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Traditional unsupervised feature selection methods usually construct a fixed similarity matrix. This
matrix is sensitive to noise and becomes unreliable, which affects the performance of feature selection.
The researches have shown that both the global reconstruction information and local structure informa-
tion are important for feature selection. To solve the above problem effectively and make use of the global
and local information of data simultaneously, a novel algorithm is proposed in this paper, called subspace
learning for unsupervised feature selection via adaptive structure learning and rank approximation
(SLASR). Specifically, SLASR learns the manifold structure adaptively, thus the preserved local geometric
structure can be more accurate and more robust to noise. As a result, the learning of the similarity matrix
and the low-dimensional embedding is completed in one step, which improves the effect of feature selec-
tion. Meanwhile, SLASR adopts the matrix factorization subspace learning framework. By minimizing the
reconstruction error of subspace learning residual matrix, the global reconstruction information of data is
preserved. Then, to guarantee more accurate manifold structure of the similarity matrix, a rank constraint
is used to constrain the Laplacian matrix. Additionally, the l2,1/2 regularization term is used to constrain
the projection matrix to select the most sparse and robust features. Experimental results on twelve
benchmark datasets show that SLASR is superior to the six comparison algorithms from the literature.

� 2020 Published by Elsevier B.V.
1. Introduction

In machine learning, pattern recognition, data mining, and
other areas, data often has high dimensionality [1,2]. How to deal
with high-dimensional data efficiently and improve the efficiency
of learning algorithms is a difficult task. As noise and redundant
features are inevitable, the efficiency of data processing is reduced.
And only a small number of features are discriminative and impor-
tant, so it is necessary to reduce the dimension of data [3,4]. The
commonly used dimensionality reduction techniques include fea-
ture extraction and feature selection [5,6]. Feature extraction finds
a low-dimensional subspace based on a projection so that the orig-
inal data can be well represented [7,8]. Feature selection selects a
representative feature subset from the feature set to represent the
original data [9]. Compared with feature extraction, feature selec-
tion preserves the semantic information of the original features,
thus improving the interpretability of the corresponding models
[10,11].

Generally, feature selection algorithms can be divided into three
categories: supervised, semi-supervised and unsupervised feature
selection algorithms [12,13]. Supervised feature selection methods
require the class labels of samples, but marking a large amount of
data requires high labor costs [14]. The semi-supervised feature
selection methods use both labeled and unlabeled samples to
select the discriminative features [15,16]. In unsupervised feature
selection, the intrinsic information of data is used to select features
without any class information [17]. In real-world applications, the
class labels of dattrima are often unavailable, so the unsupervised
feature selection algorithms show great advantages. According to
different search strategies, feature selection methods include three
categories, namely filter, wrapper and embedded methods [18].
The filtering methods use the intrinsic properties of data to evalu-
ate the importance of features [19]. The wrap methods rely on
specific learning algorithms to select features [20,21]. For embed-
ded methods, a model should be built and feature selection is com-
pleted during the learning process of this model [22]. The filter
methods have low time cost. The wrapped methods can achieve
great effectiveness, but the time cost is relatively high. The embed-
ded methods can achieve great performance with low time cost.
Therefore, we propose a novel embedded unsupervised feature
selection algorithm in this paper.

Subspace learning can obtain the low-dimensional representa-
tion of the original data, and can be applied to feature selection
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methods by using the matrix decomposition strategy. In [23], the
matrix factorization feature selection (MFFS) method is proposed.
This method applies the matrix decomposition strategy to the sub-
space learning framework, so the subspace spanned by feature
subset can well characterize the subspace spanned by feature set.
Then, unsupervised feature selection via maximum projection
and minimum redundancy (MPMR) is proposed in [24]. In this
approach, feature subset is well evaluated and the low redundancy
of the selected features is guaranteed. The two methods mentioned
above use the matrix factorization technique to select a represen-
tative feature subset to obtain good feature selection performance,
but they both neglect the local manifold structure of data. On the
contrary, the local information of data is fully considered in the
SLASR proposed in this paper. And the manifold structure can be
learned adaptively, so the performance of feature selection is
improved.

Researches have shown that high-dimensional data often con-
tains important manifold structures. And making use of the local
geometric structures can improve the nonlinear learning perfor-
mance of algorithms. Many manifold learning algorithms, such as
Local Linear Embedding (LLE) [25], Laplacian Eigenmap (LE) [26],
and Locality Preserving Projections (LPP) [27] have been proposed
to preserve the local structures of data into low-dimensional
embedding. Many classic manifold structure preservation feature
selection methods have been proposed, such as Laplacian Score
(LapScor) [21], spectral feature selection (SPEC) [28], unsupervised
discriminant feature selection (UDFS) [29], multi-clustering fea-
ture selection (MCFS) [14], joint embedding learning and sparse
regression (JELSR) [30] and Non-negative spectral learning and
sparse regression-based dual-graph regularized feature selection
(NSSRD) [4]. For MCFS, JELSR and NSSRD, they first construct the
similarity matrix to preserve the manifold structures, and then
learn the low-dimensional embedding to select features. As this
process is completed in two steps, so it is difficult to obtain the
optimal results. In order to obtain more accurate manifold infor-
mation, unsupervised feature selection with structured graph opti-
mization is proposed in [31]. In this method, the similarity matrix
can be learned adaptively, so manifold structures can be well pre-
served. Then l2 1-norm is used to constrain the transformation
matrix to select the representative features, so SOGFS can obtain
good feature selection effectiveness. However, this algorithm still
has some inadequacies. Although the manifold structures can be
well preserved, the global reconstruction information of data is
not considered. In other words, the selected features cannot recon-
struct the feature set of the original data well, so the effect of fea-
ture selection needs to be improved.

