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Most of the existing unsupervised feature selection methods learn the cluster structure through spectral
clustering, and then use various regression models to introduce the data matrix into the indicator matrix
to obtain feature selection matrix. In these methods, the clustering indicator matrix is usually continuous
value, which is not the best choice for the matrix in terms of its supervising role in feature selection.
Based on this, unsupervised feature selection via discrete spectral clustering and feature weights
(FSDSC) is proposed in this paper. First, FSDSC integrates regression model and spectral clustering in a
unified framework for feature selection, and introduces a feature weight matrix, which intuitively
expresses the importance of each feature with its diagonal elements. Compared with the common feature
selection matrix that requires constraints such as sparse regular items, the appearance of the feature
weight matrix reduces the complexity of the model and simplifies the calculation process of feature eval-
uation. Secondly, for the value of the indicators matrix, the spectral clustering is improved to obtain a
discrete clustering indicator matrix, which provides clearer guidance information for feature selection.
Finally, in order to avoid trivial solutions, the transformation matrix is constrained by orthogonal con-
straint. The combination of the orthogonal regression model and spectral clustering enables the algo-
rithm to perform feature selection and manifold information learning at the same time, thereby
preserving the local geometric structure of data. Compared with other excellent unsupervised feature
selection algorithms, the experimental results prove the effectiveness of the proposed algorithm.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

With the rapid development of information technology, a large
amount of high-dimensional data has been generated in various
fields. These high-dimensional data always contain some noise
and redundant features, which increase the difficulty of data pro-
cessing [1]. The research in the fields of machine learning, image
processing, data mining [2], and pattern recognition [3] is used
to process the high-dimensional data. It is necessary to reduce
the dimensionality of high-dimensional data [4]. Dimension reduc-
tion can not only decrease the time cost of calculation and improve
calculation efficiency, but also reduce the space pressure of calcu-
lation. Feature extraction [5] and feature selection [6] are two com-
mon dimensionality reduction methods. Feature extraction
converts all features into fewer new features to replace the original
features [7]. Feature selection selects some representative features
to form a subset according to a certain standard, to obtain a com-
pressed data representation [8]. In addition, it can retain the
semantic information of data [9] and has stronger interpretability
[10]. Nowadays, feature selection is constantly developing [11].
However, most of the high-dimensional data in real life are unla-
beled, which is difficult for direct feature selection. Therefore,
how to obtain pseudo-labels that are closer to the real labels is a
challenging research. This paper proposes an unsupervised feature
selection method via discrete spectral clustering and feature
weights (FSDSC), which uses a discrete clustering indicator matrix
as a pseudo-label to provide clearer discriminative information for
feature selection. At the same time, the feature subset is extracted
based on the feature weight matrix. Compared with traditional
methods that need to impose constraints on the feature selection
matrix, such as sparse regularization item, the feature weight
matrix reduces the complexity of model and reduces the calcula-
tion amount of feature evaluation. Specifically, FSDSC integrates
regression models and spectral clustering in a unified framework,
introduces a feature weight matrix in the framework, and then
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performs feature selection through this framework. The matrix is a
diagonal matrix, each diagonal element of which intuitively repre-
sents the weight of each feature, so that the algorithm can easily
select a subset of features. Orthogonal constraint is imposed on
the transformation matrix. Compared with least square regression,
orthogonal regression model can preserve more discriminative
information and avoid trivial solutions. In addition, FSDSC
improves the spectral clustering method to obtain a discrete indi-
cator matrix, which provides more accurate guidance information
for feature selection. The rest of this paper is organized as follows.
Section 2 is mainly about the introduction of some related work.
Section 3 introduces the proposed model, optimization method
and convergence analysis in detail. Section 4 presents the experi-
mental results and comparative analysis of FSDSC and the com-
pared algorithms on the same datasets. The conclusion is
summarized in Section 5.
2. Related work

At present, feature selection methods can be divided into super-
vised feature selection, semi-supervised feature selection, and
unsupervised feature selection according to whether label infor-
mation is needed [12]. Supervised methods use the correlation
between sample and label information to select discriminative fea-
tures, which are beneficial to the classification of samples [13].
Some labels are needed in the semi-supervised methods [14]. Most
of these methods combine labeled and unlabeled data, and select
feature subset by constructing a similarity matrix [15]. However,
most real datasets lack label information, and the cost of labeling
large-scale data is high. Therefore, unsupervised methods are very
important which select important features based on the inherent
information of data.

Unsupervised feature selection methods can be divided into fil-
ter unsupervised feature selection [16], wrapper unsupervised fea-
ture selection [17] and embedded unsupervised feature selection
[18] according to the search strategy. Filter methods utilize the sta-
tistical characteristics or inherent attributes of data to rank the
importance of features, instead of relying on other algorithms,
and then select the top-ranked features to form a subset [16]. Filter
methods can remove part of the noise to make search easier, but
the performance of which is relatively poor. Wrapper methods
use specific learning algorithms to evaluate the generated feature
subsets. Compared with the former, the computational cost of
these methods is higher. When processing a larger dataset, the
computational complexity of which increases exponentially [19].
Therefore, the wrapper methods are not suitable for large-scale
data dimensionality reduction. Embedded methods combine the
advantages of filter and wrapper methods, which aim to select a
better feature subset at a lower computational cost [20]. These
methods combine the search and training processes to explore
the correlation between features [21]. Because of the good perfor-
mance for feature selection, embedded methods have received
extensive attention [22]. At the same time, how to get a clustering
indicator matrix in the feature selection has become a problem
[23].

In order to solve this problem, the correlation between features
has been explored as label information to guide feature selection,
and many criteria for evaluating feature correlation have been pro-
posed [22]. Among them, a common criterion is to find the cluster-
ing indicator through clustering algorithms and turn the problem
into a supervised problem. Based on this, unsupervised feature
selection can be divided into two types. One type is to find cluster-
ing metrics first, and then feature selection is performed. More-
over, these two steps are repeated until a certain conditional
condition is met. For example, multi-cluster feature selection
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(MCFS) proposed by Cai et al. used the two-step strategy. First,
clustering indicators were obtained by spectral clustering, and
then the indicator matrix was used to perform feature selection.
Thus, the cluster structure of data was preserved [24]. Another
type of unsupervised feature selection adopts an integrated form,
which searches for clustering indicators while performing feature
selection. For example, Hou et al. proposed joint embedding learn-
ing and sparse regression for feature selection (JELSR), which
adopted a single-step strategy to combine low-dimensional spec-
tral embedding learning and sparse regression into an objective
function. JELSR effectively improved the performance of feature
selection [25]. Li et al. proposed generalized uncorrelated regres-
sion with adaptive graph for unsupervised feature selection
(URAFS), which combined spectral clustering and generalized
uncorrelated regression in a unified framework. The construction
and optimization of graph were adaptively realized. Compared
with the former, the latter performed clustering learning and fea-
ture evaluation simultaneously in the optimization process, which
improved the learning performance of the algorithm [26].

Cluster analysis is a common auxiliary method for unsupervised
feature selection, which groups samples according to the inherent
attributes of data. Studies have shown that the distribution of
high-dimensional data is not a uniform linear distribution [27].
On the contrary, the distribution is often sparse. Therefore, high-
dimensional data contains a lot of local information, which is ben-
eficial to explore the internal structure of data and improve the
learning performance of the algorithm for nonlinear structures
[28]. Based on local information, many manifold learning algo-
rithms have been proposed, such as Laplacian Eigenmap (LE)
[29], Locality Preserving Projections (LPP) [30], and Local Linear
Embedding (LLE) [31] and so on. The spectral graph theory has
shown good performance when it was applied to describe the
manifold structure of data [32]. Specifically, spectral clustering
learnt the geometric structure information of data through the
spectral graph theory, and obtained a good clustering result [33].
Later, spectral clustering was applied to unsupervised feature
selection, and the clustering result was used as a pseudo-label
for the unsupervised problem, so that the problem became super-
vised. Nonnegative discriminative feature selection (NDFS) pro-
posed by Li et al. utilized spectral clustering to learn the
clustering indicators of the input samples and performed feature
selection at the same time [34]. The joint learning of clustering
label and feature selection matrix enabled NDFS to select discrim-
inative features. Wang et al. embedded clustering algorithm into
feature selection through sparse learning, then proposed embed-
ded unsupervised feature selection (EUFS), and proved the effec-
tiveness of EUFS with experimental results [35]. Zhu et al.
embeded a block regularizer in the multiview multilabel (MVML)
learning for multiview image classification (MVML) framework to
perform view selection and select information views. Moreover,
feature selection was performed to select information features
from the information view [36]. Zhu et al. proposed a low-rank
sparse subspace clustering algorithm (LSS) by dynamically learning
an affinity matrix from a low-dimensional space of raw data [37].
Zhu et al. proposed a one-step multi-view spectral clustering
(OMSC) by outputting a common affinity matrix as the final clus-
tering result [38]. Zhu et al. embeded graph regularization into a
joint sparse regression framework, used dictionary learning to gen-
erate the basis of the dataset, and used the proposed method to
map the original data into the basis space to generate new repre-
sentations. Moreover, robust joint graph sparse coding for unsu-
pervised spectral feature selection (JGSC) was proposed [39]. Zhu
et al. used spectral clustering to preserve the local and global struc-
ture of features and samples. In addition, they proposed local and
global structure preservation for robust unsupervised spectral fea-
ture selection [40]. The method represented each feature with
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other features to preserve the local structure of the feature, and
low-rank constraint was imposed on the weight matrix to preserve
the global structure between samples and features. Zheng et al.
added a self-paced regularization model to the sparse feature
selection model to reduce the effect of outliers on feature selection,
and proposed unsupervised feature selection by self-paced learn-
ing regularization [41].

