine

[13] . Our code for W-LSSVM is written according to the W-

LSSVM algorithm in [13] . 

• FS-LSSVM: the Fixed Size Least Square Support Vector Machine

[7] . In our experiments, the FS-LSSVM is operated in the LS-

SVMlab v1.8 software [39] 2 . 

• R-LSSVM: Yang’s algorithm for the Robust Least Square Support

Vector Machine [11] . In our experiment, the code for R-LSSVM

is written according to the pseudo-code in [11] . Smoothing pa-

rameter in this algorithm is denoted by h . 

For several large-scale problems, some algorithms mentioned

bove must calculate the whole kernel matrix which requires too

uch computer memory. These algorithms include the LSSVM, W-

SSVM and the R-LSSSVM. Therefore, we only compare the SR-

SSVM with the ProCRC, C-SVC/ ε-SVR, FS-LSSVM, and the follow-

ng sparse algorithms: 

• PCP-LSSVM: the Pivoted Choleskian of Primal Least Square Sup-

port Vector Machine [15] 3 . It obtains sparse solutions for the

LSSVM in primal space. 

• CSI: Cholesky with Side Information [40] . Codes are available in

http://www.di.ens.fr/ ∼fbach/csi/index.html . 

All computations were implemented in Windows 8 with Matlab

2014a. All experiments were run on a PC with an Intel Core i5-
2 Codes are available in http://www.esat.kuleuven.be/sista/lssvmlab/ . 
3 Codes and article can be downloaded from http://web.xidian.edu.cn/sszhou/ 

aper.html . 

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.di.ens.fr/~fbach/csi/index.html
http://www.esat.kuleuven.be/sista/lssvmlab/
http://web.xidian.edu.cn/sszhou/paper.html


L. Chen, S. Zhou / Neurocomputing 275 (2018) 2880–2891 2887 

Fig. 4. The training time, accuracy and their standard deviations of different algo- 

rithms on six subsets of the Adult data set with outliers (about 10%). The markers 

4K to 20K denote 40 0 0 to 20,0 0 0 samples in the training sets. ‘all’ means using 

all 32,561 samples. LSSVM, W-LSSVM and R-LSSVM were only implemented on the 

data sets containing less than 15,0 0 0 samples due to memory limitation of com- 

puter. The basic subset size for SR-LSSVM and working set size for FS-LSSVM were 

both set as 400. In figure, the more left and upper, the better. 

Table 3 

Comparison the results of Cod-RNA dataset with different rates 

of outliers (0%, 5% and 10%). The standard deviations are given 

in brackets. ‘R outlier ’ refers to the rate of outliers. 

Testing accuracy(%) 

Algorithms R outlier = 0% R outlier = 5% R outlier = 10% 

ProCRC 95.11(0.0 0 0) 94.54(0.0 0 0) 92.29(0.001) 

FS-LSSVM 96.18(0.001) 95.91(0.001) 95.03(0.001) 

CSI 96.15(0.0 0 0) 96.02(0.001) 94.89(0.002) 

PCP-LSSVM 96.31(0.0 0 0) 96.13(0.0 0 0) 94.92(0.001) 

SR-LSSVM 96.32 (0.0 0 0) 96.29 (0.0 0 0) 95.10 (0.001) 
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Table 4 

Comparison of different algorithms on medium-scale benchmark regression data 

sets with outliers (10%). The standard deviations are given in brackets. ‘nSVs’ refers 

to average number of support vectors. m and n are the numbers of training and 

testing samples respectively, l is the dimension of data. 