In this paper, we propose a novel algorithm called subspace
learning for unsupervised feature selection via adaptive structure
learning and rank approximation (SLASR). Inspired by the method
in unsupervised feature selection with structured graph optimiza-
tion (SOGFS), SLASR constructs an adaptive similarity matrix, so
the manifold structure can be learned adaptively during the itera-
tion process, making the manifold structure more accurate and the
similarity matrix more robust to noise. Additionally, SLASR not
only preserves the local structure information, but also retains
the global reconstruction information of data by using the sub-
space learning framework. By minimizing the reconstruction error
of subspace learning residual matrix, the subspace spanned by the
selected feature subset can well characterize the subspace spanned
by the original feature set, resulting in more accurate reconstruc-
tion information of data. Since SOGFS ignores the global informa-
tion of data, the feature selection performance is reduced. In
contrast, SLASR makes full use of the advantages of SOGFS on the
one hand, and makes up for its shortcomings effectively by using
the subspace learning framework on the other hand, so SLASR
can obtain better feature selection effect. Then, since the original
data has class c samples, they can be clustered into c categories.
To make the manifold structure more accurate, the rank constraint
is used to guarantee that the similarity matrix contains c connected
components. Compared with l2, 1-norm, l2,1/2 regularization term
can select the most sparse and robust features, so we apply this
term to SLASR to improve the effect of feature selection. We pre-
sent efficient iterative update rules and evaluate the importance
of different features according to the matrix W. Then we perform
clustering for the selected features. By comparing SLASR with six
comparison algorithms, the experimental results on twelve data-
sets show that SLASR achieves better performance.

The novelties and contributions are highlighted as follows:

1) An adaptive similarity matrix is constructed under the
framework of subspace learning. Thus, the manifold struc-
ture can be updated adaptively in the learning process of
low-dimensional embedding, and the local structure infor-
mation can be well preserved. By using the subspace learn-
ing framework, the global reconstruction information of data
can also be retained.

2) The rank constraint is used to constrain the Laplacian
matrix. Since this constraint guarantees that the similarity
matrix contains c connection components, the learned man-
ifold information will be more accurate.

3) The projection matrix is constrained by l2, 1/2 regularization
term. By using this term, the most sparse and robust features
are selected.

The rest of this paper is organized as follows. In Section 2, we
introduce the related work of the proposed algorithm. And in Sec-
tion 3, we present the proposed SLASR, give the iterative updating
formulas and computational complexity analysis. Then, we
demonstrate the convergence of SLASR. In Section 4, we present
the experimental results of SLASR and compare SLASR with other
algorithms. Then in Section 5, we summarize the whole paper.

2. Related work

The related notations and the related researches of the pro-
posed SLASR are introduced in this section. First, some related
notations used in SLASR are presented, then a brief introduction
to the framework of subspace learning and the probabilistic
neighbors-based manifold structure preservation strategy are
given.

2.1. Related notations

Some related notations are listed in this section. Here, scalars,
vectors, and matrices are represented as italic letters, italic bold
lowercase letters, and italic bold uppercase letters, respectively.
Suppose X ¼ ½x1T ; x2T ; :::; xnT � 2 Rn�d is the original data matrix,
where xi 2 Rd�1 represents a data sample, n is the total number
of samples, and d is the number of features contained in each sam-
ple. For the given square matrixM, Tr(M) represents the trace ofM.
The fr-norm of vector x 2 Rd is defined as:

k x kr ¼
Xd
i¼1

xij jr
 !1=r

ð1Þ

where xi is the ith element of the vector x. For the matrix X 2 Rn�d,
its lp-norm is defined as follows:

k X kp ¼
Xn
i¼1

Xd
j¼1

Xij

�� ��p !1=p

ð2Þ
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Its lp,q-norm has the following form:

k X kp;q ¼
Xn
i¼1

Xd
j¼1

Xij

�� ��p !
q=p

 !1=q

ð3Þ

where Xij represents the element of the ith row and the jth column
of the matrix X. In this paper, the importance of different features
can be evaluated by calculating f2-norm for each row of the projec-
tion matrix. When p = 2, q = 1/2, the l2-norm of the subspace learn-
ing residual matrix and the l2,1/2 regularization term for
constraining the projection matrix can be obtained.

2.2. The framework of subspace learning

In order to characterize the subspace spanned by the original
feature set using the subspace spanned by the feature subset,
Wang et al. proposed MFFS [23] by applying the matrix factoriza-
tion strategy to the measurement of subspace distance. And in
[32], Zhou et al. gave a more complete description of the MFFS
framework, which can be expressed as follows:

arg min
W;H
k X - XWH k22

s:t: W 2 f0;1gd�l; WT1d�1 ¼ 1l�1; kW1l�1 k0 ¼ l:
ð4Þ

where X 2 Rn�d is the original data matrix, of which each row rep-
resents a data sample, and each column represents a feature. l is the
number of the selected features. H 2 Rl�d denotes a coefficient
matrix and can be used to reconstruct the original feature set. W
is the feature selection matrix, indicating that l representative fea-
tures can be selected from d features. For the matrix W, only 0–1
elements can be taken. And the constraints above guarantee W
can play a role. Specifically, expression WT1d�1 ¼ 1l�1 indicates that
each column of the matrix W has only one 1 element, and the other
elements are all zero. Since 1 element of different columns may
arise in the same row, at most l features can be selected. The expres-
sion kW1l�1 k0 ¼ l indicates that the matrixW has l non-zero rows,
so each feature can only be selected once. Finally, exact l features
can be selected.

2.3. The probabilistic neighbors-based manifold structure preservation
strategy

High-dimensional data often contains important local structure
information, which can improve the nonlinear learning ability of
algorithms. In recent years, local structure preservation strategy
has been applied to feature selection. To preserve the manifold
structure, a fixed similarity matrix can be constructed. Since noise
is unavoidable in practical scenarios, to make the preserved man-
ifold structure more accurate and guarantee the robustness to
noise, Nie et al. introduced a probabilistic neighbors-based mani-
fold structure preservation method [31], which can be described
as follows:

Denote X 2 Rn�d as a data matrix, and x 2 Rd�1 as a data sample.
According to the method in [31], define zij as the probability that
the sample xi is connected to the jth sample. Since similar samples
have a greater probability of being interconnected, zij is inversely
proportional to the distance between the samples. The square of
the Euclidean distance can be used as the distance metric. To get
the value of zij, the following expression should be solved:

min
zT
i
1¼1;06zij61

X
i;j

k xi � xj k22zij þ az2ij
� �

ð5Þ

Since the connection probability of two samples can measure
the similarity between them, zij can be regarded as the element
of the ith row and the jth column of the similarity matrix Z. In
Eq. (5), zi represents the ith column of the similarity matrix. a is
a regularization term parameter, which is necessary and prevents
the trivial solution from the Eq. (5).
3. The proposed method