The models of the above feature selection algorithms are least
squares regression. Their goal is to find a projection matrix W as
the feature selection matrix and minimize the square error func-
tion [42]. However, this may make the model more complicated.
Different from traditional methods, supervised feature selection
with orthogonal regression and feature weighting (FSOR) proposed
by Wu et al. introduced a feature weight matrix for the importance
of features sort [43]. The scale factor in the feature weight matrix
represented the level or proportion of each feature, which was
used to minimize the vertical distance from the data point to the
fitting function. Therefore, the scale factor can be used to evaluate
the importance of features. Later, Xu et al. proposed a two-stage
feature selection method based on FSOR and mRMR [44], called
feature selection under orthogonal regression with redundancy
minimizing (ORMR) [45]. These two methods can intuitively repre-
sent the importance of each feature and reduce the model com-
plexity. However, both of them are not suitable for supervised
feature selection. Meanwhile, considering that the matrix plays a
supervisory role in feature selection, it is not the best choice for
the indicator matrix. On the contrary, discrete variables have
clearer guidance information. The real class labels are each inde-
pendent and discrete. Therefore, discrete clustering indicator is
closer to the real class labels than continuous clustering indicator.
In addition, discrete clustering indicator can better characterize the
independence between labels. Therefore, in this paper, a discrete
clustering index matrix is introduced and the importance of each
feature is directly represented with a feature weight matrix. Then,
unsupervised feature selection via discrete spectral clustering and
feature weights (FSDSC) is proposed. The main contributions are
summarized as follows:

1) The feature weight matrix is used to directly express the
importance of each feature. This matrix reduces the complexity
of the model, simplifies the calculation process of feature evalua-
tion, and makes it easier to select a suitable feature subset. 2) By
improved spectral clustering, a discrete clustering indicator matrix
is obtained, so as to realize the supervising function of the indica-
tor matrix in feature selection. 3) The combination of orthogonal
regression and spectral clustering enables the simultaneous real-
ization of feature selection and manifold information learning,
thereby preserving the local geometric structure of data. At the
same time, orthogonal constraint also avoids trivial solutions.
3. The proposed method

In this section, FSDSC in detail is introduced, which is mainly
composed of two parts: the orthogonal regression model with fea-
ture weights and discrete spectral clustering. In the proposed algo-
rithm, the dataset is represented by a matrix X 2 Rd�n, where n
represents the number of samples, and d represents the dimension
of samples, that is, the number of features. In addition, let c be the
number of categories, l be the number of selected features, and
l� d.

3.1. Uncorrelated feature selection via sparse latent representation

Due to the lack of label information, unsupervised feature selec-
tion is regarded as a difficult problem. According to the learned
clustering indicator, unsupervised feature selection can be
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regarded as a regression model like a supervised method. There-
fore, in the past few years, regression models have been widely
used in unsupervised feature selection [46]. Define the input data-
set as X ¼ x1;x2; � � � ;xnf g 2 Rd�n, where xi represents the ith sam-
ple. The classic regression model can be expressed as:

min
W;F;b
jjXTWþ 1nb

T � Fjj2F ; ð1Þ

where, W 2 Rd�c represents the subspace, b 2 Rc�1 represents the
deviation, F 2 Rn�c represents the pseudo-label matrix, that is, the
learned cluster structure. By adding orthogonal constraint in (1),
the statistical characteristics of the input data are preserved while
avoiding trivial solutions. In addition, the orthogonal constraint is
realized with the manifold structure, so the geometric structure of
data is preserved during the projection process [47]. The orthogonal
regression model is defined as:

min
W;F;b
jjXTWþ 1nb

T � Fjj2F ;

s:t: WTW ¼ Ic:
ð2Þ

A feature weight in the orthogonal regression model (2) is intro-
duced to measure the importance of all features. Define the diago-
nal matrix U 2 Rd�d as the feature weight matrix, and its diagonal
is the vector u. The scale factor uj P 0 1 6 j 6 dð Þ represents the

weight of the jth feature, so uT1d ¼ 1. Specifically, the orthogonal
regression model with feature weights is as follows:

min
W;F;u;b

jjXTUWþ 1nb
T � Fjj2F ;

s:t: WTW ¼ Ic;uT1d ¼ 1;uP 0;
ð3Þ

u in (3) is used to evaluate the importance of d features, and
rank the values of scale factors in u. The k most important features
are selected based on the k largest values.

3.2. Discrete spectral clustering

In (3), F is unknown and needs to be learned through clustering
structure learning. Many studies on graph spectral theory have
found that it can effectively retain the local structure of data
through the nearest neighbor graph [48], thereby obtaining dis-
criminative information to improve the accuracy of feature selec-
tion [49]. Therefore, generalized spectral clustering is utilized to
learn the geometric structure of data, thereby obtaining a cluster-
ing indicator matrix to guide feature selection. Define F to repre-
sent the clustering structure of dataset in the c dimensional
subspace. If the samples xi and xj are similar in the original space,
then f i and f j are also similar in the subspace. The Gaussian func-
tion is used to measure the similarity between two samples. The
definition of similarity matrix is defined as follows:

Sij ¼
exp � xi � xj

�� ��2
2=2r

2
� �

if xi 2 N xið Þ;
or xj 2 N xj

� �
;

0 otherwise;

8>><
>>: ð4Þ

where, i; j ¼ 1; 2; . . . ; n;N xið Þ represents the set of k-nearest neigh-
bors of the sample xi. Based on (4), the degree matrix D and the
Laplacian matrix L can be obtained, where L ¼ D-S. The objective
function of generalized spectral clustering is expressed as follows:

min
F

Xn
i¼1

Xn
j¼1
jjf i � f jjj2Sij ¼ Tr FTLF

� �
;

s:t: FTDF ¼ Ic;

ð5Þ

where, in order to ensure that the problem (5) is solvable, the con-
straint FTDF ¼ Ic is introduced. Considering that the indicator
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matrix F will provide guidance information in the regression model,
a discrete clustering indicator matrix is more suitable than a contin-
uous one. In order to obtain an ideal matrix, discrete constraint is
added in (5) to improve the effect of generalized spectral clustering
[50].

min
Y;F

Tr FTLF
� �

;

s:t: Y 2 Ind;F ¼ Y YTDY
� ��1=2

;

ð6Þ

where, Ind indicates that Y is a binary matrix composed of 0 and 1,
that is Y 2 0;1f gn�c . At the same time, the matrix Y satisfies
Y1c ¼ 1n, that is, only one element in each row of Y is 1, and the
other elements are 0. yij = 1 means that the ith sample is assigned

to the jth class. F ¼ Y YTDY
� ��1=2

means that F is obtained by scaling

of Y, so the matrix F is discrete and satisfies the constraint
FTDF ¼ Fc .
3.3. Objective function

Most unsupervised feature selection methods obtain the indica-
tor matrix through spectral clustering learning, and then use vari-
ous regression models to introduce the data matrix into the
indicator matrix to obtain the feature selection matrix [22]. Similar
to traditional methods, discrete spectral clustering is used to learn
the clustering structure of data and obtain a discrete clustering
indicator matrix. At the same time, the matrix is used as a
pseudo-label of the orthogonal regression model to turn the prob-
lem into supervised. Specifically, by combining (3) and (6), the fol-
lowing objective function is obtained:

min
W;F;Y;u;b

jjXTUWþ 1nb
T � Fjj2F þ aTr FTLF

� �
;

s:t: WTW ¼ Ic;uT1d ¼ 1; u P 0;

Y 2 Ind; F ¼ Y YTDY
� ��1=2

;

ð7Þ

where, a is the balance parameter, which is used to control the
weight of the second item. It is worth noting that the deviation b
is not restricted in (7). Therefore, (7) can be simplified by the
extreme condition of b, and obtain the Lagrangian equation for b:

L bð Þ ¼ jjXTUWþ 1nb
T � Fjj2F þR W; F;Y;uð Þ; ð8Þ

where, R W;F;Y;uð Þ represents a term in the Lagrange equation
that has nothing to do with b. According to the Karush–Kuhn–Tuc
ker (KKT) theory [51], when @L bð Þ=@b ¼ 0, the solution of b in the
objective function (7) is obtained,

@jjXTUWþ1nbT�Fjj2F
@b ¼ 0; ð9Þ

So the value of b is expressed as:

b ¼ 1
n FT �WTUX
� �

1n; ð10Þ

According to (10), the objective function (7) can be simplified as

min
W;F;Y;u

jjH XTUW� F
� �

jj2F þ aTr FTLF
� �

;

s:t: WTW ¼ Ic;uT1d ¼ 1;uP 0;

Y 2 Ind; F ¼ Y YTDY
� ��1=2

;

ð11Þ

where, H ¼ In � 1=nð Þ1n1
T
n. The final objective function is as shown

in (11). Next, how to solve (11) is introduced.
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3.4. Optimization process

The objective function (11) involves four variables W; F;Y and
u, where the variable F is the scaling of Y. Therefore, the optimiza-
tion of F and Y is same. In this paper, an alternate optimization
strategy is used to solve the objective function (11), and each vari-
able is solved iteratively according to the following steps: A.
Update W When the variables F;Y and u are fixed, solving W in
function (11) is equivalent to solving the following problem:

min
WTW¼Ic

jjH XTUW� F
� �

jj2F ; ð12Þ

For any matrix M; jjMjj2F ¼ Tr MMT
� �

, then (12) satisfies the fol-

lowing process:

min
WTW¼Ic

jjH XTUW� F
� �

jj2F ;

() min
WTW¼Ic

Tr WTUXHXTUW� 2WTUXHF
� �

;

() min
WTW¼Ic

Tr WTAW� 2WTB
� �

;

ð13Þ

Algorithm1: GPI method.