Data Algorithms Training time(s) nSVs RMSE 

Mg ε-SVR 0.030(0.006) 863.3(46.8) 0.129(0.005) 

m = 923 LSSVM 0.108(0.006) 923(0) 0.132(0.006) 

n = 462 W-LSSVM 0.125(0.003) 897.8(8.4) 0.132(0.005) 

l = 6 FS-LSSVM 0.041(0.004) 46 (0.9) 0.126(0.005) 

R-LSSVM 0.112(0.004) 923(0) 0.132(0.006) 

SR-LSSVM 0.023 (0.004) 46 (0) 0.125 (0.004) 

Winequality ε-SVR 0.074(0.004) 911.9(12.4) 0.652(0.017) 

m = 1 , 066 LSSVM 0.054(0.003) 1066(0) 0.724(0.034) 

n = 533 W-LSSVM 0.080(0.006) 977.6(5.4) 0.646 (0.022) 

l = 11 FS-LSSVM 0.171(0.006) 42.4 (1.2) 0.748(0.033) 

R-LSSVM 0.091(0.008) 944.8(24.4) 0.646 (0.028) 

SR-LSSVM 0.013 (0.001) 42.4 (1.2) 0.646 (0.023) 

Abalone ε-SVR 0.957(0.095) 2772.2(2.2) 2.211(0.071) 

m = 2 , 784 LSSVM 1.215(0.094) 2784(0) 3.271(0.199) 

n = 1 , 393 W-LSSVM 1.46 8(0.04 9) 2784(0) 2.250(0.217) 

l = 8 FS-LSSVM 0.225(0.004) 48.2 (2.2) 2.188(0.072) 

R-LSSVM 1.494(0.039) 2784(0) 2.251(0.119) 

SR-LSSVM 0.060 (0.004) 48.5(1.7) 2.183 (0.091) 

Tic ε-SVR 2.654(0.083) 1536.8(38.4) 0.235(0.005) 

m = 6 , 548 LSSVM 4.294(0.068) 6540.7(2.5) 0.229(0.005) 

n = 2 , 374 W-LSSVM 7.196(0.102) 534.4(24.6) 0.243(0.006) 

l = 85 FS-LSSVM 4.391(0.089) 395.5 (2.1) 0.235(0.005) 

R-LSSVM 4.416(0.043) 6540.7(2.5) 0.229 (0.005) 

SR-LSSVM 1.751 (0.022) 399.9(0.3) 0.229 (0.002) 
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210U CPU and a maximum of 8 G bytes of memory available for

ll processes. 

We fixed the values of the smoothing parameter, p = 10 4 , in the

R-LSSVM and the stop criterion, ε = 10 −2 , respectively. For all the

atasets, we used a cross-validation procedure and grid search to

earch the best values of the parameter λ, μ, σ , τ and h , where λ
nd μ are regularization parameters, σ is the parameter in the

aussian kernel function k (x i , x j ) = exp (−σ‖ x i − x j ‖ 2 ) , τ is the

runcated parameter in R-LSSVMs, and h is the smoothing param-

ter in the R-LSSVM algorithm. 

In ProCRC, we used the SMW formula to improve computing ef-

ciency. Thus, the time listed in the tables is much lower than the

ime spent by directly running the code on authors’ website 4 . For

he R-LSSVM, the training times in our article are much lower than

hose in papers [10,11] for the same datasets, and the total com-

lexity is reduced from O ( T d m 

3 ) [10,11] to O (m 

3 + T d m 

2 ) . This is

ecause the coefficient matrix of (6) was decomposed by Cholesky

actorization once, and such decomposition is unchanged per loop.
4 Codes are available in http://www4.comp.polyu.edu.hk/ ∼cslzhang/papers.htm . 

L  

R  

b  

s  
.1. Classification experiments 

In this section, we test one synthetic classification dataset and

everal benchmark classification datasets to illustrate the effective-

ess of the SR-LSSVM. For the benchmark datasets, each attribute

f the samples was normalized into [ −1 , 1] for all the algorithms

xcept the ProCRC. In the ProCRC, every sample was normalized to

ave unit l 2 -norm according to article [16] . To compare the perfor-

ances of the algorithms mentioned at the beginning of this sec-

ion, we separate the datasets into two groups: the medium-scale

ataset group and the large-scale dataset group. The results of the

xperiments on Adult dataset in Section 4.1.3 show the reason why

e separate the datasets into two groups. The benchmark datasets

an be downloaded from [41] . Finally, we test the robustness of our

roposed algorithm on large-scale datasets with different rates of

utliers. Outliers were generated by the following procedure. We

hose 30% of samples that were far away from the decision hyper-

lane, then randomly sampled 1/3 of them and flipped their labels

o simulate outliers. 