In this section, we introduce the proposed SLASR. SLASR mainly
consists of three parts: sparse and robust subspace learning, adap-
tive manifold structure preservation and feature selection. Then
we provide the updating formulas, computational complexity anal-
ysis, and convergence proof of SLASR.
3.1. Sparse and robust subspace learning

Since the issue of Eq. (4) is a combinatorial optimization prob-
lem, it is difficult to solve. To deal with this issue efficiently, Eq.
(4) can be relaxed to a continuous optimization problem [32]. In
general, since the number of selected features l is much smaller
than the feature dimension d, the feature selection matrix W is

sparse and has many zero values. So the constraint W 2 f0;1gd�l
can be relaxed to a non-negative constraint. And the hard con-
straints WT1d�1 ¼ 1l�1; kW1l�1 k0 ¼ l can be relaxed to h Wð Þ 6 l,
which can be used to measure the sparsity of rows. Based on the
above analyses, Eq. (4) can be relaxed as the following form:

arg min
W;H
k X - XWH k22 þ c1h Wð Þ

s:t: W 2 Rd�K
þ

ð6Þ

For h Wð Þ, traditional methods usually select the group lasso,
thus h Wð Þ ¼ kW k2;1. Recently, researches have shown that l2,1/2
regularization term can obtain great performance. For l2,1/2 regular-
ization term, Wang et al. [33] proposed l2,p matrix pseudo norm
based least square regression feature selection framework. To ver-
ify the effectiveness of the proposed algorithm, the variable p is
adjusted in the range of [0, 1]. And the experimental results show
that when p takes 1/2, the algorithm achieves the lowest classifica-
tion error rate on all test datasets when the number of selected fea-
tures is different, which fully demonstrates that the l2,1/2
regularization term can select the discriminative and robust
features.

Additionally, to observe the sparsity of l2,1/2 regularization term
intuitively, here we presented the contour maps [34] of l2,2-norm,
l2,1-norm, and l2,1/2 regularization term, as shown in Fig. 1.

It can be seen from Fig. 1 that l2,1/2 regularization term tends to
obtain sparser results than l2,2-norm and l2,1-norm during the opti-
mization process, so the sparsity can be improved by using this
regularization term.

Benefiting from the robustness and sparsity of l2,1/2 term, the
matrix W is constrained by this term and the following formula
is obtained:

h Wð Þ ¼ kW k1=22;1=2 ð7Þ
Substituting Eq. (7) into Eq. (6), we get:

arg min
W;H
k X - XWH k22 þ c1kW k1=22;1=2

s:t: W 2 Rd�K
þ

ð8Þ

where c1 is a balance parameter, and Rd�K
þ is the set of matrices

with dimension d � K. Now W is regard as a projection matrix,
and K is the dimension of the subspace. The subspace dimension
K is not always equal to the number of selected features l [32]. In
order to complete feature selection more effectively under the sub-
space learning framework, it is usually set K P l.



Fig. 1. The contour maps of l2,2-norm, l2,1-norm, and l2,1/2 regularization term.
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3.2. Adaptive manifold structure preservation

Since the fixed similarity matrix is sensitive to noise, an adap-
tive manifold structure preservation strategy is adopted in this sec-
tion to preserve the manifold structure which is robust to noise.
Through the Eq. (5), the similarity matrix Z can be defined. Denote
c as the number of sample categories. For the matrix Z, it is
expected to contain c connected components to retain a more
accurate manifold structure. However, it is difficult to get a similar-
ity matrix with c connection components directly. Researches have
shown that when the following rank constraint is applied to the
Laplacian matrix LZ [35], the similarity matrix will satisfy the
above condition:

rank(LZ) = n-c (9)
For the obtained similarity matrix Z, the Laplacian matrix LZ is

defined as follows:

LZ ¼ D� ZT þ Z
2

ð10Þ

where D is a diagonal matrix and the ith element of the diagonal is

defined as
P

j
zijþzjið Þ

2 .
Then, the ith smallest eigenvalue of the Laplacian matrix LZ is

defined as riðLZÞ. Since the matrix LZ is semi-definite, all its eigen-
values are greater than or equal to zero. It can be proved that the
Eq. (9) is equivalent to the following equation:

Xc
i¼1

ri LZð Þ ¼ 0 ð11Þ

where c is the number of categories of samples. Since Eq. (11) is dif-
ficult to solve, the following formulas can be obtained based on Ky
Fan’s theory [36]:

Pc
i¼1
ri LZð Þ ¼min Tr GTLZG

� �
s:t: G 2 Rn�c;GTG ¼ I

ð12Þ

To guarantee that the constructed similarity matrix has c con-
nected components, the Eqs. (5) and (12) are combined to obtain
the following expression:

min
P
i;j
k xi � xj k22zij þ az2ij
� �

þ 2kTrðGTLZGÞ

s:t: 8i; zTi 1 ¼ 1;0 6 zij 6 1;G 2 Rn�c;GTG ¼ I
ð13Þ

Since the item Tr(GTLZG) should be close to zero, the parameter
k should be set large enough. In the updating process of the simi-
larity matrix Z, if the number of connected components is less than
c, the parameter k should be increased, otherwise it should be
decreased. In this paper, the parameter k is adjusted adaptively
and is set to 2 times and 1/2 times of the original value when k
needs to be increased and decreased, respectively. By solving Eq.
(13), the similarity matrix Z which has c connected components
can be obtained, preserving the manifold structure information
more accurately.

S 2 Rd�m is defined as the projection matrix, where d is the total
number of features and m is the dimension of the low-dimensional
embedding. It is clear that XS is the obtained low-dimensional
embedded matrix. In order to preserve the manifold structure of
high-dimensional data into low-dimensional embedding, the orig-
inal data in Eq. (13) is replaced with low-dimensional embedding.
And the obtained expression is as follows:

min
P
i;j
k STxi � STxj k22zij þ az2ij
� �

þ 2kTrðGTLZGÞ

s:t: 8i; zTi 1 ¼ 1;0 6 zij 6 1;G 2 Rn�c;GTG ¼ I; STS ¼ I
ð14Þ

Comparing Eqs. (13) and (14), it can be seen that the neighbor
information of xi and xj of the original samples has been preserved
into low-dimensional embeddings STxi and STxj. Meanwhile, the
orthogonal constraint STS = I is applied to the projection matrix in
the above formula, which can make the feature space more dis-
criminative after dimension reduction [31]. In the formula above,
the similarity matrix Z and the projection matrix S can be learned
in a single step, which means that manifold learning and feature
selection can be performed simultaneously. Thus, better perfor-
mance can be obtained.