Input: Symmetric matrix A 2 Rd�d, matrix B 2 Rd�c;
Initialization: Randomly initialize the matrix W 2 Rd�c

which satisfies
WTW ¼ Ic . Initialize the parameter v , so that
eA ¼ mId � A
is a positive definite matrix;

Repeat:

1. Update R  eAWþ 2B;

2. Calculate UGVT ¼ R according to the compressed
SVD method of R;

3. Update W UVT ;
Until convergence;
Output: W 2 Rd�c .

where B ¼ UXHXTU;B ¼ UXHF. Function (13) is the same as the
quadratic problem of Stiefel manifold (QPSM) [52], which can be
solved by the generalized power iteration (GPI) method proposed
by Nie et al. [53]. Algorithm1 introduces the details of GPI. B.
Update F;Y In (11), the process of solving variables F and Y is same.
Therefore, when the variables W and u are fixed, (11) is simplified
as follows:

min
Y2Ind;F¼Y YTDYð Þ�1=2

jjH XTUW� F
� �

jj2F þ aTr FTLF
� �

; ð14Þ

Since FTDF ¼ Ic and L ¼ D-S, (14) can be rewritten as

min
Y2Ind;F¼Y YTDYð Þ�1=2

Tr FTHF
� �

� 2Tr FTHX0TUW
� �

�aTr FTSF
� �

;

ð15Þ

(15) is further transformed into

max
Y2Ind;F¼Y YTDYð Þ�1=2

2Tr FTHXTUW
� �

� Tr FTHF
� �

þaTr FTSF
� �

;

() max
Y2Ind;F¼Y YTDYð Þ�1=2

Tr FTPF
� �

þ 2Tr FTHXTUW
� �

;

ð16Þ
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where, P ¼ aS�Hþ kIn, and the value of k is larger to ensure that
matrix P is a positive semi-definite matrix. The process of solving
problem (16) is mainly divided into two steps: 1) Define
Q ¼ PF+HXTUW. 2) Eq. (16) is equivalent to the following function:

max
Y2Ind;F¼Y YTDYð Þ�1=2

Tr FTQ
� �

; ð17Þ

The above two steps are performed iteratively until the function
(14) converges, and the solution of (14) is completed. The most
critical step in the above is to solve the problem (17). Here, we
learn from the method proposed by Zhang et al. [50]. According

to F ¼ Y YTDY
� ��1=2

, (17) is equivalent to

max
Y2Ind

Xc

j¼1

yT
j
qjffiffiffiffiffiffiffiffiffi

yT
j
Dyj

p ; ð18Þ

where, yj and qj represent the jth column of Y and Q respectively.
Since all rows of Y are involved, one row is solved firstly, the
remaining rows are fixed. Then update row by row. Assume that
the solution Y for one iteration has been obtained, when solving
the ith row (yj) of Y, only the increment Dij of the objective function
(18) need to be considered when yij changes from 0 to 1. The incre-
ment Dij determines yij, which is calculated as

Algorithm2: Algorithmto Solve Problem (16).

Input: Data matrix X 2 Rd�n, parameters a, similarity
matrix S 2 Rn�n,
feature weight matrix U 2 Rd�d, projection matrix
W 2 Rd�c;

Initialization: Randomly initialize the matrix
Y 2 0;1f gn�c satisfy Y1c ¼ in,

and F ¼ Y YTDY
� ��1=2

, H ¼ In � 1=nð Þ1n1T
n ,

the initial value of
the parameter k is large enough to ensure
that P ¼ aS�H+
kInis a positive semi-definite matrix;

Repeat:
1. Update Q ¼ PFþHXTUW;
2. Update Y according to (20);

3. Update F Y YTDY
� ��1=2

;

Until convergence;
Output: Matrix F and Y.

Dij ¼
�yT
j
qjþqij 1��yijð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�yT
j
D�yjþdii 1��yijð Þp � �yT

j
qj��yijqijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�yT
j
D�yj�dii�yij

p ; ð19Þ

where dii ¼ 1 represents the ith element on the diagonal of matrix
D. According to Dij; yij can be determined:

yij ¼< j ¼ argmax
j02 1;c½ �

Dij0 >; ð20Þ

where, yij when the parameter in the <�> is true, otherwise yij = 0.
In other words, in each row of matrix Y, when function (18) is the
largest, the corresponding element is 1, and the remaining elements
are 0. Algorithm2 describes the steps for solving (16) in detail. C.
Update u When the variables W;F and Y are fixed, function (11)
is equivalent to:

min
uT1d¼1;uP0

jjH XTUW� F
� �

jj2F ;

() min
uT1d¼1;uP0

Tr UXHXTUWWT � 2UXHFWT
� �

:
ð21Þ
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Lemma 1. If O is a diagonal matrix, then Tr OZOMð Þ ¼ OT ZT �M
� �

O.

Prove:

Tr OZOMð Þ ¼ OTdiag ZOMð Þ ¼ OTvec zTi Omi
� 	

;

¼ OTvec zi �mið ÞTO
n o

¼ OT ZT �M
� �T

O;

¼ OT ZT �M
� �

O:

ð22Þ

According to Lemma 1, (21 becomes

min
uT1d¼1;uP0

uT XHXT
� �

� WWT
� �

u

�uTdiag 2XHFWT
� �

;

() min
uT1d¼1;uP0

uTGu�uTg;

ð23Þ

where, G ¼ XHXT
� �

� WWT
� �

;g ¼ diag 2XHFWT
� �

. Let l ¼ u, then

(23) becomes

min
uT1d¼1;lP0;l¼u

uTGu�uTg: ð24Þ

The augmented Lagrangian function method (ALM) is intro-
duced to solve the constraint minimization problem (24), which
decomposes the problem into multiple sub-problems [54]. The
augmented Lagrangian equation of (24) is:

L u;l; c;b1;b2ð Þ ¼ uTGu�uTgþ c
2 jju� lþ 1

c b1jj2F
þ c

2 uT1d � 1þ 1
c b2

� �2
;

s:t: l P 0;

ð25Þ

where b1 indicates the column vector, and c indicates the Lagran-
gian multiplier. When l fixed, (25) is equivalent to

min
u

1
2u

TXu�uTd; ð26Þ

where, X ¼ 2G+cId+c1d1
T
d ; d ¼ g+cl+c1d-b21d-b1+g. According to

(26), û ¼ X�1d. Similarly, when u fixed, (25) is equivalent to

min
lP0
jjl� uþ 1

c b1

� �
jj2: ð27Þ

From (27), l̂ ¼max ûð +1
c b1;0Þ. According to the ALM,

b1 ¼ b1+c ûð -l̂Þ; b2 ¼ b2+c ûT1d � 1
� �

; c ¼ qc. Algorithm3 intro-
duces the details of solving problem (23).

Algorithm3: Algorithmto Solve Problem (23).

Input: Data matrix X 2 Rd�n;
Initialization: Initialize ui ¼ 1=d;l ¼ u; b1 ¼

0;0; � � � ;0ð ÞT 2 Rd�1; b2 ¼ 0;
c > 0;q > 1;

Repeat:

1. Update X ¼ 2Gþ cId þ c1d1
T
d ,

d ¼ gþ clþ c1d � b21d � b1 þ g;
2. Update û ¼ X�1d;

3. Update l̂ ¼max ûþ 1
c b1;0

� �
;

4. Update b1 ¼ b1 þ c ûð -l̂Þ;
5. Update b2 ¼ b2 þ c ûT1d � 1

� �
;

6. Update c ¼ qc;
Until convergence;
Output: û
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In summary, first, the objective function (11) is solved by alter-
nately optimizing variables W; F;Y and u, then sort the features in
descending order according to the variable u, and select the first l
features to form a new dataset. So far, feature selection of the orig-
inal dataset is completed. Algorithm4 summarizes the process of
the proposed FSDSC.