.1.1. Synthetic classification dataset experiment 

To compare the robustness and sparseness of the four algo-

ithms (L SSVM, W-L SSVM, R-L SSVM, and SR-L SSVM), we conducted

n experiment on a linear binary classification dataset that in-

luded 60 training samples and 100 test samples. Fig. 3 shows

he experimental results. To simulate outliers, we added four train-

ng samples labeled with incorrect classes. They are marked as ‘ �’

nd ‘ ∗’ for positive and negative classes, respectively. Through the

rid search, we obtained the best parameter values for this dataset:

λ = 10 −2 , τ = 1 . 5 , h = 0 . 01 . 

Fig. 3 illustrates that the decision lines of the LSSVM and W-

SSVM algorithms change greatly after adding outliers, and that

hese two methods have lower accuracy than SR-LSSVM and R-

SSVM. In contrast, the decision boundaries of the SR-LSSVM and

-LSSVM are almost unchanged, and their accuracy remains sta-

le before and after adding outliers. Thus, the SR-LSSVM is insen-

itive to outliers. Moreover, almost all of training samples are SVs

http://www4.comp.polyu.edu.hk/~cslzhang/papers.htm
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for the LSSVM, W-LSSVM, and R-LSSVM, while, for the SR-LSSVM,

the support vector sizes are both only two for datasets with and

without outliers. Therefore, the proposed algorithm is sparseness,

which can accelerate the training speed of our approach in pro-

cessing large-scale problems. 

4.1.2. Medium-scale benchmark classification datasets experiments 

The proposed SR-LSSVM is then tested on several medium-scale

benchmark classification datasets. The selected parameters of the

algorithms for every dataset are listed in Table A1 . The information

of datasets are listed in Table 1 , and the detailed information of

several multi-class datasets are listed below. 

• Pendigits : It is a pen-based recognition of handwritten digits

data set to classify the digits 0 to 9. We only classify the digit

3 versus 4 here. 

• Satimage : It is comprised by six classes. Here the task of classi-

fying class 1 versus 6 is trained. 

• USPS : It is a muti-class dataset with 10 classes. Here, a binary

classification problem is trained to separate class 1 from class

2. 

• Protein : Protein is a multi-class dataset with three classes. Here,

a binary classification problem is trained to separate class 1

from class 2. 

Table 1 reports experimental results for the medium-scale clas-

sification datasets with outliers. The best results are highlighted

in bold. In Table 1 , we set r = | B | = 0 . 05 m for SR-LSSVM and FS-

LSSVM for all datasets except Splice ( r = 0 . 1 m ). All the algorithms

independently operated 10 times to get the unbiased results. 

Table 1 illustrates that our proposed method, the SR-LSSVM,

has higher accuracy than any of the other approaches on most

datasets. With regard to training time, the ProCRC is the fastest

algorithm, but its accuracy is not comparable to the SR-LSSVM.

The SR-LSSVM is much faster than the other LSSVM-based ap-

proaches, including the LSSVM, W-L SSVM and R-L SSVM. The C-SVC

performs well on some medium-scale datasets in training speed,

but on some larger-scale datasets, such as Protein and Mushroom,

the running speeds of the C-SVC are slower than that of the SR-

LSSVM. In addition, the accuracy of the C-SVC is lower than that of

the SR-LSSVM. 

In terms of sparseness, the SR-LSSVM and FS-LSSVM need much

fewer support vectors than other approaches. However, the accu-

racy of the FS-LSSVM is lower than that of the SR-LSSVM, and the

FS-LSSVM takes more time than the SR-LSSVM on all datasets. The

C-SVC also displays sparsity, but its support vector size is much

larger than that of the SR-LSSVM and FS-LSSVM, partly because

outliers often have larger Lagrange multipliers. 