3.3. The framework of SLASR

To preserve the local structure while retaining the global recon-
struction information of data, we set m = K. Where m is the dimen-
sion of low-dimensional embedding and K is the dimension of
subspace. So the projection matrix W and the projection matrix S
are unified. Then Eqs. (8) and (14) are combined and the obtained
objective function of SLASR is as follows:

arg min
W;H;Z;G

bk X - XWH k22 þ 1
2

P
i;j
kWTxi �WTxj k22zij þ az2ij
� �

þ kTrðGTLZGÞ þ ckW k1=22;1=2 þ l
2 kWTW � I k22

s:t: 8i; zTi 1 ¼ 1;0 6 zij 6 1;G 2 Rn�c;GTG ¼ I;W P 0;H P 0

ð15Þ
where b > 0; c > 0, and l > 0 are the balance parameters.

3.4. Feature selection

After solving the objective function of SLASR, the projection
matrix W can be obtained, where W ¼ w1;w2; . . . ;wd½ �, and wi is
the ith row of W. Then the value of jjwijj2 is calculated, which
can be used to evaluate the importance of the ith feature. And
the larger the value of jjwijj2, the more important the ith feature
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is. Then all the values of jjwijj2 are sorted in descending order and
the corresponding first l features are selected to construct a new
data matrix Xnew 2 Rn�l to complete the feature selection.

3.5. Connection with SOGFS

As can be seen from Eq. (15), when removing the term of the
subspace learning residual matrix, using l2,1-norm to replace l2,1/2
regularization term to constrain the projection matrix W, and
removing the non-negative constraints imposed on the matrices
W and H, SLASR degenerates into SOGFS. The objective function
of SOGFS is as follows:

arg min
W ;Z;G

P
i;j
kWTxi �WTxj k22zij þ az2ij
� �

þ 2kTrðGTLZGÞ

þckW k2;1 þ l
2 kWTW � I k22

s:t: 8i; zTi 1 ¼ 1;0 6 zij 6 1;G 2 Rn�c;GTG ¼ I

ð16Þ
3.6. Update rules for SLASR

The update rules of the objective function in Eq. (15) is given in
this section. Since it contains four variables W, H, Z, and G, it is dif-
ficult to solve this objective function directly. Therefore, the alter-
nating iterative update method is used to solve this problem [37].
Two Lagrange multipliers wij and /ij are introduced to guarantee
W P 0 and H P 0. First, only the terms related to W and H in Eq.
(15) are preserved. By applying the Lagrange multipliers, the fol-
lowing equation can be obtained:

L W;Hð Þ ¼ bk X - XWH k22 þ
1
2

X
i;j

kWTxi �WTxj k22zij þ ckW k1=22;1=2

þ l
2
kWTW � I k22 þ Tr wWT

� �
þ Tr /HT

� �
ð17Þ

A diagonal matrix is first defined and its ith element is as
follows:

Uii ¼ 1

max k wi k3=22 þ e
� � ð18Þ

where e is a small constant and can avoid the denominator being
zero.

By using the matrix U, kW k1=22;1=2 can be rewritten as

Tr WTUW
� �

. So Eq. (17) can obtain the following form:

L W;Hð Þ¼bTr X - XWHð Þ X - XWHð ÞT
� �

þTr WTXTLZXW
� �

þcTr WTUW
� �

þ l
2Tr WTW� IK

� �
WTW� IK
� �T� �

þTr wWT
� �

þTr /HT
� �

ð19Þ
The matrices H and U in Eq. (19) are first fixed to update W. By

taking the partial derivative of Eq. (19) with respect to W, the
following formula can be obtained:

@L
@W
¼ 2b XTXWHHT � XTXHT

� �
þ 2XTLZXW þ 2cUW

þ 2l WWTW �W
� �

þ w ð20Þ

By using the Karush–Kuhn–Tucker (KKT) conditions [38]
wijWij ¼ 0, the obtained formula is as follows:

b XTXWHHT � XTXHT
� �

þ XT D� Zð ÞXW
h
þ cUW þ l WWTW �W

� �i
ij
Wij ¼ 0 ð21Þ
Thus, the update rule for W is as follows:

Wij  Wij

bXTXHT þ XTZXW þ lW
h i

ij

bXTXWHHT þ XTDXW þ cUW þ lWWTW
h i

ij

ð22Þ

Then, the matricesW and U in Eq. (19) are fixed to update H. By
taking the partial derivative of Eq. (19) with respect to H, the fol-
lowing formula can be obtained:

@L
@H
¼ 2b WTXTXWH �WTXTX

� �
þ / ð23Þ

By using the Karush–Kuhn–Tucker (KKT) conditions /ijHij ¼ 0,
the obtained formula is as follows:

b WTXTXWH �WTXTX
� �h i

ij
Hij ¼ 0 ð24Þ

So the update rule for the matrix H is as follows:

Hij  Hij

WTXTX
h i

ij

WTXTXWH
h i

ij

ð25Þ

Then, the items related to G in Eq. (15) are preserved and the
following formula can be obtained:

arg min
G

TrðGTLZGÞ
s:t: G 2 Rn�c;GTG ¼ I

ð26Þ

It is obvious that the optimal solution G in above formula con-
sists of the feature vectors corresponding to the c smallest eigen-
values of the Laplacian matrix LZ.

