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Abstract—Recent high-performance clustering methods process
all pixels when segmenting an image, which results in a very large
time complexity of these algorithms. Additionally, the performance
of such algorithms can be severely affected by noise when dealing
with highly polluted images. To address these problems, we propose
a new unsupervised algorithm for segmenting synthetic aperture
radar images based on a fuzzy clustering approach, called fast
fuzzy C-means clustering based on key pixels. Our algorithm first
selects a subset of special “key” pixels based on the rule of local
extrema, and then performs image segmentation on only these key
pixels using fuzzy clustering combined with nonlocal information.
Next, the remaining non-key pixels can be rapidly segmented by
combining the clustering results of the key pixels with a similar-
ity metric rule which is robust to speckle noise. This approach
greatly accelerates overall image segmentation because the time-
consuming clustering operation is only performed on a small subset
of pixels. We show the effectiveness of our proposed algorithm by
a series of experiments including segmenting twelve simulated and
four real synthetic aperture radar images. Moreover, to validate
our results, we compare the segmentation results obtained by our
algorithm with those obtained by seven other state-of-the-art seg-
mentation algorithms from the literature. The experimental results
suggest that our algorithm outperforms other state-of-the-art seg-
mentation algorithms in both computational speed and speckle
noise suppression.

Index Terms—Fuzzy clustering, image segmentation, key pixels,
nonlocal information, synthetic aperture radar (SAR).

I. INTRODUCTION

RADAR machine vision is a new research field of elec-
tronics in which different processing-based applications

are performed including synthetic aperture radar (SAR) image
processing, remote sensing, geoscience, and so on [1]–[3]. SAR
images have the advantage to generate more useful information
than optical images due to robustness against different weather
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or light conditions [4], so precise and fast processing of SAR
images is important for a variety of different fields of study [5].
On the other hand, SAR images are usually affected by speckle
noise, which is multiplicative noise [6], due to its imaging mech-
anism [3]. Hence, the processing of SAR images is a challenging
problem [7]. One of the primary importance in the processing
of SAR satellite images is SAR image segmentation [8], and
this technique has many applications such as the military areas’
mapping [4], target recognition [9], natural disasters’ assess-
ment [10], and so on. The goal of SAR image segmentation is
to segment an SAR image into a number of nonoverlapping but
connected regions [11], where pixels in the same region share
similar qualities, i.e., pixels from different regions have different
properties and good performance is obtained [12].

Segmentation is a fundamental task in SAR image process-
ing [13] and many different methods have been proposed over
several decades of research [14]. Thresholding methods [15] are
easy to understand and implement but have low accuracy [16].
Yin and Yang [17] presented a level set method that is a powerful
tool to depict the contours of regions. This method has become
very popular in recent years, but it can perform poorly on images
that are highly polluted with noise. Other approaches include
Markov random fields, Stolkin et al. [18], and the classical ma-
chine learning methods such as the support vector learning and
so forth are also effective for classification and clustering [19],
[20]. Clustering methods are often used for segmenting SAR
images [21] such as a coarse-to-fine clustering method to clus-
ter near-duplicate images [22]. And clustering methods group
pixels with similar properties and separate pixels with different
properties [21]. For instance, fuzzy C-means (FCM) clustering
[23] is a commonly used algorithm. This algorithm minimizes an
objective function through updating a fuzzy membership matrix
and clustering centers iteratively. It then hard divides each pixel
according to the membership matrix. The spatial continuity of
SAR images is a very useful form of a priori knowledge [24],
which is often used to improve the accuracy of clustering [25]. It
is essential to preserve image details while suppressing speckle
noise when processing SAR images [26]. Ahmed et al. [27]
proposed an FCM clustering algorithm with spatial constraints
(FCM_S) that added spatial local information to FCM for the
first time to improve the robustness of the algorithm. However,
this method requires calculating a spatial neighborhood term at
each iteration resulting in a very long running time. Chen and
Zhang [28] proposed FCM_S1 and FCM_S2 to overcome the
large computation time of FCM_S. These two algorithms used
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local information to generate a mean filter image and a me-
dian filter image in advance to speed up subsequent clustering.
Furthermore, the enhanced FCM algorithm and fast generalized
FCM algorithm proposed by Szilagyi et al. [29] and Cai et al.
[30] used local information and image histograms to achieve fast
segmentation. However, the common shortcoming of the above-
mentioned algorithms is that they require manually setting an
important parameter to achieve the balance between the sup-
pression of noise and the preservation of details of the original
image. Later, Krinidis and Chatzis [31] proposed a robust fuzzy
local information C-means clustering algorithm (FLICM) which
did not rely on any parameter settings. This algorithm adds a
neighborhood term to the original objective function of FCM
and automatically calculates a weight based on the spatial dis-
tance between pixels in the neighborhood. Gong et al. proposed
the reformulated FLICM [32] and an FCM clustering algorithm
with local information and kernel metric (KWFLICM) [33]. The
former method added a local variance coefficient to the neigh-
borhood term of FLICM whereas the latter method redefined the
weight by using both spatial distance and gray values of pixels.
In addition, a kernel metric was added to make the algorithm
more efficient for image segmentation. Xiang et al. [34] pro-
posed a kernel FCM algorithm with pixel intensity and location
information (ILKFCM) for SAR image segmentation based on
KWFLICM. The algorithm used the wavelet transform of a lo-
cal neighborhood to generate new features and a new weight.
Moreover, kernel metrics were added at each iteration.

The above-mentioned algorithms added local spatial informa-
tion to FCM and improved the accuracy of clustering. However,
achieving satisfactory segmentation using only local informa-
tion is not feasible for SAR images affected by a large amount
of speckle noise. Hence, many approaches have been proposed
in recent years to use nonlocal information to suppress speckle
noise more effectively [35]. For example, Ji and Wang [36]
proposed a nonlocal fuzzy clustering algorithm with between-
cluster separation measure (NS_FCM), in which the nonlocal
information was utilized in a modified version of FCM. This
greatly improved the robustness of the algorithm to speckle
noise. Shang et al. [37] also proposed a spatial fuzzy clus-
tering algorithm with kernel metric based on immune clone
(CKS_FCM). CKS_FCM uses a nonlocal mean method to filter
the image to achieve better segmentation results. Liu et al. [38]
proposed an FCM algorithm which added regional information
to the objective function of FCM (ALFCM). It used both pixel-
based and region-based information together to generate more
useful spatial information.

Although promising segmentation results were achieved by
the fuzzy clustering algorithms mentioned above, the computa-
tional expense of clustering all pixels of the image makes those
algorithms very slow. Moreover, the use of local or nonlocal
spatial information adds significant additional processing time.
Clustering all pixels of an image is especially problematic for
images with large size. In addition, for very noisy images, clus-
tering process of all the pixels becomes even more challenging
[39].

Recently, some proposed studies deal with the segmenta-
tion and classification of very high-resolution images using

point-wise methods [40]. These points are usually selected
according to various rules so that they represent various kinds
of important image information [41]. Pham et al. proposed two
point-wise methods to deal with classification of very high-
resolution multispectral image [42] and SAR image change
detection [43]. Graph theory was also used in these studies.
These algorithms only deal with a small number of selected
pixels rather than all pixels in the image. The processing of
reduced numbers of pixels significantly decreases the running
time. However, while these subsampled pixels can represent
the image to some extent, discarding a large number of other
pixels risks losing important information of the original image.

In order to overcome the shortcomings of the fuzzy clustering
algorithms and the point-wise methods mentioned above, we
propose a fast algorithm for SAR image segmentation based
on a set of key pixels. In contrast to the previous clustering
algorithms used for SAR image segmentation, we perform a
fuzzy clustering method, based on nonlocal information, only
on key pixels. Clustering just a small number of key pixels can
greatly reduce the impact of noise on the clustering iterations.
Furthermore, it significantly reduces the computation time. On
the other hand, our algorithm segments the remaining non-key
pixels quickly by exploiting the clustering result obtained from
the key pixels. This is the main difference between our proposed
algorithm and the existing point-wise methods. Our method can
segment both key and non-key pixels in a short time with high
accuracy.