4.1.3. Adult dataset experiments 

To investigate the performance of each algorithm on datasets

of different sizes, we randomly chose 4,0 0 0, 8,0 0 0, 10,0 0 0, 15,0 0 0,

20,0 0 0 and all of the 32,561 training samples from the adult data

training set [41] . The test set size keeps 16,281. 

Fig. 4 shows the experimental results of the approaches uti-

lized on the datasets with outliers (10%). Regarding the accuracy

on these datasets, in general, the SR-LSSVM, FS-LSSVM, and C-SVC

perform better than other methods, and our SR-LSSVM method

performs the best. In terms of the training speed, the ProCRC is

the fastest algorithm, but its classification accuracy is low. In addi-

tion, from Fig. 4 , we can draw the conclusion that for the medium-

scale training datasets, especially those with less than 8,0 0 0 sam-

ples, every comparison algorithm runs fast. However, if the train-

ing set size exceeds 20,0 0 0, the L SSVM, W-L SSVM and R-L SSVM

cannot operate on our common computer due to lack of mem-

ory. Therefore, for the large-scale benchmark datasets, we do not
ompare our SR-LSSVM method with the LSSVM, W-LSSVM and R-

SSVM. Moreover, Fig. 4 also shows that the training time of C-SVC

ncreases rapidly as the sizes of training samples grow larger. 

.1.4. Large-scale benchmark classification datasets experiments 

We compare our SR-LSSVM method with the ProCRC and sev-

ral sparse algorithms, including the C-SVC, FS-LSSVM, PCP-LSSVM

nd CSI, on the large-scale datasets. The optimal parameters for ev-

ry dataset are listed in Table A2 , and information on some of the

atasets is listed as follows, for others see Table 2 . 

• SensIT Vehicle (acoustic) : This dataset has three classifications

labeled 1, 2, and 3. We only chose the second and the third

classifications to operate. 

• Checkerboard(1M) : It is first given in [42] and widely used to

show the effectiveness of nonlinear kernel methods [15,27,43] .

The dataset was generated by the following method: randomly

sampled 1,60 0,0 0 0 points from the regions [0, 1] × [0, 1] and

labeled two classes by 4 × 4 XOR problem. Then, we randomly

chose 1,0 0 0,0 0 0 points as training samples and the remaining

60 0,0 0 0 points as test samples. 

Table 2 reports the experimental results for the large-scale

atasets with outliers (10%). All the algorithms are independently

perated five times to obtain the unbiased results for every

ataset. The best results are highlighted in bold. 

From Table 2 , it is obvious that the SR-LSSVM achieves good

erformance. It achieves higher prediction accuracy than the other

lgorithms on all datasets except the SensIT Vehicle (acoustic).

or the SensIT Vehicle (acoustic), the accuracy of the SR-LSSVM is

lightly lower than that of the FS-LSSVM method, but the run time

f the FS-LSSVM is longer than that of the SR-LSSVM. Furthermore,

t is obvious that the C-SVC is the slowest algorithm among these

lgorithms, and the size of its support vectors is much larger than

ther algorithms. ProCRC is the fastest algorithm among the com-

ared approaches, but its accuracy is lower than the SR-LSSVM.

ased on the above analyses, we conclude that our proposed al-

orithm (SR-LSSVM) is more suitable for large-scale classification

roblems, as it has higher test accuracy, requires less time, and

roduces sparser solutions than the other methods. 

.1.5. Robustness comparisons for large-scale dataset 

In order to compare the robustness of the ProCRC, PCP-LSSVM,

S-LSSVM, CSI and SR-LSSVM algorithms for large-scale datasets,

e set the rates of the outliers at 0%, 5% and 10%, respectively, on

he Cod-RNA dataset. Table 3 illustrates the results. From Table 3 ,

t is easy to observe that the SR-LSSVM has higher accuracy than

ther approaches, and the accuracy of SR-LSSVM declines slower

han other algorithms with the increasing of the rates of out-

iers. Therefore, the SR-LSSVM is more robust to outliers than other

lgorithms. 