3.5. Computational and space complexity analysis

In the update process in the previous section, n is the number of
samples, and d represents the number of features. In addition, let c
be the number of categories. The complexity when updating W is
O n2c þ nc2 þ n3
� �

. When updating F, the complexity is
O nc þ nc2 þ c2
� �

. The complexity of updating Y is O n2
� �

and the

complexity of u updating is O d2
� �

. The total computational com-

plexity is O n2c þ nc2 þ n3 þ nc þ c2 þ n2 þ d2
� �

at each iteration.

When the number of iterations is NIter , the total computational

complexity is O NIter n2c þ nc2 þ n3 þ nc þ c2 þ n2 þ d2
� �� �

. Since

in practical applications, c � n, and n P d or n 6 d, the total com-

putational complexity of FSDSC is O NIter n3 þ n2 þ d2
� �� �

. When

updating the objective function of FSDSC, the required space com-

plexity for some matrices is O n2 þ d2 þ ndþ nc þ dc
� �

, and the

space complexity for defining variables is O n2 þ c2
� �

. Similar to
the case of computational complexity, the total space complexity

is O n2 þ d2
� �

.

Algorithm4: the procedure of FSDSC.

Input: Data matrix X 2 Rd�n, parameters a, the maximum
number of
iterations NIter , the Gaussian scale parameters r,
the number of
selected features l; Construct the similarity matrix
S 2 Rn�n,
calculate the diagonal matrix Dii ¼

P
jSij and the

Laplacian matrix
L ¼ D� S;

Initialization: Initialize iter ¼ 0, H ¼ In � 1=nð Þ1n1
T
n ,

Y 2 0;1f gn�c(Y1c ¼
In), F ¼ YTDY

� ��1=2
, W ¼ rand d; cð Þ,

ui ¼ 1=d 1 6 i 6 dð Þ;
Repeat:
1. Update W according to the GPI method;
2. Update F, Y according to Algorithm2;
3. Update u according to Algorithm3;

Until convergence;
Output: Calculate the weights of all features of X

according to u, sort them
in descending order, and select the first l features
to form a new data
Xnew matrix; the index of the selected feature, the
new dataset Xnew.
3.6. Convergence analysis

FSDSC solves the objective function (11) by alternating iterative
method. Therefore, it is necessary to prove that the objective func-
tion (11) is convergent under the update rules of variables W; F; y
and u. In the above analysis, the GPI and ALM methods are intro-
duced to solve the variables W and u respectively, and the conver-
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gence of these two methods has been proved. Next, the
convergence of Algorithm2 will be analyzed. Define t to represent
the tth iteration, according to function (17),

Tr FT
tþ1Q t

� �
P Tr FT

t Q t

� �
: ð28Þ

Since Q ¼ PFþHXTUW,

Tr FT
tþ1PFt

� �
þ Tr FT

tþ1HXTUW
� �

P Tr FT
t PFt

� �
þ Tr FT

t HXTUW
� �

;
ð29Þ

where, P is a positive semi-definite matrix, and P can be expressed
as P ¼ RTR by Cholesky decomposition. Therefore, (29) is rewritten
as

Tr FT
tþ1R

TRFt

� �
þ Tr FT

tþ1HXTUW
� �

P Tr FT
t R

TRFt

� �
þ Tr FT

t HXTUW
� �

:
ð30Þ

Because the inequality jjRFtþ1 � RFt jj2F P 0 holds, so

Tr FT
tþ1R

TRFtþ1
� �

� 2Tr FT
tþ1R

TRFt

� �

þTr FT
tR

TRFt

� �
P 0:

ð31Þ

(30) is multiplied by 2 and combined with (31),

Tr FT
tþ1PFtþ1

� �
þ 2Tr FT

tþ1HXTUW
� �

P Tr FT
t PFt

� �
þ 2Tr FT

t HXTUW
� �

:
ð32Þ

It can be seen from (32) that in Algorithm2, the value of func-
tion (16) is monotonous and non-decreasing, that is, the value of
objective function (14) is monotonous and non-increasing. There-
fore, Algorithm2 is convergent. Therefore, the objective function
(11) of the FSDSC algorithm is convergent under the update rules
of variables W; F;Y and u.

4. Simulation results and the analyses

In this section, the experiments are conducted to verify the
effectiveness of FSDSC. Specifically, first, feature selection is per-
formed on the same datasets through FSDSC and the compared
algorithms, the selected l features are recombined into a new data-
set, and then k-means method [55] is used to cluster the new data-
set. The performance of FSDSC is evaluated by analyzing the
clustering effect. In addition, the parameter sensitivity analysis
and convergence study are conducted. Before showing the results,
the details of experiments are introduced.

4.1. Datasets and the compared algorithms

This experiment uses 11 datasets, including Yale, COIL20, AT&T,
Jaffe, Umist, Orl64, Optdigit, Yale64, USPS, Orlraws and PIE32.
Table 1 summarizes the specific information of these datasets.

Five unsupervised feature selection algorithms and Baseline are
compared to verify the effectiveness of FSDSC. (1) Baseline: All fea-
tures are selected and clustered by k-means method. (2) MCFS: A
two-step strategy is adopted. First, the low-dimensional subspace
index matrix is obtained through spectral embedding learning,
and then the regression coefficient matrix is obtained based on
the l1-norm constrained sparse regression model, thereby complet-
ing feature selection [24]. (3) JELSR: Construct a framework for
unsupervised feature selection, which combines low-dimensional
embedding learning and sparse regression to preserve the local
structure of data [25]. (4) SOGFS: Feature selection and local struc-
ture learning are performed at the same time, so that the algorithm



Table 1
Characteristics of datasets.

Datasets Instance Feature Class

Yale 165 1024 15
Jaffe 213 676 10
Umist 575 644 20
COIL20 1440 1024 20
Orl64 400 4096 40
AT&T 400 10304 40
Optdigit 3823 64 10
Yale64 165 4096 15
USPS 9298 256 10
Orlraws 100 10304 10
PIE32 11554 1024 68
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can adaptively determine the similarity matrix. In addition, the
constraints imposed on the similarity matrix are used to ensure
that SOGFS can select more valuable features [56]. (5) URAFS: A
generalized uncorrelated regression model (GURM) is proposed
to find irrelevant but discriminative features. The graph regulariza-
tion term based on maximum entropy is incorporated into the
GURM model to embed the local geometric structure of data in
the manifold learning [26]. (6) Zhou0s: many basic graphs are con-
structed, and adaptive consensus graphs are learned through these
basic graphs, which are used to characterize the inherent structure
of data. In order to promote structural learning and feature selec-
tion, this method integrates them into a unified framework [57].

4.2. Evaluation metrics

In order to evaluate the clustering results of all algorithms, two
popular metrics are chosen: clustering accuracy (ACC) [27] and
normalized mutual information (NMI) [53]. The higher the values
of ACC and NMI are, the better the clustering result. Therefore,
ACC and NMI can reflect the feature selection effectiveness of all
algorithms. ACC is defined as:

ACC ¼ 1
n

Xn
i¼1

d ci;map gið Þð Þ ð33Þ

where ci and gi respectively denote the clustering label and the true
label of xi. map �ð Þ is an optimal mapping function, which utilizes
Hungarian method [58] to match clustering labels with true labels.
d ci; gið Þ is an indicator function, if ci ¼ gi; d ci; gið Þ = 1, otherwise,
d ci; gið Þ = 0. NMI is defined as:

NMI ¼ MI C;eC� �
max H Cð Þ;H eC� �� � ð34Þ
Table 2
Clustering accuracy of different algorithms on 11 datasets (ACC 	 STD%).

Datasets Baseline MCFS JELSR

Yale 40.85 	 2.99 41.78 	 2.33 42.21 ± 3.16

Jaffe 88.08 ± 5.77 83.70 ± 3.35 85.14 ± 4.93

Umist 43.08 ± 2.24 50.68 ± 3.68 49.50 ± 3.18

COIL20 64.35 ± 3.83 65.15 ± 3.00 65.37 ± 2.27

Orl64 53.53 ± 2.83 53.62 ± 2.77 53.46 ± 2.39

AT&T 60.96 ± 3.30 63.61 ± 2.65 60.30 ± 2.66

Optdigit 80.29 ± 0.56 79.53 ± 0.61 81.53 ± 0.63

Yale64 50.44 ± 4.01 48.76 ± 2.97 50.57 ± 3.48

USPS 66.26 ± 1.93 65.06 ± 4.75 52.31 ± 1.77

Orlraws 73.65 ± 7.06 75.15 ± 3.95 74.55 ± 4.24

PIE32 7.54 ± 0.23 8.08 ± 0.22 7.40 ± 0.22
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where C and eC respectively represent the clustering labels and the

true labels. H Cð Þ is the entropy of C, and H eC� �
is the entropy of eC .

MI C; eC� �
is the information entropy between C and eC .

MI C; eC� �
¼

X
ci2C;ecj2eC

p ci; ecj� �
log

p ci ;ec j� �
p cið Þp ecj� � ð35Þ

where p cið Þ and p ecj� �
respectively indicate the probabilities that a

sample belongs to the clusters ci and ecj. p ci; ecj� �
is the joint proba-

bility that a sample simultaneously belongs to the clusters ci and ecj.
It is worth noting that ACC and NMI are two different evaluation
metrics for clustering results. ACC reflects the accuracy of the clus-
tering result, while NMI reflects the consistency between the clus-
tering result and the true label. For clustering results on the same
dataset, ACC and NMI may not reach the highest at the same time.