The contributions of this paper are as follows:
1) We perform clustering only on a few key pixels resulting

in a significantly shorter running time of segmentation.
2) We use the key pixels, which are less affected by noise,

and nonlocal spatial information together to execute clus-
tering. Hence, a very accurate clustering result can be
obtained.

3) We show how to use the clustering results of key pixels
to segment large numbers of non-key pixels with high
accuracy in a short time.

The remainder of this paper is structured as follows. Section II
presents the details of the fast algorithm for SAR image segmen-
tation based on key pixels. Section III analyzes the sensitivity of
parameters used in the proposed algorithm. Section IV compares
the segmentation results of our algorithm against the results of
several other state-of-the-art algorithms, on both simulated and
real SAR images. Section V provides concluding remarks.

II. METHODOLOGY

In this paper, we propose a fast algorithm for SAR image
segmentation. We call this algorithm fast FCM clustering based
on key pixels (FKP_FCM). First, our algorithm separates the
whole image into two parts: 1) key pixels and 2) non-key pixels.
FKP_FCM processes these two parts separately. Second, we
apply a fuzzy clustering algorithm based on nonlocal informa-
tion to segment only key pixels. We finally segment the non-key
pixels based on the clustering result of key pixels. A flow chart
of our algorithm is depicted in Fig. 1, and this figure shows the
main steps of FKP_FCM.
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Fig. 1. Flow chart of FKP_FCM.

A. Key Pixels’ Selection

Pham et al. [44] proposed a selection method of key points
based on local extrema and proved that these points can rep-
resent basic information of an image without losing important
information. In addition, Pham et al. proved that local extrema
can result in a good performance on SAR image in [42] and
[43].They have also shown in [43] that using local maximum
can produce similar results to the one by using local minimum.
Hence, we use the rule of local maximum in our method to select
key pixels.

Key pixels’ selection is an important process to our approach
since its result affects the segmentation of the entire image. We
assume the characteristics of key pixels are

1) key pixels are uniformly distributed across the entire im-
age;

2) they contain information about the corresponding areas
which include the key pixels in the image; and

3) they are not often affected by noise.
Due to the influence of speckle noises, key pixels selected

from the input image may have an uneven distribution based on
the rule of local maximum. So, at first, we apply a low-pass filter
on the SAR image, which can smooth the image homogeneously
[43], in order to ensure the selected key pixels have a relatively
uniform distribution over the whole image despite some losses
of details. Although different simple filters are equally good,
such as median filter or mean filter, we use Gaussian filter here.

Consider an input SAR image, I = {Iab , 0 ≤ a ≤ A, 0 ≤
b ≤ B}, which can be segmented into c classes, where c � 2 and
Iab is the gray value of the pixel in row a and column b of image
I. Moreover, A × B denotes the size of the image. In order to
segment this image, we need to assign c classes by labeling each
pixel of I. In addition, X = {Xab, 0 ≤ a ≤ A, 0 ≤ b ≤ B}
denotes the filtered image obtained after filtering image I. The
pixel with the maximum intensity in its immediate neighborhood
is called a local maximum.

Fig. 2. Result of selecting key pixels on a real SAR image. (a) A real SAR
image. (b) Result of selecting key pixels.

For selecting the key pixels, we use the principle of local
maximum on the filtered image as follows:{

Xij ∈ S, if p = arg max(X(q))
Xij ∈ L, otherwise

q ∈ N (1)

where p = (i, j) denotes the coordinate of current central pixel
Xij , S is the set of key pixels, L is the set of non-key pixels,
and N represents the immediate neighborhood of Xij , which
is called the selection window. It is worth nothing that if Xij is
within a homogeneous area of the image, all the pixels in the
immediate neighborhood of Xij have the same intensity. Hence,
no pixel can be selected as a key pixel within that limited area
according to (1). Consequently, the final set S will be distributed
unevenly across the whole image and it will lose information
of these regions. Accordingly, wherever pixels within a certain
neighborhood have the same gray values, we use a random
selection of the central pixel. Fig. 2 shows the result of selecting
key pixels on a real SAR image according to the approach
described above.

A real SAR image is shown in Fig. 2(a), and the result of
selecting key pixels in Fig. 2(b) shows 2105 key pixels with
red dots, where the size of N is 3 × 3. This figure shows the
key pixels are almost uniformly distributed in the image, and
within every limited area of the image in Fig. 2(a), some key
pixels are selected. In addition, the speckle noise is distributed
randomly in an SAR image and we only select small-amount
local maximums as key pixels, which makes the selected key
pixels suffering from less noise.

B. Segmentation of Key Pixels

Existing clustering methods of image segmentation, such as
FLICM [31], KWFLICM [33], ALFCM [38], use all pixels of
an image for iterative computation, which makes these methods
have very large computation time. To ensure a precise clustering
result and a reduced computation time of image segmentation,
we propose a new fuzzy clustering method based on nonlocal
information only to segment the key pixels in SAR image. We
are inspired from FLICM [31] to further suppress the effect
of speckle noise by incorporating spatial nonlocal information,
spatial local information, and gray values of pixels into the
objective function as follows:

J =
N∑

i=1

c∑
k=1

(um
ki × ‖Si − Vk‖2 + Gki) (2)
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where N is the number of key pixels in set S, c is the number
of classes, m is the fuzzy coefficient, which is usually set to be
2, Si represents the ith key pixel, Vk denotes the kth cluster
center, uki is the membership degree of Si to Vk , and Gki is a
fuzzy factor introduced newly with the form of

Gki =
∑

Mj ∈M

wij (1 − ukj )
m‖Mj − Vk‖2 (3)

where M is the set of K key pixels which have the smallest spatial
distances from Si , and Mj is the jth key pixel in M. And the
spatial distance dij between two pixels xi and xj in the image
is calculated as follows:

dij =
√

(ri − rj )
2 + (ci − cj )

2 (4)

where ri and ci are row and column numbers of pixel xi in X,
respectively, rj and cj are those of pixel xj . Since the key pixels
are uniformly distributed across the whole image, the K nearest
neighbors are not incorporated into the local neighborhood of
Si . This means that nonlocal spatial information is used here.
In (3), wij denotes the weight of neighbor Mj on Si , which is
composed of two parts: 1) the spatial distance weight and 2) the
intensity distance weight:

wij = ws · wg (5)

where ws represents spatial distance weight, and wg denotes
intensity distance weight:

ws =
1

d2
ij + 1

(6)

wg = exp−
∣∣∣log μ i

μ j

∣∣∣
. (7)

In (6), dij is the spatial Euclidean distance between Si and
Mj in the image, and μi and μj denote the average gray value
of pixels which fall into S ′

is neighborhood O and average gray
value of pixels which fall into M ′

j s neighborhood O in image X,
respectively. The log-ratio operator is used to further suppress
speckle noise.

Neighbors in M with a close spatial position as well as a simi-
lar neighborhood to Si yield large value of weights. This avoids
the noisy key pixel located near the center pixel from generat-
ing a large interference in the clustering process. Furthermore,
a non-noisy key pixel away from the center pixel may generate
a larger weight. Finally, this method benefits from the nonlocal
information so that it owes the robustness to speckle noise.

In order to find the minimum of the objective function J, we
update the fuzzy membership matrix U and the clustering center
matrix V iteratively based on the following two formulae:

uki =
1

∑c
j=1

(
‖S i −Vk ‖+Gk i

‖Si −Vj ‖+Gj i

) 1
m −1

, (8)

Vk =
∑N

i=1 um
kiSi∑N

i=1 um
ki

. (9)

The iteration will be stopped if the change of matrix U in two
successive iterations is smaller than a threshold ε or the number
of iterations is equal or greater than a predefined value Tmax .

TABLE I
PROCESS OF FUZZY CLUSTERING

Algorithm 1: Process of the fuzzy clustering method based on nonlocal
information.

Input: key pixels set S, cluster number c, threshold ε, max iterative number
Tm ax , the number of nearest neighbors K.
Output: key pixels’ clustering result CS .
Begin
1. Find K nearest neighbors for every key pixel in S;
2. Set the iterative counter t equal to 0, initialize the membership matrix U
randomly;
3. Update the clustering center matrix V using (9);
4. Update the membership matrix U in (8);
5. If max|U (t) − U (t − 1)| < ε or t > Tm ax , execute step 6; otherwise,
execute step 3 and t = t + 1;
6. Execute the defuzzification process using (10) and label every key pixel;
7. Output the clustering result CS .
End

Then, we perform a defuzzification process to label every key
pixel based on the fuzzy membership matrix U. The label of key
pixel Si is denoted by

CSi
= arg max

k
uki k = 1, 2, ..., c. (10)

Pseudo-code of the fuzzy clustering method based on nonlo-
cal information is presented in Table I.