.2. Regression experiments 

In the regression experiments, we conducted experiments on

edium-scale and large-scale benchmark regression datasets. We

dopt the popular regression estimation criterion RMSE (root mean

quare error) to measure the efficiency of algorithms. The Mg,

balone, and Cadata datasets were downloaded from the LIBSVM

41] , and the Winequality, Tic, Relation N D, Slice and 3D-spatial

atasets were downloaded from the UCI database [44] . Each at-

ribute of the samples was normalized into [ −1 , 1] . For every

ataset, we randomly selected 2/3 of the samples as the train-

ng set and the rest of the samples as the test set. To test the

nsensitiveness of our proposed algorithm to outliers, we ran-

omly selected 1/10 training samples, and added Gaussian noise

∼ N (0, d 2 ) on their targets to simulate outliers. We set d as half
i 
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Table 5 

Comparison of different algorithms on large-scale benchmark regression datasets with outliers (10%). The standard 

deviations are given in brackets. ‘nSVs’ refers to average number of support vectors. m and n are the numbers of 

training and testing samples respectively, l is the dimension of data. 

Datasets Algorithms Training time(s) nSVs RMSE 

Cadata ε-SVR 7.44(0.12) 8462.8(58.4) 0.2779(0.007) 

m = 13 , 760 FS-LSSVM 1.61(0.03) 300(0.9) 0.2383(0.004) 

n = 6 , 880 CSI 6.03(1.59) 159 (36.9) 0.2463(0.006) 

l = 8 PCP-LSSVM 1.02 (0.01) 302(0) 0.2383(0.005) 

SR-LSSVM 1.05(0.01) 302(0) 0.2382 (0.002) 

Relation N D ε-SVR 112.6(2.1) 24,556(82.4) 1.31(0.076) 

m = 35 , 608 FS-LSSVM 2.66(0.03) 173.8(1.9) 1.55(0.060) 

n = 17 , 805 CSI 9.44(1.35) 107.4 (21.9) 1.78(0.086) 

l = 24 PCP-LSSVM 1.58 (0.01) 178(0) 1.41(0.058) 

SR-LSSVM 1.76(0.09) 178(0) 1.27 (0.028) 

Slice ε-SVR 5088.77(23.2) 35,627.4(3.7) 17.44(0.100) 

m = 35 , 666 FS-LSSVM 65.78(0.23) 594.8(0.84) 23.80(0.771) 

n = 17 , 834 CSI 161.39(56.5) 52 (22.6) 12.92(0.364) 

l = 386 PCP-LSSVM 42.96 (0.25) 600(0) 12.81(0.369) 

SR-LSSVM 43.08(0.27) 600(0) 8.84(0.054) 

3D-spatial ε-SVR 6576.82(46.0) 276,625(234.8) 0.49(0.006) 

m = 289 , 916 FS-LSSVM 62.51(0.45) 399.4(0.5) 0.45 (0.001) 

n = 144 , 958 CSI 132.3(13.00) 173.3 (41.7) 0.46(0.001) 

l = 3 PCP-LSSVM 36.41 (0.13) 400(0) 0.45 (0.001) 

SR-LSSVM 37.09(0.35) 400(0) 0.45 (0.001) 

Sinc ε-SVR 1 – – –

m = 1 , 0 0 0 , 0 0 0 FS-LSSVM 17.82(0.72) 31(0) 0.748 (0.00) 

n = 60 0 , 0 0 0 CSI 305.10(26.4) 10 (0) 0.752(0.00) 

l = 1 PCP-LSSVM 4.87 (0.48) 26.4(0.5) 0.748 (0.00) 

SR-LSSVM 5.89(0.43) 26(0) 0.748 (0.00) 

1 The training time is too long. 
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f the mean of the targets for each dataset. We set the smooth-

ng parameter p = 10 4 in the SR-LSSVM and the stop criterion

 = 10 −2 , and in ε-SVR, ε = 0 . 01 . 