In order to calculate the matrix Z, the terms related to Z in Eq.
(15) is preserved. The obtained formula is as follows:

arg min
Z

P
i;j
kWTxi �WTxj k22zij þ az2ij
� �

þ 2kTrðGTLZGÞ

s:t: 8i; zTi 1 ¼ 1;0 6 zij 6 1;G 2 Rn�c;GTG ¼ I
ð27Þ

By using the spectrum theory, the following formula can be
obtained:X
i;j

k gi � gj k22zij ¼ 2Tr GTLZG
� �

ð28Þ

where gi is the ith row of the matrix G. By substituting Eq. (28) into
Eq. (27), the following expression can be obtained:

arg min
Z

P
i;j
kWTxi �WTxj k22zij þ az2ij
� �

þ k
P
i;j
k gi � gj k22zij

s:t: 8i; zTi 1 ¼ 1;0 6 zij 6 1;G 2 Rn�c;GTG ¼ I

ð29Þ
For each sample, we need to find its similarity vector. And the

similarity vectors of different samples are independent to each
other. For a single sample, the following problem should be solved:

arg min
Z

P
j
kWTxi �WTxj k22zij þ az2ij
� �

þ k
P
j
k gi � gj k22zij

s:t: zTi 1 ¼ 1;0 6 zij 6 1;G 2 Rn�c;GTG ¼ I

ð30Þ
A matrix R 2 Rn�n is defined and rij represents the element of

the ith row and the jth column of the matrix R. And the equation

rij ¼ kWTxi �WTxj k22 holds. Then, a matrix T 2 Rn�n is defined
and tij represents the element of the ith row and the jth column

of the matrix T. And the equation tij ¼ k gi � gj k22 holds. We write

ei 2 Rn�1 and there is eij ¼ rij þ ktij, then Eq. (30) can be written
as follows:
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min k zi þ 1
2a ei k

2
2

s:t: zTi 1 ¼ 1;0 6 zij 6 1
ð31Þ

It can be seen that Eq. (31) is easy to solve. According to [31],
the parameter a controls the number of neighborhood samples.
The vector zi will contain only one non-zero element when
a! 0, and the values of all elements in vector zi will be 1=n when
a!1. To make the vector zi contain exactly k non-zero elements
when the subscript i takes different values, according to the con-
clusion in [31], the value of a is set as follows:

a ¼ 1
n

Xn
i¼1

ai ¼ 1
n

Xn
i¼1

k
2
ei;kþ1 � 1

2

Xk
j¼1

eij

 !
ð32Þ

Based on the above analyses, the optimization process of SLASR
is summarize in Table 1.

3.7. Computational complexity analysis

In this section, we analyze the time and space complexity of
SLASR. First, we give the time complexity of SLASR. Where n and
d represent the number of samples and features, respectively, c
represents the number of sample categories, and NIter is the max-
imum number of iterations. In each iteration, to update the similar-
ity matrix Z and the matrix G, the computational complexity is
O c þ nð Þn2
� �

. To update the matrices U, W, and H, the time cost is
O dn dþ nð Þð Þ. Since SLASR iterates NIter times, the total complexity

is O NIter cnþ n2 þ dnþ d2
� �

n
� �

. For the proposed SLASR, the space

complexity of allocating storage space for parameter variables in
the parameter list is O ndð Þ, and the space complexity for defining

local variables in sub functions is O n2 þ d2 þ n dþ cð Þ
� �

. So the

total space complexity is O n2 þ d2 þ n dþ cð Þ
� �

.

3.8. Convergence analysis

Here, we demonstrate the convergence of SLASR. Since Eqs. (26)
and (31) have closed form solutions, the convergence of SLASR
under the update rules of variables W and H is demonstrated. Sim-
ilar to the method in [4,9], the convergence of SLASR under the
variable H is first proved.
Table 1
The procedure of SLASR.

Input: Data matrix X 2 Rn�d; maximum number of iterations NIter;
balance parameters b; c; l; a large enough number k; number of sample
categories c; dimension of the subspace K; number of selected features l.

Output: Index set of the selected features I; new data matrix Xnew 2 Rn�l.
Initialize the matrix W with the matrix of all 1 elements. Initialize the
matrix H into a cluster indicator matrix by using the k-means clustering
algorithm.
Initialize the similarity matrix Z by solving Eq. (5), and obtain the Laplace
matrix LZ.
Initialize the matrix G by solving Eq. (26).
Calculate the vector zi and update the similarity matrix Z by solving the
Eq. (31).
Update the matrix G by solving Eq. (26), and the matrix G consists of the
eigenvectors corresponding to the c smallest eigenvalues of LZ.
Update the matrices U, W, and H according to the update rules in Eqs.
(18), (22), and (25).
Repeat the steps 4, 5, and 6 until the maximum number of iterations is
satisfied.
Calculate all the values of jjwijj2when the subscript i varies and sort these
values in descending order. Then select the features corresponding to the
first l evaluation values. Then the index set I of the selected features and a
new data matrix Xnew 2 Rn�l can be obtained to complete feature
selection.
Definition 1.. Given a function J(h, h0), if C(h) satisfies the
following condition:

J h; h0
� �

P C hð Þ; J h;hð Þ ¼ C hð Þ ð33Þ

Then C is non-increasing under the update rule of Eq. (34):

h tþ1ð Þ ¼ arg min
h

J h;hðtÞ
� �

ð34Þ

where J(h,h0) is an auxiliary function of C(h).

Proof. By retaining the terms of the variable H in the objective
function (15), the following function is obtained:

C Hð Þ ¼ bTr X - XWHð Þ X - XWHð ÞT
� �

ð35Þ

The following formulas can be obtained by taking the first-order
and the second-order partial derivatives of C(H) with respect to H:

Cij
0 ¼ @C

@H

	 

ij
¼ 2b WTXTXWH �WTXTX

� �h i
ij

ð36Þ

Cij
00 ¼ 2bWTXTXW

h i
ii

ð37Þ

Lemma 1: Giving the auxiliary functions of Cij, which is as
follows:

J Hij;Hij
tð Þ

� �
¼ Cij Hij

tð Þ
� �

þ Cij
0 Hij

tð Þ
� �

Hij � Hij
tð Þ

� �

þ
bWTXTXWH tð Þ
h i

ij

Hij
tð Þ Hij � Hij

tð Þ
� �2

ð38Þ

Denoting the Taylor expansion of CijðHijÞ as follows:

Cij Hij
� � ¼ Cij Hij

ðtÞ
� �

þ Cij
0 Hij

ðtÞ
� �

Hij � Hij
ðtÞ

� �
þ bWTXTXW
h i

Hij � Hij
ðtÞ

� �2
ð39Þ

It can be seen from Eqs. (38) and (39) that J Hij;Hij
tð Þ

� �
P CijðHijÞ

is equivalent to:

bWTXTXWH tð Þ
h i

ij

Hij
tð Þ P bWTXTXW ð40Þ

And it is obvious that:

bWTXTXWH tð Þ
h i

ij
¼
XK
b¼1

bWTXTXW
h i

ib
Hbj

tð Þ

P bWTXTXW
h i

ii
Hij
ðtÞ ð41Þ

So inequality (40) holds, that is, J Hij;Hij
tð Þ

� �
P CijðHijÞ holds.