C. Segmentation of Non-Key Pixels

So far, we have shown how a small number of pixels, namely,
key pixels, can be clustered. However, the remaining (non-key)
pixels in the image must also be labeled to complete the seg-
mentation. We segment the non-key pixels using the clustering
results Cs obtained in the previous step. Specifically, the label
of the ith non-key pixel Li in L is considered to be identical to
the label of En , which is the most similar key pixel to Li in L′

is
spatial neighborhood H:

En = arg max
Ej ∈E

ωij (11)

where E is the set of key pixels incorporated into L′
is spatial

neighborhood H, and Ej is the jth key pixel in E. Although ωij

is similar to wij , ωij is the similarity between Li and Ej , but
wij is the weight of the jth neighbor Mj on Si . Similar to wij ,
ωij is also composed of two parts: 1) spatial similarity and 2)
intensity similarity:

ωij = ωs · ωg (12)

where

ωs =
1

d2
ij + 1

(13)

ωg = exp−
∣∣∣log μ i

μ j

∣∣∣
. (14)

Here, dij denotes the spatial Euclidean distance between the
non-key pixel Li and key pixel Ej , whereas in (6), dij is the
spatial Euclidean distance between key pixel Si and neighbor
Mj . Moreover, μi denotes the average gray value of pixels in
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TABLE II
PROCESS OF FKP_FCM

Algorithm 2: Process of FKP_FCM.

Input: SAR image I, segmentation class number c, the size of selection
window N , the number of nearest neighbors K, the sizes of neighborhood O
and H, max iterative number Tmax, threshold ε.
Output: final segmentation map R
Begin
1. Filter the SAR image I by Gaussian filter to obtain the filtered image X;
2. Use (1) to obtain the key pixels set S and non-key pixels set L;
3. Cluster the key pixels by method in Table I and obtain the segmentation
result of key pixels CS ;
4. Segment the non-key pixels by (11) and (15) and obtain the segmentation
result of non-key pixels CL ;
5. Smooth C using (16);
6. Output the final segmentation map R.
End

L′
is spatial neighborhood O, and μj denotes the average gray

value of pixels in E ′
j s spatial neighborhood O. In addition,

when there is no key pixel falling into the neighborhood H of
Li , we use the clustering center V obtained in the previous step
to determine the label of Li . Thus, the label of non-key pixel
Li is computed as follows:

CLi
= arg min

1≤k≤c
|μi − Vk | (15)

where Vk is the kth clustering center obtained by the fuzzy
clustering. Combining the segmentation result CS of the key
pixels and the segmentation result CL of the non-key pixels,
we can get the segmentation result C of the whole image. In
contrast to other clustering algorithms, the very large-amount
non-key pixels are not included in the clustering process but
are segmented using the segmentation result of the key pixels.
Avoiding using time-consuming clustering to segment majority
pixels, i.e., non-key pixels, makes our algorithm very fast.
Moreover, the results can effectively suppress effects of speckle
noise, but it loses some detailed information of the image. So,
we use a simple filter to smooth the results of segmentation.
The final label of pixel Iij in image I is

Rij = arg max
1≤k≤c

nk , 1 ≤ i ≤ A, 1 ≤ j ≤ B (16)

where nk is the number of pixels whose labels are k based on
the segmentation result C in I ′ij s neighborhood P, and the size
of P is set to be 3 × 3 to preserve more details of the image.

D. Steps of FKP_FCM

The main idea of FKP_FCM is to divide the image into two
parts and handle them separately. Fuzzy clustering based on
nonlocal information is used to segment key pixels, and the
clustering results of the key-pixels and similarity measure ωij

are used to segment non-key pixels. Pseudo-code of the seg-
mentation of FKP_FCM is presented in Table II.

III. PARAMETER ANALYSIS

Now, we need to define the sizes of all windows involved in
FKP_FCM and the number of nearest neighbors K mentioned

Fig. 3. Test image. (a) Ground truth. (b) Simulated SAR image.

in Section II. These sizes of the windows and the number K
are important parameters because their values influence the seg-
mentation result. These square windows are selection windows
N used for selecting the key pixels, the neighborhood window
O used to calculate wg and ωg , and the neighborhood window
H used to segment non-key pixels. In this section, we will dis-
cuss how these parameters affect the segmentation result using
a simulated SAR image shown in Fig. 3(b).

We artificially pollute Fig. 3(a) and generate a 1-look simu-
lated SAR image shown in Fig. 3(b). We use Fig. 3(b) to test
the performance of FKP_FCM with different values of these
parameters. In order to quantitatively evaluate the segmentation
results, we utilize the segmentation accuracy (SA) proposed in
[45] often used in image segmentation. SA represents the ratio
of pixels correctly segmented as follows:

SA =
∑c

i=1 Pi ∩ Ci∑c
j=1 Cj

(17)

where c is the number of classes, Pi is the set of pixels whose
labels are determined to be i by the algorithm, and Ci is the set
of pixels whose labels are i in the ground truth. SA belongs to
the range [0, 1]. The larger the SA, the better the result.

A. Selection Window N
We consider the local maximum to be the key pixel, as shown

in (1). Thus, the selection window, denoted by N , determines
the generation of key pixels. Because the quality of key pixels
directly determines the quality of final segmentation result, we
set the size of N to be 3, 5, 6, 9, 11, and 13 to test the effects
of N on the segmentation results of Fig. 3(b). We consider the
sizes of O, H, and K to be 5, 7, and 20, respectively, in all
the experiments. Fig. 4 shows the effect of different N on the
segmentation results.

Fig. 4(a) shows that the increased size of N results in the
decreased number of key pixels. If the size of N is 3 × 3, the
number of key pixels is 2648 which is the largest but only ac-
count for 4.45% of total pixels in the image. Consequently, even
in an SAR image with large size, the number of key pixels is also
very small. In addition, Fig. 4(b) shows that the increased size,
i.e., the decreased number of key pixels, results in decreased SA
of segmentation, where the maximum value of SA is obtained
when the size of N is 3 × 3. The logical reason confirms that
the increased size causes increasingly sparser distribution of
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Fig. 4. Selection window N affects the segmentation result: (a) effect on the
number of key pixels; (b) effect on SA; and (c) effect on running time.

Fig. 5. Value of K affects the segmentation results of the key pixels and the
whole image: (a) the clustering accuracy of the key pixels versus the value of
K; (b) SA versus the value of K; and (c) running time of the algorithm versus
the value of K.

the key pixels across the entire image. The fewer the number
of the key pixels, the less information they convey, so the se-
lection of key pixels highly influences the final result of the
segmentation.

Fig. 4(c) shows that the running time decreases significantly
by increasing the size of N . A larger N can generate a smaller
number of key pixels, which results in a shorter clustering
time and consequently a shortened time of computation will
be needed to achieve the total segmentation. If the number of
key pixels is the largest, i.e., the size of N is 3 × 3, the time used
by FKP_FCM to segment all pixels in the image is not more
than 30 s. This shows the superiority of FKP_FCM in terms
of computation time required for SAR image segmentation. If
the size of the image to be segmented is large, the number of
selected key pixels increases. Nonetheless, in comparison with
the existing methods processing all the pixels across the image
iteratively, FKP_FCM can achieve a much faster segmentation
result.

B. Number of Nearest Neighbors K

K nearest neighbors make the clustering of key pixels very
robust to speckle noise. As K determines the clustering result
of the key pixels, we consider K to be 5, 10, 15, 20, 25, and 30
to test the effect of value of K on the clustering accuracy of the
key pixels. The clustering accuracy represents the proportion
of correctly clustered key pixels to all key pixels. The result of
the clustering plays an important role in the final segmentation
of the image. Hence, the effect of the value of K on the whole
segmentation result is also tested. We consider the size of N ,
O, and H to be 3, 5, and 7, respectively. Fig. 5 shows the effects
of the value of K on the segmentation results of key pixels and
image.