4.3. Experimental settings

The value ranges of some parameters in the experiment are set
as follows. In FSDSC, the maximum number of iterations NIter = 50,
the Gaussian scale parameter r ¼ 1eþ 2, the nearest neighbor
parameter k = 5, the parameter c ¼ 1;q ¼ 1:5 in Algorithm3, and
the value range of the balance parameter a is {108, 107, 106, 105,
104, 103, 102, 101, 100, 10�1, 10�2, 10�3}. For other the compared
methods, the corresponding parameters is adjusted according to
the suggestions in the paper. The feature selection parameter l is
in the range of {20, 40, 60, 80, 100, 120, 140, 160, 180, 200}. Since
the results of the k-means clustering method are dependent on ini-
tialization, the clustering experiments are implemented 20 runs
independently. And the mean values of ACC and NMI are taken
as the final result, respectively.

4.4. Clustering results and analysis

Table 2 shows the average and standard deviation of clustering
accuracy (ACC) for feature selection of FSDSC and the compared
algorithms on different datasets. Table 3 summarizes the average
and standard deviation of the normalized mutual information
(NMI) for the same experiment. In both tables, the best value is
highlighted in bold and the second best value is underlined.

It can be seen from Table 2 that the ACC of FSDSC on 11 datasets
is better than the other compared algorithms. The ACC of FSDSC
exceeds Baseline on 10 datasets. It can be seen from Table 3 that
in most datasets, the NMI of FSDSC is better than the baseline
and the compared algorithms. On Jaffe dataset, the NMI of FSDSC
is slightly smaller than Zhou’s, but better than the other compared
algorithms. The results in Tables 2 and 3 verify the performance of
SOGFS URAFS Zhou’s FSDSC

44.27 ± 3.01 36.36 ± 2.21 47.03 ± 2.31 49.54 ± 3.20

83.19 ± 5.39 85.91 ± 4.78 82.13 ± 3.87 87.61 ± 4.95
46.02 ± 2.50 48.62 ± 3.08 50.36 ± 2.98 51.78 ± 2.42

58.68 ± 2.39 63.45 ± 2.58 65.83 ± 2.26 67.25 ± 2.76

50.50 ± 2.11 47.98 ± 2.05 51.80 ± 2.43 55.22 ± 2.46

57.47 ± 3.30 58.11 ± 2.99 60.05 ± 3.15 65.02 ± 2.61

82.12 ± 1.03 81.02 ± 0.39 82.24 ± 1.65 84.13 ± 1.00

46.25 ± 2.59 44.90 ± 2.37 53.33 ± 2.68 55.06 ± 2.87

66.62 ± 0.29 66.24 ± 1.75 59.66 ± 1.28 68.61 ± 0.09

76.38 ± 3.68 75.95 ± 4.45 76.95 ± 3.82 78.15 ± 4.52

8.10 ± 0.21 8.08 ± 0.23 8.01 ± 0.17 8.285 ± 0.22



Table 3
Normalized mutual information of different algorithms on 11 datasets (NMI ± STD%).

Datasets Baseline MCFS JELSR SOGFS URAFS Zhou’s FSDSC

Yale 46.95 ± 2.37 47.79 ± 2.39 48.47 ± 2.00 50.63 ± 2.44 43.12 ± 2.34 53.92 ± 2.68 56.34 ± 3.17

Jaffe 88.84 ± 3.62 84.85 ± 3.27 85.14 ± 3.12 85.56 ± 3.41 84.98 ± 3.19 87.91 ± 3.85 86.77 ± 3.31

Umist 64.58 ± 1.51 67.97 ± 1.91 67.78 ± 1.27 64.63 ± 1.49 66.89 ± 1.69 67.99 ± 1.56 69.14 ± 1.27

COIL20 76.35 ± 1.78 75.02 ± 1.47 75.48 ± 1.39 71.51 ± 1.28 74.25 ± 1.36 75.80 ± 1.85 77.34 ± 1.22

Orl64 73.33 ± 1.53 73.02 ± 1.16 72.34 ± 1.43 70.12 ± 1.37 68.95 ± 1.30 72.39 ± 1.67 74.35 ± 1.40

AT&T 79.96 ± 1.37 80.99 ± 1.56 78.69 ± 1.33 77.06 ± 1.54 76.65 ± 1.39 79.06 ± 1.54 82.43 ± 1.42

Optdigit 75.75 ± 0.33 74.85 ± 0.42 74.66 ± 0.17 74.92 ± 0.41 74.18 ± 0.27 74.25 ± 0.96 76.12 ± 0.36

Yale64 55.81 ± 3.04 54.68 ± 2.46 54.57 ± 1.96 49.61 ± 1.96 49.80 ± 1.68 58.70 ± 2.45 61.21 ± 3.04

USPS 61.13 ± 0.86 58.89 ± 2.03 48.70 ± 0.09 60.83 ± 0.21 61.83 ± 0.50 57.40 ± 0.36 62.35 ± 0.04

Orlraws 79.87 ± 5.31 82.52 ± 3.07 81.45 ± 2.93 80.40 ± 0.42 80.97 ± 3.62 81.99 ± 2.08 84.44 ± 0.42

PIE32 18.90 ± 0.29 20.67 ± 0.20 20.51 ± 0.24 19.73 ± 0.21 20.42 ± 0.28 21.02 ± 0.24 21.61 ± 0.17
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FSDSC is better. FSDSC obtains a high-quality clustering indicator
matrix through discrete spectral clustering, retains the geometric
information of data, and more accurately guides feature selection,
thereby reducing the dimensionality of data and the amount of cal-
culation for subsequent processing. In order to study the effect of
the number of selected features on the proposed algorithm, this
experiment shows the clustering performance of FSDSC and the
compared algorithms when different numbers of features are
selected. Fig. 1 shows ACC of each algorithm on different datasets.
Fig. 2 shows the NMI for the same experiment. In Fig. 1 and Fig. 2,
the abscissa represents the number of selected features, the ordi-
nate in Fig. 1 represents ACC, and the ordinate in Fig. 2 represents
NMI.

In Fig. 1, the Baseline and six feature selection methods are rep-
resented by 7 different color curves, where the red curve repre-
sents the proposed FSDSC. As can be seen from Fig. 1, on Yale,
AT&T, Optdigit, Yale64 and PIE32 datasets, the red curves are
Fig. 1. The ACC of all algorithms for selecting different numbers of features on the
11 datasets.
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always above other curves. This shows that the ACC of FSDSC is
better than the compared algorithms on these datasets. On Jaffe,
Umist, COIL20, Orl64, and USPS datasets, most points of the red
curves are higher than other curves, and the entire curves are
above most of other curves. On the dataset Orlraws, when the
number of features is 20, 40 and 60, the red curve is under the
other curves, but then the red curve is completely above the other
curves. Overall, Fig. 1 illustrates that the effect of FSDSC is better
than the compared algorithms.

As shown in Fig. 2, on datasets Yale, Umist, AT&T, Optdigit,
Yale64 and PIE32, the red curves of FSDSC are above the curves
of the compared algorithms. Especially on datasets Yale and
Yale64, the red curves have obvious advantages. This shows that
on these datasets, the NMI of FSDSC is better than the compared
algorithms. On the COIL20 and Orl64 datasets, most points of the
red curves are higher than other curves, and the highest point is
above other curves. On datasets Jaffe and Orlraws, the red curves
Fig. 2. The NMI of all algorithms for selecting different numbers of features on the
11 datasets.
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of FSDSC are above most of other curves. It can be found on the
dataset USPS that the low position of the red curve is mostly the
highest point of other curves. And the highest point of the red
curve is above the highest point of all the curves. Overall, the effect
of the clustering experiment of FSDSC is better than the compared
algorithms. In summary, compared with other methods, FSDSC
performs better in feature selection.

4.5. Wilcoxon rank sum test

In Section 4.4, the clustering results of FSDSC and the compared
algorithms are presented. In order to more intuitively illustrate
that the clustering effect of FSDSC is significantly improved com-
pared with the compared algorithms, the Wilcoxon rank sum test
[59] is performed at a significance level of 0.05. The specific
method is to repeat the clustering experiment 20 times for each
algorithm, and the p value and h value are obtained. In addition,
in this experiment, the mean value of 20 times is also displayed
in the tables. In the Wilcoxon rank sum test, h has two values.
h = 0 means p P0.05, indicating that the null hypothesis cannot
be rejected at the 5% significance level. When h = 1, it means
p 60.05, which means that the null hypothesis is rejected at the
5% significance level. In short, when h = 0, it means that the differ-
ences between FSDSC and the compared algorithms are not obvi-
ous. When h = 1, it means that there are significant differences
between FSDSC and the compared algorithms. Tables 4 and 5 show
the statistical results of the clustering results of the FSDSC and the
compared algorithms.

As can be seen from Table 4, in the rank sum test of FSDSC and
the compared algorithms, the h values are almost 1, and the p val-
ues are also very small. This shows that the ACC of FSDSC is signif-
icantly improved compared with other algorithms. On the dataset
Umist, the h value calculated with FSDSC and MCFS is 0. This shows
Table 4
Rank sum test statistics for FSDSC and each the compared algorithm (ACC).