And it can be seen that equation J Hij;Hij
� � ¼ Cij Hij

� �
holds.

Then, we prove that the update rule of variable H satisfies the
update formula (34) that makes Cij non-increasing.

By substituting J Hij;Hij
tð Þ

� �
in Eq. (38) into Eq. (34), the follow-

ing formula can be obtained:

Hij
tþ1ð Þ ¼ Hij

tð Þ � Hij
tð Þ Cij

0 Hij
tð Þ

� �
2 bWTXTXWH tð Þ
h i

ij

ð42Þ

Substituting Eq. (36) into Eq. (42) presents the following
expression:



Table 2
The information of thirteen datasets.

Dataset Size Dim Classes Type

Ionosphere 351 34 2 Text image
JAFFE 213 676 10 Face image
Umist 575 644 20 Face image
Lung_dis 73 325 7 Biological
YaleB 2414 1024 38 Face image
COIL20 1440 1024 20 Digital image
ORL 400 1024 40 Face image
TOX_171 171 5748 4 Biological
Isolet 1560 617 26 Letter image
AR10P 130 2400 10 Face image
Usps 9298 256 10 Digital image
Orlraws 100 10,304 10 Face image
AT&T 400 10,304 40 Face image
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Hij
ðtþ1Þ ¼ Hij

ðtÞ
WTXTX
h i

ij

WTXTXWH tð Þ
h i

ij

ð43Þ

It can be seen that Eq. (43) is the update rule of variable H.
Therefore, it can be concluded that the objective function is non-
increasing under the update rule (25). It can also be proved that
the objective function is non-increasing under the update rule of
variable W. So the objective function in Eq. (15) is non-increasing
under the update rules (22) and (25).

4. Experiments

In this section, we test the performance of SLASR and six com-
parison algorithms. The k-means [39,40] method is used to mea-
sure the performance of feature selection algorithms. The
effectiveness of SLASR is verified, and the experimental results
are given and analyzed. Then, the parameter sensitivity and the
convergence of SLASR are presented.

4.1. Datasets

Thirteen test datasets are used in this experiment. And these
datasets can be divided into four categories, including face image,
text image, digital image, and biological image [41,42]. The
detailed information of datasets is shown in Table 2.

4.2. Comparison algorithms

To test the performance of the proposed SLASR, six comparison
algorithms are used in this paper:

1) Baseline: Performing clustering operation on all features
directly without feature selection.

2) LapScor: Laplacian Score [21] makes use of the local mani-
fold structure of data to calculate the feature scores to select
the discriminative features.

3) UDFS: unsupervised discriminant feature selection [29]. It
uses the local discriminant information and local structure
information of data simultaneously to guide feature
selection.

4) MFFS: matrix factorization feature selection [23], which
selects the most representative feature subset under the
subspace learning framework of matrix decomposition to
complete feature selection.

5) MCFS: multi-cluster data feature selection [14], for which
spectral analysis is first performed, then sparse regression
is executed to select features.
6) SOGFS: unsupervised feature selection with structured
graph optimization [31]. In this method, the adaptive mani-
fold structure is used to guarantee the robustness to noise
and the l2,1-norm regularization term is used to select the
discriminative features.

4.3. Evaluation metrics

In this paper, the metrics Normalized Mutual Information (NMI)
[4,43] and the Clustering Accuracy (ACC) [4,9] are used to evaluate
the performance of feature selection algorithms. And the greater
the values of the two metrics, the better the performance of the
corresponding algorithms.

The formula of Normalized Mutual Information (NMI) can be
described as follows:

NMIðP;QÞ ¼ IðP;QÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðPÞHðQÞp ð44Þ

where P and Q are two random variables, H(P) and H(Q) represent
the entropy values of P and Q, respectively. I(P,Q) represents the
mutual information of random variables P and Q. In the clustering
tasks, P and Q represent the clustering labels and the real labels
of samples, respectively.

The formula of Clustering Accuracy (ACC) is as follows:

ACC ¼ 1
n

Xn
j¼1

dðdj;mapðejÞÞ ð45Þ

where dðx; yÞ is an indicator function, anddðx; yÞ = 1 when x is equal
to y, otherwisedðx; yÞ = 0. In Eq. (45), dj represents the real label of
the sample xj, and ej represents the label obtained by performing
the clustering task. To match the clustering labels with the real
labels, Hungarian algorithm [44] is used in this paper. map(.) repre-
sents a mapping function and implements the Hungarian algorithm.

4.4. Experimental results and analyses

4.4.1. Experimental settings
In this section, the parameter settings of SLASR and six compar-

ison algorithms are given. For SOGFS and SLASR, to construct the
adaptive similarity matrix, the parameter of nearest neighbors k
is set to 5. For Lapscor and MCFS, the parameter of nearest neigh-
bors k is set to 5, and the Gaussian scale parameter is searched in
the range of {10+1, 10+2, 10+3, 10+4, 10+5}. For SLASR, the parameters
b and c are adjusted in the range of {10�8, 10�7, . . ., 10+7, 10+8} and
the parameter l is searched in the range of {10+0, 10+1, . . ., 10+7,
10+8}. For the subspace dimension K, the range is set to {d/3, d/2,
(2*d)/3} to obtain the best ACC and NMI accuracy. For SOGFS, the



Fig. 2. The diagonal matrix of evaluation values of 100 features.
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setting of parameter c is the same as that of SLASR, and the dimen-
sion of low-dimensional embedding is set to {d/3, d/2, (2*d)/3}. For
MFFS, UDFS, MCFS, SOGFS, and SLASR, the maximum number of
iterations is set to 30. And the number of selected features l is
set to {20, 30, 40, 50, 60, 70, 80, 90, 100}. Since this algorithm is
sensitive to initial values, k-means clustering is performed 20 times
to obtain an average value to represent the final clustering result.
The balance parameters b, c, and l are adjusted to achieve the best
ACC and NMI values.