Fig. 5(a) shows that the clustering uses only a small amount
of nonlocal information if K is very small. This results in a lower
accuracy of the clustering. That is, the clustering accuracy im-
proves significantly if K increases. Nonetheless, the clustering
accuracy does not change a lot when K is larger than 15. The rea-
son is that the calculation of weight w in the clustering process
consists of two items: 1) the spatial distance and 2) the intensity
distance. The larger the K value, the smaller the impact of some
key pixels that are far from the central key pixel. Hence, the
effect of these far pixels can be ignored. Besides, the clustering
process is robust to speckle noise by using sufficient nonlocal
information when K is a little large.

Fig. 5(b) shows the change of SA versus different K has a trend
similar to the one of the clustering accuracy versus different K.
This illustrates that the segmentation result of the key pixels
directly determines the segmentation of the whole image, so to
achieve a good segmentation result, the clustering of the key
pixels must have high accuracy. Fig. 5(c) shows that the running
time rapidly increases for increased K, but the SA does not
increase significantly for increased K when it is larger than 15.
And the algorithm reaches the highest SA at K = 20.

C. Neighborhood Window H

The clustering results of the key pixels within the neighbor-
hood window H are used to segment the non-key pixels. That is
to say, the segmentation result of non-key pixels is determined by
the size of H, the clustering results, and distribution of key pix-
els. Since non-key pixels form the majority pixels of the image, a
promising segmentation of image can be obtained if the non-key
pixels are segmented accurately and vice versa. The size of H is
a crucial parameter which determines the segmentation of non-
key pixels. If the window size is small, neighborhood window
H of most non-key pixels may not contain key pixels. Hence,
the segmentation of these pixels will depend on the cluster V,
as (15), which will make the segmentation highly suffer noise.
If the window size is larger, for many non-key pixels, there will
be some key pixels involved in their neighborhood window H,
then (11) will be used to segment these non-key pixels. With the
accurate clustering results of key pixels, many non-key pixels
can be correctly segmented. But the segmentation of non-key
pixels may lose some details with larger window size and tend
to be stable when the window size continues to increase. The
reason is that some key pixels whose locations are far from the
center pixel in H have little effect on the segmentation.

We consider the size of H to be 3, 5, 7, 9, 11, 13, 15, 17,
and 19 to test the effects of H on the segmentation of the tested
image. The sizes of N and O are 3 and 5, respectively, and K
is 20. Fig. 6 shows that H influences the segmentation result of
Fig. 3(b).

The results presented in this figure confirm our analysis. In
specific, it shows that SA is very low with a value of 0.78 with
the size of window H equal to 3. But as the size of window
H increases, the SA rapidly increases and reaches a maximum
at the size of window H equal to 7. When the size exceeds 7,
SA tends to be constant. Fig. 6(b) shows the segmentation time
increases significantly by increasing the size of H. Larger H
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Fig. 6. Effect of neighborhood window H on the segmentation: (a) the size of
H versus SA; and (b) the size of H versus the running time.

Fig. 7. Effect of neighborhood window O on SA.

contains more key pixels, so the algorithm needs to take more
time to calculate similarity between the key pixels involved in
H and central non-key pixel.

The size of the window H also determines the ability of our
approach to suppress speckle noise. If the image to be segmented
contains small-number noise, we can use a small size such as 3 or
5 to retain more important details. If the image is highly polluted
with noise, noise’ suppression is more important. Hence, we
consider the size of window H for this case to be large, e.g., 7
or 9. In this experiment, the tested image is a 1-look simulated
SAR image with serious noise. So, the best segmentation is
achieved when size of H is 7. This also guarantees a balance
between the suppression of noise and the preservation of details
of the image.

D. Neighborhood Window O

Window O is used both in calculating wg when segmenting
key pixels and ωg when segmenting non-key pixels, as shown
in (7) and (14). In FKP_FCM, the sizes of window O in the
calculations of wg and ωg are the same. We set the size of win-
dow O to be 3, 5, 7, 9, 11, 13, and 15 for testing the effect of
O on the segmentation of Fig. 3(b), and the result is shown in
Fig. 7. The size of N and H are set to be 3 and 7, where K is 20.
Fig. 7 shows SA is almost unchanged with increasing the size
of O from 3 to 15. This illustrates that the final segmentation is
not sensitive to O. The weight w and similarity ω used in this
paper are both composed of two parts: 1) the spatial distance and

2) the intensity distance. The algorithm only uses the window
O and gray values of pixels located in O for calculating the
intensity distance. The log-ratio operator is also used to restrain
the speckle noise as shown in (7) and (14), which further weak-
ens the influence of the size of window O on the final result.
Therefore, the final segmentation is stable with different size of
window O.

IV. EXPERIMENTAL PERFORMANCE EVALUATION

To show the effectiveness of FKP_FCM, we compare the
results obtained by FKP_FCM against four clustering-based al-
gorithms which are CKS_FCM [37], ILKFCM [34], NS_FCM
[36], and ALFCM [38]. In addition, we compare the results
obtained by two powerful level-set-based algorithms including
the multiregion level-set partitioning algorithm (MLSP) [46]
and the two-phase algorithm based on kurtosis curvelet energy
and unsupervised spectral regression (KCUSR) [47] with the re-
sults obtained by our proposed algorithm to show the efficiency
of FKP_FCM. Because FKP_FCM is based on clustering, algo-
rithms which combine fuzzy clustering and active contour meth-
ods are also compared. Following the idea in [48], we first apply
SFCM [49] to segment the SAR image and initialize the con-
tours in MLSP based on the result, and MLSP is then executed
to realize the final segmentation. In this paper, this comparison
algorithm is referred to as SFCM + MLSP. Further information
about the parameters used in comparison algorithms refers to
the original papers. In the experiments, we segment 12 simu-
lated noisy SAR images generated from three simulated images
as well as four real SAR images. Then, the segmentation results
and running times of all algorithms are compared. The results
of two level-set based algorithms and SFCM + MLSP shown
in this section are the best results achieved over ten runs.

To generate simulated SAR images, we deliberately contam-
inate original simulated images with various different levels of
multiplicative speckle noise [50] to generate 1-look, 2-look, 4-
look, and 6-look simulated SAR images of SI1, SI2, and SI3.
Fig. 8 shows three simulated images with and without simulated
multiplicative speckle noise.

The three simulated images SI1, SI2, and SI3 can be used as
ground truth maps to evaluate the segmentation results of noisy
images generated from them. The detailed information of these
three simulated images is shown in Table III.

In addition, we also apply FKP_FCM and other compari-
son algorithms on four real SAR images, as shown in Fig. 9.
Fig. 9(a) shows a 256 × 256 SAR image called FARMLAND.
This 4-look image was captured by the European remote sens-
ing satellite viewing a farm in Italy with VV polarization and a
resolution of 12.5 m. This image can be segmented into three dif-
ferent types of farmlands. The second real SAR image is called
XIAN, which was captured by TerraSAR in X-band, viewing
the region of Xi’an, China, with a resolution of 1 m, as shown
in Fig. 9(b). XIAN image is 8-look and has a size of 256 × 256,
and it can be segmented into three different types of farmlands
and water regions. Fig. 9(c) shows the third real SAR image,
called MARICOPA, which was imaged by an airborne SAR in
Ku-band over the Maricopa Agricultural Center near Arizona.
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Fig. 8. Simulated images and simulated SAR images: (a) SI1; (b) SI2; (c) SI3;
(d), (g), (j), and (m) 1-, 2-, 4-, and 6-look simulated SAR images generated from
SI1; (e), (h), (k), and (n) 1-, 2-, 4-, and 6-look simulated SAR images generated
from SI2; and (f), (i), (l), and (o) 1-, 2-, 4-, and 6-look simulated SAR images
generated from SI3.