Datasets FSDSC MCFS JELSR

Mean Mean p h Mean p h Mean

Yale 49.54 41.78 1.7e�10 1 48.47 1.6e�11 1 44.27
Jaffe 87.91 83.70 2.1e�04 1 85.14 0.0078 1 83.19
Umist 51.78 50.68 0.0774 0 67.78 4.7e�07 1 46.02
COIL20 67.25 65.15 0.0169 1 75.48 3.7e�07 1 58.68
Orl64 55.22 53.62 7.3e�04 1 72.34 1.2e�04 1 50.50
AT&T 65.02 63.61 1.4e�14 1 78.69 1.9e�12 1 57.47
Optdigit 84.13 79.53 3.8e�10 1 74.66 0.0465 1 82.12
Yale64 55.06 48.76 6.4e�11 1 54.57 1.4e�08 1 46.45
USPS 68.81 65.06 2.5e�13 1 52.31 1.3e�04 1 66.62
Orlraws 78.15 75.15 0.0051 1 74.55 0.0035 1 76.38
PIE32 8.28 8.08 3.0e�05 1 7.40 1.5e�14 1 8.1

Table 5
Rank sum test statistics for FSDSC and each the compared algorithm (NMI).

Datasets FSDSC MCFS JELSR

Mean Mean p h Mean p h Me

Yale 56.34 47.79 3.5e�13 1 48.47 2.4e�13 1 50
Jaffe 86.77 84.85 2.7e�08 1 85.14 1.5e�07 1 85
Umist 69.14 67.97 3.5e�07 1 67.78 1.4e�11 1 64
COIL20 77.34 75.02 8.4e�08 1 75.48 1.5e�12 1 71
Orl64 74.35 73.02 2.3e�06 1 72.34 7.2e�09 1 70
AT&T 82.43 80.99 1.4e�14 1 78.69 2.4e�14 1 77
Optdigit 76.12 74.85 1.8e�12 1 74.66 0.0528 0 74
Yale64 61.21 54.68 3.3e�14 1 54.57 2.4e�14 1 49
USPS 62.35 58.89 1.3e�14 1 48.70 1.3e�14 1 60
Orlraws 84.44 82.52 0.5801 0 81.45 0.1113 0 80
PIE32 21.61 20.67 1.4e�14 1 20.51 1.4e�14 1 19
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that, compared with MCFS, FSDSC has no obvious improvement.
Similarly, on the dataset Orlraws, FSDSC is calculated with SOGFS
and Zhou’s, and the h value is 0. It shows that on this dataset,
FSDSC is not significantly higher than that with SOGFS and Zhou’s.
Overall, the improvement in clustering accuracy of FSDSC is
significant.

Table 5 reflects the improvement of the NMI value of FSDSC and
the compared algorithms. It is not difficult to find from Table 5
that, except on individual dataset such as dataset Optdigit, the rank
sum test is h = 1. This shows that on dataset Optdigit, the differ-
ences between FSDSC and JELSR are not obvious. In addition, on
the dataset Orlraws, the h value calculated with MCFS and JELSR
is 0. This shows that there is no obvious difference between FSDSC
and the above two algorithms. However, on the dataset Orlraws,
compared with other algorithms, h = 1 is in most cases. This shows
that FSDSC is still significantly better than the compared algo-
rithms. In most cases, h = 1 and the p-value is extremely small.
Therefore, the effect of improving the NMI value of FSDSC is also
obvious.

4.6. Parameter sensitivity analysis

The parameters of FSDSC include parameter a, feature selection
parameter l, and Gaussian scale parameter r. The sensitivity of
parameter a is discussed here. Other parameters are fixed and
the changes of ACC and NMI are given when the parameter a
changes. The value range of parameter a is {108, 107, 106, 105,
104, 103,102, 101, 100, 10�1, 10�210�3}. Fig. 3 shows the changes
of ACC and NMI on 11 datasets under different values of a. In
Fig. 3, the ordinate represents the clustering performance of FSDSC,
and the abscissa represents the value of parameter a.

It can be seen from Fig. 3 that the ACC and NMI of FSDSC on
most datasets fluctuate little when parameter a changes. Especially
SOGFS URAFS Zhou’s

p h Mean p h Mean p h

1.2e�08 1 36.36 6.5e�14 1 47.03 2.5e�05 1
2.3e�06 1 85.91 0.0278 1 82.13 1.7e�08 1
4.4e�13 1 48.62 4.5e�09 1 50.36 6.5e�08 1
2.1e�14 1 63.45 5.1e�09 1 65.83 0.0025 1
2.1e�13 1 47.98 2.4e�14 1 51.80 4.6e�10 1
1.4e�14 1 58.11 7.2e�13 1 60.05 3.6e�14 1
2.1e�8 1 81.02 7.2e�10 1 82.24 1.7e�05 1
1.5e�14 1 44.90 1.4e�14 1 53.33 6.2e�04 1
2.5e�13 1 66.24 2.3e�13 1 59.66 1.3e�14 1
0.1269 0 75.95 0.0139 1 76.95 0.0158 0
0.0177 1 8.08 2.2e�05 1 8.01 1.8e�04 1

SOGFS URAFS Zhou’s

an p h Mean p h Mean p h

.63 4.8e�11 1 43.12 4.7e�14 1 53.92 1.3e�06 1

.56 3.8e�08 1 84.98 6.1e�07 1 87.91 0.1644 0

.63 1.4e�14 1 66.89 2.2e�11 1 67.99 9.7e�11 1

.51 2.1e�14 1 74.25 1.6e�12 1 75.80 5.0e�06 1

.12 1.4e�14 1 68.95 1.4e�14 1 72.39 2.9e�12 1

.06 1.4e�14 1 76.65 1.1e�13 1 79.06 2.0e�14 1

.92 1.3e�05 1 74.18 1.3e�10 1 74.25 7.4e�04 1

.61 1.7e�14 1 49.80 1.4e�14 1 58.70 2.0e�07 1

.83 1.3e�14 1 61.83 1.3e�14 1 57.40 1.2e�14 1

.40 4.7e�04 1 80.97 0.0164 1 81.99 0.1272 1

.73 5.4e�19 1 20.42 1.4e�14 1 21.02 1.1e�13 1
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on Umist, COIL20, Orl64, AT&T, USPS and PIE32 datasets, the per-
formances of FSDSC are stable. On Jaffe dataset, with the gradual
increase of parameter a, the values of ACC and NMI are also slowly
Fig. 3. The ACC and NMI of FSDSC on the 11 datasets under different a.

Fig. 4. The convergence curves of FSDSC on 11 datasets.

115
increase, but the magnitude of the change is small. Moreover, it can
be found from Fig. 3 that in the parameter range {10�1, 10�2, 10�3},
the polyline part is already straight. Indicating that within this
parameter range, the ACC value and the NMI value do not follow
changes with the parameters. On most datasets, the ACC and
NMI values in the parameter range {10�1, 10�2, 10�3} are slightly
lower than those in the other intervals. In general, FSDSC is not
sensitive to the parameter a.
4.7. Convergence study

The convergence analysis of FSDSC has been given in Section 3.6.
Here, the convergence curves of FSDSC on different datasets are
shown to visually prove the convergence of the proposed
algorithm.

The horizontal axis represents the number of iterations, and the
vertical axis represents the value of the objective function. It can be
seen from Fig. 4 that on most datasets, as the number of iterations
increases, the value of objective function reaches a fixed value and
converges around the twentieth generation. On the Optdigit data-
set, the convergence speed of FSDSC is slower than other cases. At
the twentieth iteration, the objective function begins to converge.
Therefore, NIter = 50 is feasible. Fig. 4 verifies the convergence of
FSDSC.
5. Conclusions

This paper proposes unsupervised feature selection via discrete
spectral clustering and feature weights (FSDSC), which combines
regression models and spectral clustering to form a unified feature
selection framework. On this basis, FSDSC introduces a feature
weight matrix to express the importance of features, which simpli-
fies the process of feature selection. Second, FSDSC obtains a dis-
crete clustering indicator matrix by imposing discrete constraint
on spectral clustering, thereby providing clearer guidance informa-
tion. In addition, this paper imposes orthogonal constraint on the
regression model to avoid the trivial solutions. Moreover, the
orthogonal constraint and manifold learning are executed at the
same time, which preserve the local geometric structure of data
better. In the process of optimization, this paper uses an alternate
iteration method to solve each variable in the objective function
separately. Finally, on the eleven datasets, the compared experi-
ments with Baseline, MCFS, JELSR, SOGFS, URAFS and Zhou’s algo-
rithms have verified the effectiveness of the FSDSC algorithm. It
can be seen from the clustering experiment that the FSDSC algo-
rithm has relatively good clustering results on most datasets, and
can reach the optimal value. Through the line chart, it can be found
that the curves representing FSDSC are basically above the curves
of other algorithms. This also reflects the effectiveness of FSDSC.
It also verifies that the introduction of discrete clustering index is
effective. From the parameter sensitivity experiment, we can find
that the clustering results of FSDSC do not change much for the
changes of parameters, which verifies the robustness of the algo-
rithm in this paper. It can also be explained that there are fewer
redundant solutions in the features selected by FSDSC, and orthog-
onal constraint also plays a role in avoiding trivial solutions.
Through convergence analysis and testing, parameter sensitivity
and convergence analysis experiments respectively verify the
robustness and convergence of the algorithm. In general, through
these experiments, it can be found that FSDSC is superior to other
the compared algorithms. In the FSDSC algorithm, we focus on the
exploration of data structure information and the better integra-
tion of spectral clustering methods in feature selection, ignoring
the noise information that originally exists in the data, and these
noises may affect the performance of the algorithm. Therefore, in
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future research, more attention will be paid to the processing of
noise in FSDSC.