.2.1. Medium-scale benchmark regression datasets experiments 

Table 4 reports the experimental results for the medium-scale

atasets. The optimal parameters are listed in Table A3 . We set

 = 0 . 05 m for the SR-L SSVM and FS-L SSVM algorithms for every

ataset except Tic ( r = 400 ). All the algorithms independently op-

rated 10 times to obtain unbiased results. 

From Table 4 , it is clear that the proposed approach (SR-

SSVM) has lower prediction error than any other approaches for

ll datasets. Moreover, we can also observe that the SR-LSSVM is

he fastest method, and that the standard deviations of running

ime are the smallest in most cases. The sizes of the support vec-

ors of the SR-LSSVM and FS-LSSVM are much smaller than other

ethods, and their standard deviations are quite small as well.

his means that these two methods are sparseness and the sizes

f support vectors are stable. However, the FS-LSSVM has worse

redicted performance (RMSE) than our method and is more time-

onsuming. Overall, the predicted error of our SR-LSSVM algorithm

re smaller than that of other algorithms, and our method dramat-

cally reduces training time because of its sparseness. Therefore, it

s a good choice for regression problems. 

.2.2. Large-scale benchmark regression datasets experiments 

We compare our SR-LSSVM with several sparse algorithms, in-

luding the ε-SVR, FS-LSSVM, PCP-LSSVM and CSI on the large-

cale regression datasets. 

The Sinc dataset is an artificial dataset that contains 1,60 0,0 0 0

amples. They were generated by the Sinc function with Gaussian

oise y = 

sin (3 x ) 
3 x + ς, where x ∈ [ −9 , 9] , ς ∼ N (0, 0.25), and N (0,

.25) represents normal distribution with zero means and variance

.25. In order to simulate outliers, we randomly chose 1/5 samples

nd added larger Gaussian noise N (0, 1) to their targets. 

Table 5 reports experimental results for the large-scale regres-

ion datasets. The optimal parameters are listed in Table A4 . All
he algorithms operated 5 times independently to obtain unbiased

esults for each dataset. 

From Table 5 , It is clear that the prediction errors of our ap-

roach are smaller than those of the other compared algorithms

or all datasets. With respect to the running time, the SR-LSSVM

ethod is faster than the CSI, FS-LSSVM and ε-SVR on all of

atasets, and ε-SVR is the slowest. For example, for the 3D-spatial

ataset, ε-SVR spends about 6577 seconds for training, whereas

ur method SR-LSSVM only needs approximately 34 s and obtains

maller value of RMSE. The PCP-LSSVM is the fastest algorithm, but

ts prediction error is larger than the SR-LSSVM on some datasets

uch as Slice and Relation N D. As regard to the number of sup-

ort vectors, ε-SVR has the most, whereas the support vector size

f the SR-LSSVM is quite small. Although support vector size of the

SI is the smallest, the prediction error of it is larger than that of

he SR-LSSVM, and CSI is slower than our method. From Table 5 ,

t can be seen that our proposed approach is more suitable for

raining large-scale regression datasets, as it is quite fast and the

rediction performance is good. 

. Conclusion 

The R-LSSVM model is robust for classification and regression

roblems, which is interpreted from a re-weighted viewpoint in

his paper. However, the main disadvantage of the model is that

he existing algorithms for the R-LSSVM lose sparseness, therefore

hey cannot be used for large-scale problems. To overcome this dis-

dvantage, we utilize the representer theory and the incomplete

ivoting Cholesky factorization technique to obtain a sparse so-

ution of R-LSSVM, and propose an effective algorithm called the

R-LSSVM. The experimental results indicate that our algorithm

ot only has sparseness and robustness, but also has better or

omparable prediction performance than the other algorithms. Fur-

hermore, the training speed of the proposed algorithm is faster

han the R-LSSVM, LSSVM, W-LSSVM, FS-LSSVM, CSI and SVMs (C-

VC for classification and ε-SVR for regression). Therefore, the SR-
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LSSVM is a suitable option for dealing with large-scale classifica-

tion and regression problems. 
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Appendix A. Parameter settings 

Tables A1 and A2 list the parameter settings of all the compared

algorithms used on the classification datasets in Tables 1 and 2

respectively. 