TABLE III
DETAILED INFORMATION OF SIMULATED IMAGES

Image Size Class number Gray value in each region

SI1 244 × 244 4 0, 85, 170, and 255
SI2 256 × 256 4 0, 128, 192, and 255
SI3 283 × 283 5 0, 64, 128, 192, and 255

Its size is 350 × 350 and its resolution is 1 m. This image can be
segmented into four regions with three different types of farm-
lands and water. Finally, Fig. 9(d) shows the real SAR image
called TRAUNSTEIN, which was captured by F-SAR in X-band
over Traunstein in Bavaria, Germany. The size of this image is

Fig. 9. Real SAR images: (a) FARMLAND image; (b) XIAN image;
(c) MARICOPA image; and (d) TRAUNSTEIN image.

1001 × 779 with HH polarization and a resolution of 1 m. Three
classes can be obtained after segmenting TRAUNSTEIN, which
are trees, farmlands, and shadows together with water.

When segmenting the images mentioned above, the param-
eters of FKP_FCM were set as follows: the size of selection
window N is 3 × 3, the number of nearest neighbors K is 20,
and the size of neighborhood window O is 5 × 5 for all images.
Furthermore, for 1-look and 2-look simulated SAR images of
SI1, all simulated SAR images of SI2 and SI3, MARICOPA im-
age, and TRAUNSTEIN image, the size of H is 7× 7; for 4-look
and 6-look simulated SAR images of SI1 and XIAN image, the
size of H is 5 × 5; and for FARMLAND image, the size of H is
11 × 11. Our experiments were executed in MALAB R2014b
environment using a computer with an Intel core i5 2.60 GHz
CPU and 8 GB RAM. Our experimental results confirm that our
algorithm generates good segmentation results by using these
choices of parameters.

A. Results on Simulated SAR Images

1) Results on Simulated SAR Images Generated From SI1:
We segment four SAR images of SI1 shown in Fig. 8 by com-
parison algorithms and FKP_FCM, where the simulated image
shown in Fig. 8(a) is used as the ground truth.

SAs and computation times of comparison and our proposed
algorithms are presented in Table IV. These results show
that FKP_FCM outperforms other algorithms in terms of
computation time and SA for 1- and 2-look simulated SAR
images. In addition, FKP_FCM successfully segments all the
images with the minimum computation time. On the other
hand, the SAs yielded by KCUSR [47] are just slightly better
than the ones obtained by FKP_FCM only for 4- and 6-look
images. In summary, FKP_FCM is more efficient than other
clustering algorithms because 1) it clusters only key pixels
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TABLE IV
RESULTS ON SIMULATED SAR IMAGES OF SI1

Algorithm 1 look 2 looks 4 looks 6 looks

SA% t/s SA% t/s SA% t/s SA% t/s

ILKFCM [34] 97.36 182 97.59 175 97.68 162 97.75 179
NS_FCM [36] 96.05 105 96.94 89 97.23 85 97.32 82
CKS_FCM [37] 91.74 389 95.96 223 98.00 167 98.69 143
ALFCM [38] 73.82 102 84.85 189 95.45 166 96.24 59
MLSP [46] 97.58 88 97.20 86 98.57 78 98.79 78
KCUSR [47] 97.75 98 98.25 96 99.00 93 99.49 90
SFCM + MLSP 97.90 114 97.53 107 98.69 101 99.09 105
FKP_FCM 98.21 29 98.60 26 98.80 23 99.22 22

(this substantially reduces the total clustering time) and 2) it
segments non-key pixels based on the key pixels (this results in
an increased robustness to noise and a fast segmentation). Next,
ILKFCM uses features in the wavelet domain and the kernel
function to reduce the influence of speckle noise, yielding SAs
around 97% for all simulated SAR images. Nonetheless, ILK-
FCM does not perform very well on images with less noise, such
as 4- or 6-look images and it results in large computation times.

A nonlocal mean filtering is required by NS-FCM to generate
a filtered image in advance. Nevertheless, because the objec-
tive function of NS_FCM does not include a neighborhood item
similar to other clustering methods, the computation time is
greatly reduced. This algorithm still uses all the pixels for clus-
tering resulting in a running time longer than the one needed
by FKP_FCM. Moreover, NS-FCM falls behind FKP_FCM in
terms of SA. On the other hand, CKS_FCM obtains high values
of SA for images with high looks, whereas the SAs obtained
by this algorithm are small for images that are heavily polluted
by noise. CKS_FCM uses both a nonlocal mean filtering pro-
cess and an immune clone algorithm to determine initial cluster
centers. Hence, its corresponding computation time for segmen-
tation is longer than others.

Table IV shows that ALFCM yields the lowest SAs for the
images with severe noise, but its running times are similar to
NS_FCM because the regional information is calculated in
advance, i.e., it is not iterative computation. To increase the accu-
racy of the segmentation, ALFCM utilizes regional/local spatial
information; nevertheless, the performance of mean shift algo-
rithm used in this algorithm is highly affected by the noise. This
makes the regional information inaccurate such that an ultimate
segmentation outcome suffers significantly from noise. From
Table IV, we can conclude that two level-set based algorithms
yield reasonably good results for all tested images; in addition,
KCUSR has highest SAs for 4- and 6-look images. Although
the level-set-based algorithms can accurately depict contours of
regions, their ability to precisely recognize contours decreases
with increased noise. The results on images with high noise
level show that FKP_FCM outperforms MLSP and KCUSR.
Furthermore, MLSP and KCUSR need longer time to compute
than the one needed by FKP_FCM because the contours need
to evolve iteratively. Besides, they have longer computation
time for the segmentation of images with severe noise. KCUSR

Fig. 10. Segmentation maps on 1-look simulated SAR image of SI1:
(a) FKP_FCM; (b) ILKFCM [34]; (c) NS_FCM [36]; (d) CKS_FCM [37];
(e) ALFCM [38]; (f) MLSP [46]; (g) KCUSR [47]; and (h) SFCM + MLSP.

uses more time because it applies both the Gabor filter bank
and spectral regression to obtain more useful features. Table IV
also shows that SFCM + MLSP has better performances than
MLSP on all tested images because the initialization based
on the result of SFCM prevents, to some extent, contours’
evolution of MLSP from getting stuck into local optimal.

Next, to further highlight the strengths and weaknesses of the
algorithms, eight segmentation maps of 1-look simulated SAR
image are used and shown in Fig. 10. 1-look simulated SAR im-
age has the highest level of noise, so the segmentation results of
eight algorithms on this image vary greatly. Fig. 10(a)–(e) show
that the result of FKP_FCM generates rough edges, but the other
four clustering-based algorithms, which are used for comparing,
generate smooth edges. Because our algorithm segments non-
key pixels based on the clustering results of key pixels, details
of the images, especially edges, are not well preserved by the al-
gorithm; however, the segmentation map of FKP_FCM has the
fewest points wrongly segmented, as shown in Fig. 10(a). The
segmentation result obtained by ILKFCM has smooth edges
and a few limited areas wrongly segmented [see Fig. 10(b)],
but its performance is worse than FKP_FCM in terms of SA
because the use of wavelet makes some pixels in the edge re-
gions wrongly segmented. In addition, Fig. 10(c) shows that the
map of NS_FCM has poor region uniformity and many discrete
parts are wrongly segmented by NSFCM. On the other hand,
the map in Fig. 10(d) shows that CKS_FCM suffers much from
speckle noise. Fig. 10(e) shows that ALFCM yields the worst
segmentation because the simple mean-shift algorithm cannot
obtain the accurate region information from images with serious
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TABLE V
RESULTS ON SIMULATED SAR IMAGES OF SI2

Algorithm 1 look 2 looks 4 looks 6 looks

SA% t/s SA% t/s SA% t/s SA% t/s

ILKFCM [34] 94.24 286 96.42 260 96.60 216 96.55 255
NS_FCM [36] 84.25 240 90.28 125 95.57 100 96.53 84
CKS_FCM [37] 73.79 614 84.65 419 92.59 279 95.80 221
ALFCM [38] 69.24 232 81.34 123 92.18 124 95.74 81
MLSP [46] 96.89 91 97.30 86 98.27 85 98.42 87
KCUSR [47] 96.60 102 98.12 99 98.26 95 98.66 95
SFCM + MLSP 96.29 132 97.58 131 98.03 128 99.08 122
FKP_FCM 97.05 42 98.48 34 98.65 29 98.69 28

noise. Fig. 10(f) and (g) shows that the maps obtained by MLSP
and KCUSR are less affected by the noise (these algorithms are
robust to noise more than clustering-based ones) and edges of
the obtained clustering are reasonably smooth and clear. Actu-
ally, they design to detect the contours of regions by building a
statistic model of the image, but they cannot yield accurate con-
tours on the images polluted with high level of noise. Fig. 10(h)
shows that the result of SFCM + MLSP is similar to (but slightly
better than) the one yielded by MLSP because of incorporating
the fuzzy clustering method.