CRediT authorship contribution statement

Ronghua Shang: Conceptualization, Methodology, Writing –
review & editing. Jiarui Kong: Methodology, Data curation, Soft-
ware. Lujuan Wang: Methodology, Data curation, Writing – origi-
nal draft. Weitong Zhang: Software. Chao Wang:
Conceptualization. Licheng Jiao: Conceptualization, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

Wewould like to express our sincere appreciation to the editors
and the anonymous reviewers for their insightful comments,
which have greatly helped us in improving the quality of the paper.
This work was partially supported by the National Natural Science
Foundation of China under Grant Nos. 62176200 and 61871306,
the Natural Science Basic Research Program of Shaanxi under Grant
No.2022JC-45 and the Open Research Projects of Zhejiang Lab
under Grant 2021KG0AB03, the National Key R&D Program of
China and the Guangdong Provincial Key Laboratory under Grant
No. 2020B121201001.

References

[1] R. Shang, W. Wang, R. Stolkin, L. Jiao, Non-negative spectral learning and
sparse regression-based dual-graph regularized feature selection, IEEE Trans.
Cybern. 48 (2) (2017) 793–806.

[2] S. Wang, J. Chen, W. Guo, G. Liu, Structured learning for unsupervised feature
selection with high-order matrix factorization, Expert Syst. Appl. 140 (2020).

[3] Y. Liu, D. Ye, W. Li, H. Wang, Y. Gao, Robust neighborhood embedding for
unsupervised feature selection, Knowl.-based Syst. 193 (2020).

[4] S. Yi, Z. He, X.-Y. Jing, Y. Li, Y.-M. Cheung, F. Nie, Adaptive weighted sparse
principal component analysis for robust unsupervised feature selection, IEEE
Trans. Neural Networks Learn. Syst. 31 (6) (2019) 2153–2163.

[5] G. Zhao, Y. Wu, An efficient kernel-based feature extraction using a pull–push
method, Appl. Soft Comput. 96 (2020).

[6] Y. Zhang, Q. Wang, D.-W. Gong, X.-F. Song, Nonnegative laplacian embedding
guided subspace learning for unsupervised feature selection, Pattern Recogn.
93 (2019) 337–352.

[7] P. Li, Q.S. Zhang, G.L. Zhang, W. Liu, F.R. Chen, Adaptive s transform for feature
extraction in voltage sags, Appl. Soft Comput. 80 (2019) 438–449.

[8] X. Li, M. Chen, Q. Wang, Self-tuned discrimination-aware method for
unsupervised feature selection, IEEE Trans. Neural Networks Learn. Syst. 30
(8) (2018) 2275–2284.

[9] M. Luo, F. Nie, X. Chang, Y. Yang, A.G. Hauptmann, Q. Zheng, Adaptive
unsupervised feature selection with structure regularization, IEEE Trans.
Neural Networks Learn. Syst. 29 (4) (2017) 944–956.

[10] R. Shang, Y. Meng, W. Wang, F. Shang, L. Jiao, Local discriminative based sparse
subspace learning for feature selection, Pattern Recogn. 92 (2019) 219–230.

[11] R. Zhang, X. Li, Unsupervised feature selection via data reconstruction and side
information, IEEE Trans. Image Process. 29 (2020) 8097–8106.

[12] F. Nie, H. Huang, X. Cai, C. Ding, Efficient and robust feature selection via joint
l2,1-norms minimization, Adv. Neural Inf. Process. Syst. 23 (2010).

[13] B. Krishnapuram, A. Harternink, L. Carin, M.A. Figueiredo, A bayesian approach
to joint feature selection and classifier design, IEEE Trans. Pattern Anal. Mach.
Intell. 26 (9) (2004) 1105–1111.

[14] Z. Zhao, H. Liu, Semi-supervised feature selection via spectral analysis, in:
Proceedings of the 2007 SIAM international conference on data mining, SIAM,
2007, pp. 641–646.

[15] Q. Cheng, H. Zhou, J. Cheng, The fisher-markov selector: fast selecting
maximally separable feature subset for multiclass classification with
applications to high-dimensional data, IEEE Trans. Pattern Anal. Mach. Intell.
33 (6) (2010) 1217–1233.

[16] J. Cai, J. Luo, S. Wang, S. Yang, Feature selection in machine learning: A new
perspective, Neurocomputing 300 (2018) 70–79.

[17] M.H. Law, M.A. Figueiredo, A.K. Jain, Simultaneous feature selection and
clustering using mixture models, IEEE Trans. Pattern Anal. Mach. Intell. 26 (9)
(2004) 1154–1166.
116
[18] C. Tang, M. Bian, X. Liu, M. Li, H. Zhou, P. Wang, H. Yin, Unsupervised feature
selection via latent representation learning and manifold regularization,
Neural Networks 117 (2019) 163–178.

[19] R. Kohavi, G.H. John, Wrappers for feature subset selection, Artif. Intell. 97 (1–
2) (1997) 273–324.

[20] R. Shang, K. Xu, F. Shang, L. Jiao, Sparse and low-redundant subspace learning-
based dual-graph regularized robust feature selection, Knowl.-Based Syst. 187
(2020).

[21] Y. Saeys, I. Inza, P. Larranaga, A review of feature selection techniques in
bioinformatics, Bioinformatics 23 (19) (2007) 2507–2517.

[22] R. Zhang, F. Nie, X. Li, X. Wei, Feature selection with multi-view data: A survey,
Inf. Fusion 50 (2019) 158–167.

[23] J.G. Dy, C.E. Brodley, Feature selection for unsupervised learning, J. Mach.
Learn. Res. 5 (Aug) (2004) 845–889.

[24] D. Cai, C. Zhang, X. He, Unsupervised feature selection for multi-cluster data,
in: Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2010, pp. 333–342.

[25] C. Hou, F. Nie, X. Li, D. Yi, Y. Wu, Joint embedding learning and sparse
regression: A framework for unsupervised feature selection, IEEE Trans.
Cybern. 44 (6) (2013) 793–804.

[26] X. Li, H. Zhang, R. Zhang, Y. Liu, F. Nie, Generalized uncorrelated regression
with adaptive graph for unsupervised feature selection, IEEE Trans. Neural
Networks Learn. Syst. 30 (5) (2018) 1587–1595.

[27] X. Fang, Y. Xu, X. Li, Z. Fan, H. Liu, Y. Chen, Locality and similarity preserving
embedding for feature selection, Neurocomputing 128 (2014) 304–315.

[28] K. Yu, T. Zhang, Y. Gong, Nonlinear learning using local coordinate coding,
Advances in neural information processing systems 22 (2009).

[29] M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for
embedding and clustering, Advances in neural information processing
systems 14 (2001).

[30] X. He, P. Niyogi, Locality preserving projections, advances in neural
information processing systems16, vancouver, British Columbia, Canada, 2003.

[31] S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear
embedding, Science 290 (5500) (2000) 2323–2326.

[32] F. Shang, Y. Liu, F. Wang, Learning spectral embedding for semi-supervised
clustering, in: 2011 IEEE 11th International Conference on Data Mining, IEEE,
2011, pp. 597–606.

[33] F. Nie, Z. Zeng, I.W. Tsang, D. Xu, C. Zhang, Spectral embedded clustering: A
framework for in-sample and out-of-sample spectral clustering, IEEE Trans.
Neural Networks 22 (11) (2011) 1796–1808.

[34] Z. Li, Y. Yang, J. Liu, X. Zhou, H. Lu, Unsupervised feature selection using
nonnegative spectral analysis, in: Proceedings of the AAAI conference on
artificial intelligence, vol. 26, 2012, pp. 1026–1032.

[35] S. Wang, J. Tang, H. Liu, Embedded unsupervised feature selection, in:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29, 2015.

[36] X. Zhu, X. Li, S. Zhang, Block-row sparse multiview multilabel learning for
image classification, IEEE Trans. Cybern. 46 (2) (2015) 450–461.

[37] X. Zhu, S. Zhang, Y. Li, J. Zhang, L. Yang, Y. Fang, Low-rank sparse
subspace for spectral clustering, IEEE Trans. Knowl. Data Eng. 31 (8) (2018)
1532–1543.

[38] X. Zhu, S. Zhang, W. He, R. Hu, C. Lei, P. Zhu, One-step multi-view spectral
clustering, IEEE Trans. Knowl. Data Eng. 31 (10) (2018) 2022–2034.

[39] X. Zhu, X. Li, S. Zhang, C. Ju, X. Wu, Robust joint graph sparse coding for
unsupervised spectral feature selection, IEEE Trans. Neural Networks Learn.
Syst. 28 (6) (2016) 1263–1275.