It can be seen from Eq. (15) that the objective function contains
six hyper parameters a; b; k; c; l; K. As can be seen from the
Table 3
Clustering accuracy of seven algorithms on twelve datasets (ACC ± STD%).

Dataset Baseline LapScor UDFS

JAFFE 79.98 ± 5.32 69.27 ± 5.19 67.82 ± 5.29

Umist 43.61 ± 2.16 42.09 ± 1.94 44.64 ± 2.67

Lung_dis 74.25 ± 4.94 70.41 ± 7.34 71.99 ± 5.51

YaleB 9.69 ± 0.49 8.69 ± 0.25 9.66 ± 0.25

COIL20 65.64 ± 3.94 60.41 ± 2.11 62.44 ± 2.57

ORL 51.96 ± 2.57 44.44 ± 1.88 45.95 ± 2.17

TOX_171 43.36 ± 1.90 41.35 ± 2.96 41.52 ± 1.80

Isolet 61.41 ± 2.38 55.83 ± 2.14 40.36 ± 1.56

AR10P 21.96 ± 2.92 33.92 ± 2.57 33.54 ± 2.05

Usps 65.38 ± 2.39 61.84 ± 0.13 45.16 ± 0.53

Orlraws 76.60 ± 6.17 66.65 ± 5.32 53.50 ± 3.35

AT&T 61.45 ± 4.56 49.30 ± 1.92 51.67 ± 2.37

Table 4
Normalized Mutual Information of seven algorithms on twelve datasets (NMI ± STD%).

Dataset Baseline LapScor UDFS

JAFFE 84.07 ± 3.25 76.64 ± 3.83 70.82 ± 5.05

Umist 64.47 ± 1.46 62.33 ± 1.91 60.63 ± 1.86

Lung_dis 69.97 ± 3.38 64.86 ± 5.71 68.52 ± 3.52

YaleB 12.97 ± 0.58 13.24 ± 0.30 15.49 ± 0.29

COIL20 76.62 ± 1.92 69.67 ± 1.18 73.18 ± 1.27

ORL 72.36 ± 1.71 66.62 ± 1.33 69.25 ± 1.10

TOX_171 14.32 ± 1.55 9.90 ± 1.80 10.98 ± 1.03

Isolet 75.66 ± 1.00 69.45 ± 0.91 55.57 ± 1.18

AR10P 19.17 ± 2.77 35.08 ± 1.40 28.37 ± 1.57

Usps 60.98 ± 0.60 57.35 ± 0.08 41.00 ± 0.63

Orlraws 81.67 ± 4.70 74.54 ± 2.79 62.12 ± 2.20

AT&T 80.26 ± 2.25 72.54 ± 1.02 73.66 ± 1.20
description of Eq. (13), the parameter can be updated adaptively
during the algorithm optimization process and is set to 2 times
and 1/2 times of the original value when needs to be increased
and decreased, respectively. Meanwhile, the parameter a can be
calculated according to the Eq. (32). So we do not need to adjust
parameters k and a. For the subspace dimension K, the search
range is set to {d/3, d/2, (2*d)/3} to obtain the best ACC and NMI
accuracy, which is easy to adjust. For the remaining parameters
b, c, l to adjust themmore efficiently in real applications, the order
of magnitude interval between adjacent parameters during grid
search can be increased. For instance, the searching range of
parameters b and c can be set to {10�8, 10�6, 10�4, . . . , 10+4,
10+6, 10+8}, and the parameter l can be searched in the range of
{10+0, 10+2, . . ., 10+6, 10+8}. By using this method, the number of
hyper parameters to be adjusted can be reduced on a large scale,
making the algorithm more suitable for practical scenarios.

4.4.2. The effectiveness evaluation of SLASR
To verify that SLASR can select the representative features, the

Ionosphere dataset is used to test the performance of SLASR. For
the given Ionosphere dataset, its dimension is 351�34, where
351 is the number of samples and 34 represents the number of fea-
tures. In this experiment, 66 new features are generated by using
the linear combination of 34 original features. For different new
features, the corresponding linear combination coefficients are dif-
ferent. And these coefficients are normalized and randomly gener-
ated. All features are put together, resulting in a total of 100
features. And the first 34 features are original features. Then the
projection matrix W can be obtained by solving the Eq. (15). For
each row vector wi of W, its f2-norm can be calculated and used
MFFS MCFS SOGFS SLASR

69.06 ± 7.37 74.86 ± 6.56 83.92 ± 4.35 90.05 ± 5.47

44.41 ± 3.67 47.35 ± 2.62 38.65 ± 2.17 52.65 ± 3.18

70.75 ± 4.87 73.15 ± 6.26 77.60 ± 5.25 81.58 ± 5.25

15.88 ± 0.65 14.47 ± 0.79 9.20 ± 0.29 18.34 ± 0.64

66.35 ± 3.13 64.06 ± 2.36 60.13 ± 2.48 69.24 ± 3.08

46.24 ± 2.11 48.58 ± 2.34 52.61 ± 3.08 56.09 ± 2.33

37.84 ± 2.20 41.52 ± 2.60 46.43 ± 1.31 49.27 ± 0.53

57.08 ± 2.00 61.60 ± 3.60 50.36 ± 2.23 66.36 ± 2.99

41.08 ± 2.41 31.54 ± 2.51 45.65 ± 2.41 44.73 ± 4.42
59.70 ± 3.15 66.51 ± 4.04 56.17 ± 0.36 65.76 ± 3.50
66.35 ± 5.29 59.90 ± 4.02 73.35 ± 4.07 79.55 ± 4.26