2) Results on Simulated SAR Images Generated From SI2:
In addition to the previous experiments, we also use the eight
algorithms to segment four simulated SAR images of SI2. We
consider the number of classes to be 4 and use the image in
Fig. 8(b) as the ground truth. The SAs and computation times
obtained by the algorithms are presented in Table V.

The true clustering centers of four simulated SAR images
from SI2 are close and its size is larger than SI1, as shown in
Table III. Hence, SAs and running times of all algorithms on
these images are a bit worse than the ones obtained on images
generated from SI1, as evidenced by Table V. FKP_FCM results
in the highest SA and the shortest times on 1-, 2-, and 4-look
images. Table V shows that SFCM + MLSP has the highest SA
on 6-look image but longer running time, which fully proves that
initial contours are crucial in level-set-based algorithms. The
results in Table V show that ILKFCM segments images well but
it needs much longer computation time for clustering all pixels
in the segmentation process. Results obtained by CKS_FCM
on four images have lower SAs and very long running times
because of the use of the immune clone algorithm. NS_FCM
needs shorter computation times for segmenting those images,
but its running times and SAs are still much worse than the ones
of FKP_FCM. ALFCM results in good SAs on 4-look and 6-look
simulated SAR images while it results in the lowest SAs on other
images. ALFCM uses FCM to initialize the membership matrix,
which accelerates the convergence of the algorithm and results
in shorter running times. MLSP and KCUSR yield promising
results which are even better than the ones of four comparison
clustering-based algorithms in terms of both SA and the running
time. However, the results are not as good as the ones obtained
by FKP_FCM. Fig. 11 shows eight segmentation maps on 1-
look simulated SAR image to more clearly illustrate/compare
their performances.

Fig. 11. Segmentation maps of 1-look simulated SAR image of SI2:
(a) FKP_FCM; (b) ILKFCM [34]; (c) NS_FCM [36]; (d) CKS_FCM [37];
(e) ALFCM [38]; (f) MLSP [46]; (g) KCUSR [47]; and (h) SFCM + MLSP.

The segmentation results of NS_FCM and CKS_FCM have
many points which are wrongly segmented [see Fig. 11(c) and
(d)]. The segmentation map of ILKFCM is a little worse than
the one obtained by FKP_FCM [see Fig. 11(a) and (b)]. Fur-
thermore, ILKFCM wrongly segments many pixels in the ar-
eas close to edges. On the other hand, ALFCM achieves the
worst segmentation result because the mean shift used in this
algorithm is not robust to noise [see Fig. 11(e)]. Although the
maps of MLSP and KCUSR have better regional uniformity
[see Fig. 11(f) and (g)], the obtained maps have inaccurate con-
tours of regions. Despite the help of SFCM [see Fig. 11(h)],
SFCM + MLSP still results in inaccurate contours because of
severe noise. FKP_FCM achieves a better segmentation map
with fewer wrongly segmented points than the ones obtained by
clustering-based algorithms, whereas it detects more accurate
contours than level-set-based algorithms.

3) Results on Simulated SAR Images Generated From SI3:
Simulated SAR images of SI3 are segmented into five regions
(see Table III), and each region has close gray value to oth-
ers. Hence, segmenting these simulated SAR images is very
challenging. We use all the eight algorithms to segment these
images, and Table VI represents the corresponding SAs and
computation times.

Table VI shows that FKP_FCM yields the best results on all
simulated SAR images in terms of SAs and computation times.
The results demonstrate FKP_FCM’s superiority over other al-
gorithms (especially on highly polluted images) because it uti-
lizes local and nonlocal spatial information for segmentation.
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TABLE VI
SIMULATED SAR IMAGES OF SI3

Algorithm 1 look 2 looks 4 looks 6 looks

SA% t/s SA% t/s SA% t/s SA% t/s

ILKFCM [34] 95.77 493 97.18 264 97.31 276 97.27 245
NS_FCM [36] 89.90 77 95.41 65 96.57 62 96.99 67
CKS_FCM [37] 71.26 764 77.62 432 81.63 413 87.24 387
ALFCM [38] 79.41 182 90.33 179 93.84 127 96.35 79
MLSP [46] 92.07 158 94.78 159 94.86 157 95.76 161
KCUSR [47] 95.55 174 95.13 171 95.72 166 95.96 164
SFCM + MLSP 92.51 227 94.45 209 95.54 205 94.63 197
FKP_FCM 97.50 49 98.38 46 98.27 42 98.58 49

Fig. 12. Segmentation maps of 1-look simulated SAR image of SI3:
(a) FKP_FCM; (b) ILKFCM [34]; (c) NS_FCM [36]; (d) CKS_FCM [37];
(e) ALFCM [38]; (f) MLSP [46]; (g) KCUSR [47]; and (h) SFCM + MLSP.

ILKFCM yields good results; nonetheless, it completes the seg-
mentation in times longer than the ones needed by FKP_FCM.
The main factor causing these long computation times is the use
of kernel method and wavelet domain information in ILKFCM
to suppress the effects of speckle noise. NSFCM has promis-
ing segmentation results on all images except 1-look image.
CKS_FCM yields the worst results. Moreover, ALFCM obtains
very poor segmentation of images with serious noise because the
process of generating superpixels is sensitive to noise. Two level-
set algorithms, namely, MLSP and KCUSR, obtained similar
results; but KCUSR uses more information of pixels to achieve
better results. On the other hand, SFCM + MLSP yields SAs
similar to MLSP, but consumes longer times. Fig. 12 shows the
segmentation maps on 1-look simulated SAR image obtained
by all eight algorithms illustrating the performance.

The maps achieved by clustering-based algorithms show that
these algorithms suffer much from noise (see Fig. 12); on
the other hand, maps achieved by level-set algorithms have
inaccurate contours. This demonstrates these algorithms, i.e.,
clustering-based and level-set algorithms, are only capable of
partially addressing issues of SAR image segmentation. In con-
trast, the map achieved by FKP_FCM has fewer points wrongly
segmented than maps achieved by other clustering-based algo-
rithms [see Fig. 12(b)–(e)], and it has more accuracy contours
than maps achieved by level-set algorithms [see Fig. 12(f)–(h)].

The results presented above demonstrate that FKP_FCM out-
performs other seven algorithms in terms of SA and computation
time. For instance, FKP_FCM has better segmentation of SAR
images with severe multiplicative noise because: 1) in the key
pixels’ clustering process, both local and nonlocal spatial infor-
mation are used to reduce the influence of multiplicative noise;
and 2) the multiplicative noise is further suppressed using the
reasonably precise clustering results of key pixels and a robust
similarity metric for segmenting the remaining non-key pix-
els. Nevertheless, FKP_FCM and other algorithms yield similar
segmentation results for SAR images with only a low level of
multiplicative noise, namely, 4-look and 6-look images.

B. Results on Real SAR Images

1) Results on FARMLAND Image: In this section, we use
eight algorithms to segment FARMLAND image where the
number of clusters is considered to be 3. The final segmen-
tation map is demonstrated by three colors, namely, blue, red,
and yellow; every color indicates one type of farmland.

Fig. 13(a) shows the ground truth map of the FARMLAND;
the final segmentation maps obtained by the algorithms are
also shown in Fig. 13(b)–(i). These maps show that FKP_FCM
achieves the best segmentation result on the FARMLAND
image. The segmentation map of NS_FCM shows that many
pixels are wrongly segmented by NSFCM [see Fig. 13(d)]; the
result of CKSFCM is even worse [see Fig. 13(e)]. In contrast,
the noisy limited areas of the map obtained by ILKFCM [see
Fig. 13(c)] are less than the map obtained by CKS_FCM,
NS_FCM, and ALFCM [see Fig. 13(d)–(f)]. The map of
ALFCM wrongly segments many pixels in red and blue regions
and contains a high level of noise [see Fig. 13(f)].