Tables A3 and A4 give the parameter settings for all the com-

pared algorithms used on the regression datasets in Tables 4 and

5 respectively. 

In Tables A1 and A3 , LSSVMs include LSSVM, W-LSSVM, FS-

L SSVM, R-L SSVM and SR-L SSVM algorithms. R-L SSVMs include R-

L SSVM and SR-L SSVM algorithms. In Tables A2 and A4 , LSSVMs in-

clude FS-LSSVM, CSI, PCP-LSSVM and SR-LSSVM algorithms. 
Table A1 

Parameter settings of algorithms for medium-scale classification datasets. 

ProCRC C-SVC LSSVMs R-LSSVMs 

Data λ μ C σ m λ σ τ h 

Splice 10 −2 10 −0 . 5 10 0 2 −9 10 −2 2 −12 0.9 0.5 

Pendigits 10 −2 10 −4 10 2 2 −4 10 −3 2 −4 1.5 0.25 

Satimage 10 −2 10 −7 10 0 2 −1 10 0 2 −1 0.5 0.3 

USPS 10 −1 . 5 10 −6 10 0 2 −7 10 0 2 −7 1.1 0.15 

Mushrooms 10 −2 10 −3 10 0 2 −3 10 −1 2 −3 0.6 0.3 

Protein 10 −2 10 −7 10 0 2 −5 10 0 2 −5 0.8 0.7 

Table A2 

Parameter settings of algorithms for large-scale classification datasets. 

ProCRC C-SVC LSSVMs SR-LSSVM 

Data λ μ C σ m λ σ τ

IJCNN1 10 −2 10 −3 10 0 2 −4 10 −3 2 −8 2.5 

Cod-RNA 10 −1 . 3 10 −9 10 −2 2 −6 10 −4 2 −1 1.8 

SensIT Vehicle 

(acoustic) 10 −2 10 −6 10 −1 2 −4 10 −6 2 −4 1.7 

Skin-nonskin 10 −2 10 −9 10 0 2 −2 10 −3 2 −10 1.5 

Checkerboard(1M) 10 −2 10 −2 – – 10 −3 2 6 0.08 

Table A3 

Parameter settings of algorithms for medium-scale regression 

datasets. 

ε-SVR LSSVMs R-LSSVMs 

Data C σ m λ σ τ h 

Mg 10 0 2 −3 10 −2 2 1 0.9 0.025 

Winequality 10 0 2 −4 10 −1 2 −6 1 0.175 

Abalone 10 2 2 −5 10 −4 2 −4 0.01 0.15 

Tic 10 0 2 −4 10 0 2 −6 1 0.025 

Table A4 

Parameter settings of algorithms for large-scale regression 

datasets. 

ε-SVR LSSVMs SR-LSSVM 

Data C σ m λ σ τ

Cadata 10 0 2 −1 10 −3 2 −1 1.5 

Relation N D 10 1 2 −2 10 −2 2 −4 13.7 

Slice 10 2 2 −6 10 0 2 −11 40 

3D-Spatial 10 0 2 −1 10 −3 2 −3 1.6 

Sinc – – 10 −2 2 −2 0.6 
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ppendix B. Computational complexity reductions for the 

roCRC 

ProCRC (Probabilistic Collaborative Representation based classi-

cation) [16] is an improved method of CRC (Collaborative Repre-

entation based classification) [17] . They are both non-parametric

ethods based on least squares. The models of CRC and ProCRC

re simple and they can easily solve multi-class classification prob-

ems. Therefore, they have been successfully used in many ar-

as, such as face recognition and other visual recognition tasks

18,45–47] . However, the computational complexity of the code on

uthors’ website 5 for the CRC and ProCRC is high. In this section,

e show that the computational complexity of the ProCRC can be

educed by Sherman–Morrison–Woodbury (SMW) formula [36,37] .

e only discuss the two-class classification problem here, and the

ethod can be generalized to multi-class case easily. 