49.36 ± 1.44 53.39 ± 3.60 55.18 ± 2.31 62.61 ± 2.73

MFFS MCFS SOGFS SLASR

74.23 ± 5.44 80.76 ± 6.21 85.87 ± 2.21 90.73 ± 3.38

65.65 ± 2.04 67.07 ± 1.72 57.92 ± 1.51 69.69 ± 1.36

64.42 ± 3.42 67.22 ± 4.34 73.36 ± 3.16 75.57 ± 4.49

26.77 ± 0.61 23.25 ± 0.68 14.67 ± 0.20 30.80 ± 0.42

75.64 ± 1.67 73.94 ± 1.29 70.35 ± 1.30 77.22 ± 1.42

67.61 ± 1.63 68.86 ± 1.39 72.61 ± 1.40 75.09 ± 0.99

9.26 ± 4.42 11.36 ± 3.13 20.17 ± 1.31 26.07 ± 0.64

70.19 ± 1.00 74.81 ± 1.28 64.30 ± 0.88 76.43 ± 1.79

43.46 ± 1.71 30.67 ± 3.07 50.36 ± 2.88 47.83 ± 3.27
58.21 ± 0.49 59.09 ± 1.52 51.00 ± 0.28 60.40 ± 0.99
73.24 ± 4.31 62.99 ± 2.45 81.50 ± 4.52 82.92 ± 3.37

70.27 ± 1.04 73.06 ± 2.10 74.29 ± 1.40 80.60 ± 1.28



Fig. 3. Clustering accuracy of seven algorithms on twelve datasets with different number of selected features.

Fig. 4. Normalized Mutual Information of seven algorithms on twelve datasets with different number of selected features.
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Fig. 5. Clustering accuracy of SLASR on twelve datasets using different b and c.
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as the evaluation value of the ith feature. Then all the evaluation
values can be used to generate a diagonal matrix, which is as
follows.

It can be seen clearly from Fig. 2 that the evaluation values of
the first 34 features are significantly greater than those of the last
66 features, indicating that SLASR is effective, and the original rep-
resentative features can be selected.

4.4.3. Experimental results and analyses
The clustering results of seven algorithms on twelve datasets

are shown in Tables 3 and 4. And ACC and NMI values are shown
in Tables 3 and 4, respectively. The bold marked and the underline
marked values are the best and the second best results,
respectively.

It can be seen from Tables 3 and 4 that the proposed SLASR can
obtain the optimal ACC and NMI values on most datasets. Com-
pared with SOGFS, SLASR not only learns the manifold structure
adaptively, but also preserves the global reconstruction informa-
tion of data through the matrix factorization subspace learning
framework. So SLASR can obtain better performance. Meanwhile,
SLASR can obtain better clustering results than those of baseline
method on most datasets, indicating that SLASR can select the rep-
resentative features. So the proposed SLASR has great effectiveness.

Figs. 3 and 4 show the variation of the clustering results of the
seven algorithms on twelve datasets with the number of selected
features.

For each figure, the horizontal axis indicates the number of
selected features l. And the vertical axis indicates the clustering
accuracy (ACC) and standard deviation (STD) in Fig. 3 and the nor-
malized mutual information (NMI) and standard deviation (STD) in
Fig. 4. It can be seen from Figs. 3 and 4 that the proposed SLASR
outperforms other comparison algorithms on most datasets. And
on the datasets JAFFE, Umist, Lung_dis, YaleB, TOX_171, and
AR10P, SLASR is significantly better than Baseline method, which
fully demonstrates the advantages of SLASR. For the datasets Isolet,
AR10P and Usps, the performance of SLASR is not so good when the
number of selected features is small. However, as the number of
selected feature increases, the performance of SLASR improves
and eventually exceeds that of other comparison algorithms. So
the proposed SLASR has great effectiveness.
4.4.4. Parameter sensitivity analysis
For the proposed SLASR, the parameters that need to be

adjusted include: the coefficient of subspace learning term b, the
coefficient of sparse constraint term c, the coefficient of orthogonal
constraint term l, and the dimension of the subspace K. Since b
and c have a great influence on accuracy, the sensitivity of SLASR
to the balance parameters b and c is tested in this paper. The
parameters b and c are searched in the range of {10�3, 10�2,
10�1, 10+0, 10+1, 10+2, 10+3}, and Figs. 5 and 6 show the three-
dimensional histograms of ACC and NMI values on twelve datasets,
respectively.

It can be seen from Figs. 5 and 6 that when parameters b and c
vary, the ACC and NMI values can keep relatively stable on most
datasets, especially for Umist, COIL20, ORL, and Usps. Thus, SLASR
has better parameter sensitivity result and is not sensitive to
parameters b and c.
4.4.5. Convergence test
The convergence of SLASR on twelve datasets is tested in this

section. The convergence curves are shown in Fig. 7. In each subfig-



Fig. 6. Normalized Mutual Information of SLASR on twelve datasets using different b and c.

Fig. 7. The convergence curves of the objective function on twelve datasets.
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ure, the horizontal axis and the vertical axis indicate the number of
iterations and the value of objective function, respectively.

It can be seen from Fig. 7 that the value of objective function
decreases as the number of iterations increases. And on all data-
sets, the objective function converges within 20 iterations, espe-
cially for the datasets Lung_dis, COIL20, ORL, TOX_171, Orlraws,
and AT&T. So it is reasonable to set the maximum number of iter-
ations to 30. The convergence of SLASR is proved.

5. Conclusions

In this paper, a novel algorithm is proposed, called subspace
learning for unsupervised feature selection via adaptive structure
learning and rank approximation (SLASR). By introducing the adap-
tive manifold learning strategy into the framework of subspace
learning, not only the local manifold structure of data is well pre-
served, but also the global reconstruction information is retained.
It can be seen from the experimental results that SLASR achieves
the best accuracy in most cases, which fully demonstrates the
effectiveness of the proposed SLASR. Additionally, the rank con-
straint is imposed on the Laplacian matrix, which ensures the sim-
ilarity matrix containing c connected components. So the manifold
information becomes more accurate. And the l2,1/2 regularization
term applied to the projection matrix improves the sparsity and
robustness of the selected features. It can also be seen from the
experiments of parameter sensitivity analysis and the convergence
test that SLASR is not sensitive to the key parameters and can
achieve great convergence performance on all datasets. All experi-
mental results show that SLASR can obtain better performance
than other comparison algorithms. Since the stochastic optimiza-
tion methods can achieve better optimization results than the tra-
ditional alternating iterative multiplier algorithms, novel
stochastic optimization mechanisms are hoped to be developed
to make the algorithms obtain better optimization results.
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