Although the map obtained by MLSP has smooth edges [see
Fig. 13(g)], some contours shown in the ground truth map
[see Fig. 13(a)] are undetected. And it is incapable of suc-
cessfully detecting, especially, the red and blue regions. The
map obtained by KCUSR has clear contours as well as promis-
ing regional uniformity [see Fig. 13(h)]. In addition, it detects
the blue regions better than MLSP because KCUSR executes
an accurate clustering after determining the boundaries [47].
However, KCUSR wrongly assigns yellow segmentation label
to many pixels belonging to the red regions because of noise.
The map obtained by SFCM + MLSP is much better than the
one of MLSP [see Fig. 13(i)] for more accurate contours. Initial-
izing the contour using results of SFCM improves segmentation
ability of MLSP, but some regions are still wrongly segmented
[see Fig. 13(i)]. Using only Fig. 13 as a reference is very hard
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Fig. 13. Segmentation maps of FARMLAND image: (a) Ground truth map;
(b) FKP_FCM; (c) ILKFCM [34]; (d) NS_FCM [36]; (e) CKS_FCM [37];
(f) ALFCM [38]; (g) MLSP [46]; (h) KCUSR [47]; and (i) SFCM + MLSP.

TABLE VII
SEGMENTATION ACCURACY ON REAL SAR IMAGES

Algorithm FARMLAND XIAN MARICOPA TRAUNSTEIN

ILKFCM [34] 0.7049 0.6891 0.3751 0.6003
NS_FCM [36] 0.6851 0.5641 0.5305 0.8782
CKS_FCM [37] 0.6485 0.5229 0.4637 0.4625
ALFCM [38] 0.5648 0.5845 0.4062 0.7317
MLSP [46] 0.5824 0.7151 0.5090 0.8956
KCUSR [47] 0.6290 0.7250 0.5204 0.8943
SFCM + MLSP 0.7536 0.7245 0.5416 0.8984
FKP_FCM 0.7973 0.7595 0.6034 0.8973

to identify the best segmentation map. Therefore, we will later
represent the corresponding SAs for each map in Table VII.

In summary, FKP_FCM has stronger robustness to speckle
noise and it accurately segments the interwoven limited areas
[see Fig. 13(b)], namely, red and blue regions. Nevertheless, the
map of FKP_FCM has rough edges because we segment non-
key pixels based on its neighborhood H rather than clustering.

2) Results on XIAN Image: Next, we use the XIAN image
having four regions shown in the ground truth map in Fig. 14(a)
with four colors: red, yellow, green, and blue. The blue color
indicates the water area, and the other three colors represent
three different types of farmlands. The segmentation maps of
XIAN image obtained by different algorithms are shown in
Fig. 14.

Fig. 14(b) shows that some wrongly segmented points ex-
ist in the segmentation map obtained FKP_FCM. However,
FKP_FCM yields segmentation of the most regions of the XIAN

Fig. 14. Segmentation maps of XIAN image: (a) Ground truth map;
(b) FKP_FCM; (c) ILKFCM [34]; (d) NS_FCM [36]; (e) CKS_FCM [37];
(f) ALFCM [38]; (g) MLSP [46]; (h) KCUSR [47]; and (i) SFCM + MLSP.

image much more accurately than other algorithms. The white
slender limited area in the lower region of the original SAR im-
age [see Fig. 9(b)], which is supposed to be marked green, and its
surrounding farmland, which is supposed to be marked yellow,
should be segmented into two classes. However, only FKP_FCM
successfully segments them and others do not segment them
correctly. As another example, in comparison, clustering-based
algorithms almost wrongly assign green label to the regions that
are supposed to be segmented with yellow color. These evi-
dences indicate that these algorithms, which are used for valida-
tion of our algorithm, have poor ability to distinguish these two
regions. ILKFCM yields a map with better regional uniformity
than FKP_FCM [see Fig. 14(c)] because it uses wavelet decom-
position and kernel function. Nonetheless, it loses many details
of the image. Although NS_FCM retains many details of the
original image [see Fig. 14(d)], it wrongly assigns green label
to some pixels which are supposed to be yellow. It can be seen
in Fig. 14(e) that the result of CKS_FCM algorithm is severely
affected by noise [see Fig. 14(e)]; in this segmented map, most
regions that are supposed to be marked yellow are green. The
segmented map by ALFCM is the worst [see Fig. 14(f)]. In ad-
dition, this algorithm, similar to CKS_FCM, wrongly segments
many regions. MLSP does not yield good segmentation [see
Fig. 14(g)] in comparison with the ground truth [see Fig. 14(a)]
because the energy function of MLSP is not robust to noise. So,
some contours of XIAN image are undetected in the segmented
map [see Fig. 14(g)]. KCUSR also yields a poor segmentation
[see Fig. 14(h)]; it results in inaccurate contours because noise
causes false segmentation of many pixels in the red and yellow
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Fig. 15. Segmentation maps of MARICOPA image: (a) Ground truth map;
(b) FKP_FCM; (c) ILKFCM [34]; (d) NS_FCM [36]; (e) CKS_FCM [37];
(f) ALFCM [38]; (g) MLSP [46]; (h) KCUSR [47]; and (i) SFCM + MLSP.

regions. The poor performance of SFCM + MLSP is also simi-
lar to MLSP [see Fig. 14(i)]; nonetheless, it successfully detects
some red regions in the middle upper part of the image unlike
MLSP.

3) Results on MARICOPA Image: The number of classes
for segmenting MARICOPA image is 4. This image consists of
three kinds of farmlands, shown with yellow, blue, and green
colors, and water pool, shown with blue, in the ground truth
segmented map [see Fig. 15(a)].

FKP_FCM yields nonsmooth edges; meanwhile, a few
wrongly segmented points are contained in the red regions at
the bottom of the map [see Fig. 15(b)]. On the other hand, this
algorithm successfully segments blue and green regions. Next,
ILKFCM assigns wrongly green color to the areas supposed to
be blue [see Fig. 15(c)]; likewise, it marks wrongly the regions
supposed to be red with blue. Although NS_FCM retains many
details of the original image [see Fig. 15(d)], the resulting seg-
mentation map contains many points wrongly segmented; this
makes the segmentation map blurred. CKS_FCM also suffers
from speckle noise seriously, and it wrongly segments the blue
and green regions [see Fig. 15(e)]. The map of ALFCM with
high noise level is similar to that of CKS_FCM [see Fig. 15(f)].
Similarly, ALFCM wrongly segments the red and yellow re-
gions. We can see that the ability of MLSP [see Fig. 15(g)] to
segment red and blue regions is very poor. KCUSR performs
better than MLSP, as shown in Fig. 15(h), due to the use of Ga-
bor filter; contours of the map, however, are not very accurate
because of the heavy noise of MARICOPA image. In Fig. 15(i),
SFCM + MLSP has much better result than the one of MLSP

Fig. 16. Segmentation maps of TRAUNSTEIN image: (a) Ground truth map;
(b) FKP_FCM; (c) ILKFCM [34]; (d) NS_FCM [36]; (e) CKS_FCM [37];
(f) ALFCM [38]; (g) MLSP [46]; (h) KCUSR [47]; and (i) SFCM + MLSP.

due to the initial contours obtained by SFCM, but it still wrongly
segments some blue and red regions.

4) Results on TRAUNSTEIN Image: The size of TRAUN-
STEIN image is 1001 × 779, which is larger than other three
real SAR images; hence, segmenting this image involves much
longer computation time. This image is especially used to fur-
ther confirm the efficiency of our proposed algorithm, namely,
FKP_FCM. TRAUNSTEIN image consists of three different ar-
eas, which are marked with red, blue, and yellow in the ground
truth map [see Fig. 16(a)].The segmentation results yielded by
different algorithms are presented in Fig. 16.