Let X = [ X 1 ; X 2 ] ∈ � 

m ×l , where l < m, X k is the dataset of the k th

lass, and each row of X k is a sample of class k . The test set is

enoted by ˜ X = { ̃  x i } n i =1 
with 

˜ x i ∈ � 

l and l < n . We denote I as an

dentity matrix with appropriate size. 

For the CRC, denote ˆ αi = [(X X � + λ · I) −1 X] ̃  x � 
i 

. Then the test

ample ̃  x i ( i = 1 , 2 , . . . , n ) is predicted as 

 

 i = arg min 

k 
‖ ̃

 x 

� 
i − X 

� 
k · ˆ αk 

i ‖ 

2 
2 / ‖ ̂  αk 

i ‖ 

2 
2 . (B.1)

e can use the SMW formula to reduce the computational com-

lexity of ˆ αi . 

Recently in [16] , the ProCRC is proposed as an improvement of

he CRC. The key step of the ProCRC is to compute 

ˆ i = T ̃  x 

� 
i , (B.2)

here T is the projection matrix: 

 = 

(
X X 

� + 

[
λI + μX 1 X 

� 
1 0 

0 λI + μX 2 X 

� 
2 

])−1 

X, (B.3)

and μ are two regularization parameters. Then the class label of

he test sample ̃  x i ( i = 1 , 2 , . . . , n ) is predicted as 

 

 i = arg min 

k 
‖ X 

� ˆ αi − X 

� 
k ˆ αk 

i ‖ 

2 
2 . (B.4)

According to the Matlab code on authors’ website 5 , the compu-

ational complexity of calculating T is O ( m 

3 ) (mainly for calculating

he inverse of a m × m matrix), and the computational complexity

f predicting targets of n test samples is O ( mnl ) (mainly for calcu-

ating ˆ αk 
i 

for i = 1 , 2 , . . . , n ). When the number of samples, m and

 , are large, the computational complexity is high. 

Actually, if denote C = 

[
C 1 0 

0 C 2 

]
with C k = λI + μX k X 

� 
k 

, then

B.3) can be calculated as 

 = [ C −1 − C −1 X (I + X 

� C −1 X ) −1 X 

� C −1 ] X 

y SMW formula, where C −1 = 

[
C −1 

1 
0 

0 C −1 
2 

]
with C −1 

k 
= 

1 
λ
(I −

 k ( 
λ
μ I + X � 

k 
X k ) 

−1 X � 
k 

) . Let P = C −1 X, then 

 = P − P (I + X 

� P ) −1 X 

� P. (B.5)

y (B.5) , the computational complexity of calculating T is reduced

o O ( l 2 m ). 
5 Codes are available in http://www4.comp.polyu.edu.hk/ ∼cslzhang/papers.htm . 

https://doi.org/10.13039/501100001809
http://www4.comp.polyu.edu.hk/~cslzhang/papers.htm
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In order to reduce the computational complexity in predicting

tage, putting (B.2) into (B.4) , we obtain 

 

 i = arg min 

k 
‖ (X 

� T − X 

� 
k T k ) ̃  x 

� 
i ‖ 

2 
2 , (B.6)

here T k is a sub-matrix of T with rows associated with X k and

 = [ T 1 T 2 ] . The computational complexity for predicting samples

n the whole test set by (B.6) is O ((m + n ) l 2 ) , where O ( ml 2 ) is for

alculating Q k = (X � T − X � 
k 

T k ) ∈ � 

l×l , and O ( nl 2 ) is for calculating

 k ̃  x � 
i 

for i = 1 , 2 , . . . , n . 

However, the computational complexity of prediction rule

B.1) for the CRC cannot be reduced by this approach, because we

ust calculate ˆ αi explicitly in (B.1) . 
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