[40] X. Zhu, S. Zhang, R. Hu, Y. Zhu, et al., Local and global structure preservation for
robust unsupervised spectral feature selection, IEEE Trans. Knowl. Data Eng. 30
(3) (2017) 517–529.

[41] W. Zheng, X. Zhu, G. Wen, Y. Zhu, H. Yu, J. Gan, Unsupervised feature selection
by self-paced learning regularization, Pattern Recogn. Lett. 132 (2020) 4–11.

[42] T. Strutz, Data fitting and uncertainty: A practical introduction to weighted
least squares and beyond, Springer, 2011.

[43] X. Wu, X. Xu, J. Liu, H. Wang, B. Hu, F. Nie, Supervised feature selection with
orthogonal regression and feature weighting, IEEE Trans. Neural Networks
Learn. Syst. 32 (5) (2020) 1831–1838.

[44] C. Ding, H. Peng, Minimum redundancy feature selection frommicroarray gene
expression data, J. Bioinf. Comput. Biol. 3 (02) (2005) 185–205.

[45] X. Xu, X. Wu, Feature selection under orthogonal regression with redundancy
minimizing, in: ICASSP 2020–2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), IEEE, 2020, pp. 3457–3461.

[46] X. Li, H. Zhang, R. Zhang, F. Nie, Discriminative and uncorrelated feature
selection with constrained spectral analysis in unsupervised learning, IEEE
Trans. Image Process. 29 (2019) 2139–2149.

[47] R. Zhang, X. Li, T. Wu, Y. Zhao, Data clustering via uncorrelated ridge
regression, IEEE Trans. Neural Networks Learn. Syst. 32 (1) (2020) 450–456.

[48] F. Shang, L. Jiao, F. Wang, Graph dual regularization non-negative matrix
factorization for co-clustering, Pattern Recogn. 45 (6) (2012) 2237–2250.

[49] J. Ye, Z. Jin, Dual-graph regularized concept factorization for clustering,
Neurocomputing 138 (2014) 120–130.

[50] H. Zhang, R. Zhang, F. Nie, X. Li, An efficient framework for unsupervised
feature selection, Neurocomputing 366 (2019) 194–207.

[51] W. Xu, Y. Gong, Document clustering by concept factorization, in: Proceedings
of the 27th annual international ACM SIGIR conference on Research and
development in information retrieval, 2004, pp. 202–209.

[52] R. Zhang, F. Nie, X. Li, Feature selection under regularized orthogonal least
square regression with optimal scaling, Neurocomputing 273 (2018) 547–553.

http://refhub.elsevier.com/S0925-2312(22)01337-6/h0005
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0005
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0005
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0010
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0010
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0015
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0015
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0020
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0020
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0020
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0025
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0025
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0030
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0030
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0030
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0035
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0035
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0040
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0040
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0040
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0045
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0045
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0045
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0050
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0050
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0055
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0055
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0060
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0060
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0065
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0065
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0065
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0070
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0070
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0070
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0070
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0075
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0075
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0075
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0075
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0080
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0080
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0085
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0085
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0085
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0090
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0090
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0090
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0095
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0095
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0100
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0100
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0100
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0105
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0105
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0110
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0110
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0115
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0115
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0120
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0120
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0120
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0120
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0125
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0125
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0125
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0130
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0130
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0130
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0135
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0135
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0140
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0140
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0145
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0145
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0145
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0150
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0150
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0150
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0155
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0155
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0160
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0160
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0160
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0160
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0165
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0165
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0165
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0180
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0180
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0185
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0185
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0185
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0190
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0190
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0195
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0195
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0195
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0200
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0200
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0200
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0205
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0205
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0210
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0210
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0210
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0215
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0215
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0215
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0220
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0220
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0225
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0225
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0225
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0225
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0230
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0230
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0230
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0235
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0235
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0240
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0240
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0245
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0245
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0250
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0250
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0255
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0255
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0255
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0255
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0260
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0260


R. Shang, J. Kong, L. Wang et al. Neurocomputing 517 (2023) 106–117
[53] F. Nie, R. Zhang, X. Li, A generalized power iteration method for solving
quadratic problem on the stiefel manifold, Sci. China Inf. Sci. 60 (11) (2017) 1–
10.

[54] M.J. Powell, A method for nonlinear constraints in minimization problems,
Optimization (1969) 283–298.

[55] A. Rakhlin, A. Caponnetto, Stability of k )means clustering, Advances in neural
information processing systems 19 (2006).

[56] F. Nie, W. Zhu, X. Li, Unsupervised feature selection with structured graph
optimization, in: Proceedings of the AAAI conference on artificial intelligence,
vol. 30, 2016.

[57] P. Zhou, L. Du, X. Li, Y.-D. Shen, Y. Qian, Unsupervised feature selection with
adaptive multiple graph learning, Pattern Recogn. 105 (2020).

[58] C.H. Papadimitriou, K. Steiglitz, Combinatorial optimization: algorithms and
complexity, Courier Corporation (1998).

[59] J.D. Gibbons, S. Chakraborti, Nonparametric statistical inference, CRC Press,
2014.

Ronghua Shang (M’09) received the B.S. degree in
information and computation science and the Ph.D.
degree in pattern recognition and intelligent systems
from Xidian University in 2003 and 2008, respectively.
She is currently a professor with Xidian University. Her
current research interests include machine learning,
pattern recognition evolutionary computation, image
processing, and data mining.
Jiarui Kong received the B.S. degree in college of com-
puter science & engineering from Northwest Normal
University, Lanzhou, China. She is currently working
toward the master’s degree in school of artificial intel-
ligence from Xidian University, Xi’an,China. Her current
research interests include machine learning and data
mining.
Lujuan Wang received the B.S. degree in School of
Computer Science and Technology from Tianjin
Polytechnic University, Tianjin, China. Her current
research interests include pattern recognition, machine
learning.
Weitong Zhang received the B.E. degree in Electronic
and Information Engineering from Changchun Univer-
sity of Science and Technology, Changchun, China, in
2013, the M.S. degree in Electronics and Communication
Engineering, and the Ph.D. degree in Electronic science
and technology from Xidian University, Xi’an, China, in
2017 and 2021. She is currently a lecturer with Xidian
University. Her current research interests include com-
plex networks and machine learning.
117
Chao Wang received the B.S. degree from Lanzhou
University in 2016 and the Ph.D. degree from Zhejiang
University in 2021. She is currently an assistant
research scientist with the Research Center for Big Data
Intelligence, Zhejiang Laboratory. Her research interests
include spatial data mining and geographic information
science.
Yangyang Li (SM’18) received the B.S. and M.S. degrees
in computer science and technology, and the Ph.D.
degree in pattern recognition and intelligent system
from Xidian University, Xi’an, China, in 2001, 2004, and
2007, respectively. She is currently a Professor with the
School of Artificial Intelligence, Xidian University. Her
research interests include quantum-inspired evolu-
tionary computation, artificial immune systems, and
deep learning.
Licheng Jiao (SM’89) received the B.S. degree from
Shanghai Jiaotong University, Shanghai, China, in 1982,
the M.S. and Ph.D. degrees from Xi’an Jiaotong Univer-
sity, Xi’an, China, in 1984 and 1990, respectively. From
1990 to 1991, he was a postdoctoral Fellow in the
National Key Laboratory for Radar Signal Processing,
Xidian University, Xi’an, China. Since 1992, Dr. Jiao has
been a Professor in the School of Electronic Engineering
at Xidian University. Currently, he is the Director of the
Key Lab of Intelligent Perception and Image Under-
standing of Ministry of Education of China at Xidian
University, Xi’an, China. Dr. Jiao is a Senior Member of

IEEE, member of IEEE Xi’an Section Execution Committee and the Chairman of
Awards and Recognition Committee, vice board chairperson of Chinese Association
of Artificial Intelligence, councilor of Chinese Institute of Electronics, committee

member of Chinese Committee of Neural Networks, and expert of Academic
Degrees Committee of the State Council. His research interests include image
processing, natural computation, machine learning, and intelligent information
processing. He has charged of about 40 important scientific research projects, and
published more than 20 monographs and a hundred papers in international jour-
nals and conferences.

http://refhub.elsevier.com/S0925-2312(22)01337-6/h0265
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0265
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0265
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0270
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0270
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0275
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0275
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0285
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0285
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0290
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0290
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0295
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0295
http://refhub.elsevier.com/S0925-2312(22)01337-6/h0295

	Unsupervised feature selection via discrete spectral clustering and feature weights
	1 Introduction
	2 Related work
	3 The proposed method
	3.1 Uncorrelated feature selection via sparse latent representation
	3.2 Discrete spectral clustering
	3.3 Objective function
	3.4 Optimization process
	3.5 Computational and space complexity analysis
	3.6 Convergence analysis

	4 Simulation results and the analyses
	4.1 Datasets and the compared algorithms
	4.2 Evaluation metrics
	4.3 Experimental settings
	4.4 Clustering results and analysis
	4.5 Wilcoxon rank sum test
	4.6 Parameter sensitivity analysis
	4.7 Convergence study

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References