Fig. 16 illustrates that NS_FCM, MLSP, KCUSR, SFCM
+ MLSP, and our algorithm yield reasonably good segmenta-
tion maps. On the other hand, other three algorithms, namely,
ILKFCM, CKS_FCM, and ALFCM, show poor performances
because of the speckle noise [in Fig. 16(c), (e), and (f)]. We can
see in Fig. 16(g), (h), and (i) that MLSP, KCUSR, and SFCM +
MLSP have similar results with clear contours because they ben-
efit from the level-set methods. NS_FCM achieves a promising
segmentation map with some wrongly segmented points [see
Fig. 16(d)]. In contrast, Fig. 16(b) shows that FKP_FCM re-
sults in a number of wrongly segmented red pixels less than the
corresponding map obtained by NS_FCM in the cost of losing
some details.
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TABLE VIII
RUNNING TIMES ON REAL SAR IMAGES

Algorithm FARMLAND XIAN MARICOPA TRAUNSTEIN

ILKFCM [34] 298.3544 s 366.9614 s 652.3885 s 3921.3 s
NS_FCM [36] 168.5366 s 219.2620 s 553.6243 s 4128.6 s
CKS_FCM [37] 817.4360 s 1102.5247 s 2729.5188 s 8467.1 s
ALFCM [38] 112.0980 s 209.7888 s 403.2569 s 4536.9 s
MLSP [46] 74.6680 181.7670 333.0439 s 1010.1 s
KCUSR [47] 82.7761 s 198.5236 s 355.6721 s 1326.7 s
SFCM + MLSP 98.2117 s 221.6559 s 408.9597 s 1112.4 s
FKP_FCM 49.6627 s 56.4470 s 120.9367 s 642.3369s

5) Comparisons of Segmentation Accuracy and Running
Time: Although the segmentation maps of four real SAR images
obtained by all algorithms have been presented in the previous
parts of this section, it is not feasible to quantitatively determine
which one performs best; or one may not identify the algo-
rithm outperforming others if the obtained segmentation maps
are similar. Hence, we computed the SA of the obtained maps
using the ground truth maps; the resulting accuracy values are
presented in Table VII.

Table VII shows that FKP_FCM either achieved the best
SAs in most of the cases or yield SAs very close to the best
SAs for SAR images. This demonstrates the superiority of
FKP_FCM for segmenting SAR images. On the other hand,
SFCM + MLSP has only the best SA on TRAUNSTEIN image
because 1) this algorithm benefits from fuzzy clustering and ac-
tive contour methods and 2) this image has high-resolution and
less noise level. So, this algorithm is the most suitable for seg-
menting this image. Other clustering-based methods have little
lower SAs because they are sensitive to noise. Next, two level-
set-based algorithms have SAs close to the ones of clustering-
based algorithms for segmenting these images because in-
creased noise results in decreased ability to detect contours and
boundaries.

In order to verify the efficiency of our proposed algorithm
for segmenting real SAR images, we represent the computation
times of eight algorithms in Table VIII. These four real SAR
images have different sizes and are subject to different levels of
speckle noise, so necessary computation times for segmenting
them are very different.

The lesson we learn from Table VIII is that CKS_FCM re-
quires the longest computation time because of the use of the
immune clone to find initial cluster centers. The next most time
consuming algorithm for segmenting SAR images is ILKFCM
because it computes features in a wavelet domain. ALFCM
and NS_FCM are faster than CKS_FCM and ILKFCM because
regional information in ALFCM and nonlocal mean filtered im-
age in NS_FCM are computed in advance (i.e., this computation
is not iterative). MLSP and KCUSR are faster than other algo-
rithms except FKP_FCM. They evolve contours iteratively with-
out considering the spatial neighborhood information of each
pixel, which is often utilized in clustering algorithms. SFCM +
MLSP needs longer time to achieve segmentation because this
algorithm needs to execute SFCM to first segment the image to
initialize the contours. In summary, our algorithm is much faster

TABLE IX
CLUSTERING RESULTS ON KEY PIXELS

SI1 SI2

look Number of
key pixels

Number/ratio
of correctly

clustered pixels

look Number of
key pixels

Number/ratio of
correctly

clustered pixels

1 2511 2499/0.9952 1 2855 2798/0.9800
2 2558 2549/0.9965 2 2893 2883/0.9965
4 2549 2544/0.9980 4 2888 2883/0.9983
6 2507 2507/1.0000 6 2814 2811/0.9989

than other seven algorithms for segmenting different real SAR
images because it does not use all the pixels of an image for a
time-consuming clustering process.

The comparison of the segmentation of simulated and real
SAR images obtained by state-of-the-art clustering and level-
set based algorithms demonstrates that our proposed algorithm,
i.e., FKP_FCM, yields high-quality segmentation in a reason-
able time shorter than other algorithms. This shows the effective-
ness of our approach and its superiority over the state-of-the-art
algorithms.

C. Clustering Result on Key Pixels

In this paper, we only cluster key pixels selected according to
the local maximum rule. The clustering result of key pixels de-
termines the final segmentation of the whole image as described
above. Here, we discuss the effectiveness of the fuzzy clustering
method. Eight simulated SAR images generated from SI1 and
SI2 (see Fig. 8) are chosen to test and the results are presented
in Table IX.

It can be seen from Table IX that a single image with different
looks has similar but different key pixels. The reason is that
different looks indicate different level of speckle noise; four
simulated noisy images generated from the same image (SI1
or SI2) are similar but different from each other as shown in
Fig. 8. So, when we select key pixels on these simulated noisy
images, different results will be obtained despite using the same
selection window and the same Gaussian filter. Table IX also
shows that the fuzzy clustering method proposed in this paper
yields very high accuracy on key pixels for segmenting all eight
images. In the 6-look simulated SAR image of SI1, all key pixels
are clustered correctly where the clustering accuracy is equal to
or more than 0.98 for every image of SI2. If the clustering result
of key pixels has high accuracy, the whole image has high SA
and vice versa. The proposed fuzzy clustering method has such
a high accuracy because

1) the number of key pixels is small and they include small
number of noise;

2) nonlocal spatial information can improve the robustness
of clustering to speckle noise; and

3) the influence of speckle noise can be further suppressed
by the log-ratio operator when calculating the weight w.

And if key pixels are properly segmented, the majority of
non-key pixels can also be correctly segmented.
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Fig. 17. Times used in FKP_FCM.

D. Study on Time Complexity

According to the argument presented in the previous
sections, FKP_FCM achieves good segmentation of SAR
images in a reasonable short time mainly because we apply
the time-consuming clustering only on a small number of key
pixels. Hence, a large number of non-key pixels are segmented
quickly based on the clustering result of key pixels. To further
analyze the computation time of FKP_FCM, four simulated
SAR images generated from SI1 are used for testing. Fig. 17
shows the times used for segmenting key and non-key pixels as
well as the total running time.

The time used for clustering the key pixels accounts for about
80% of the total running time (see Fig. 17) and the time taken
for segmenting the non-key pixels is about 20%. If the size of
selection window N is 3 × 3, the number of key pixels is about
5% of the number of total pixels. So, we use a time-consuming
method to accurately segment a small number of key pixels and
use a fast method to segment a large number of non-key pixels.
Then, an accurate segmentation result on SAR image can be
quickly obtained.

The experimental results show the effectiveness of our ap-
proach for segmenting different SAR images. Moreover, they
illustrate the superiority of our approach over state-of-the-art
algorithms.

V. CONCLUSION

This paper has presented a fast and unsupervised algorithm
for segmenting SAR images by only clustering a small number
of key pixels. In contrast to the state-of-art clustering methods
for segmenting SAR images, our proposed algorithm, called
FKP_FCM, at first selects a small number of special pixels as
key pixels which are then clustered at low-computational cost
using fuzzy clustering based on nonlocal information. Next, the
segmentation of all remaining non-key pixels is achieved using
both the segmentation results of the key pixels and a robust
similarity metric. We have demonstrated the effectiveness of
our algorithm via a variety of experiments using 12 simulated
noisy SAR images (generated from three synthetic images) and

four real SAR images. We validated our proposed approach
by comparing the results obtained by our algorithm with the
results obtained by seven other state-of-the-art segmentation al-
gorithms from recent literature. The experimental results show
that our algorithm outperforms the state-of-the-art segmenta-
tion algorithms in terms of SA and computation time. Although
our algorithm is very efficient in segmenting SAR images, the
size of neighborhood window H must be set manually in or-
der to achieve a good balance between suppressing noise and
preserving details of the original image. Future work will focus
on improving the algorithm in terms of preserving edges and
other details of the original image, and the level-set methods
may offer a potential way forward.
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