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A B S T R A C T

In recent years, geometric deep learning methods have been proposed, which are called Graph Convolutional
Neural Networks (GCNNs). GCNNs not only can extract effective features like the classical CNN, but also
can effectively reflect the true geometric structure of original data. Although GCNNs consider the geometric
structure of original data, they construct the same feature graph to perform graph convolution, and ignore the
difference between the local structures of different samples. Therefore, a novel Graph Convolutional Neural
Network with Geometric and Discrimination information (GDGCNN) is proposed, which integrates traditional
machine learning ideas to further improve the performance of feature extraction. In order to exploit differences
between the local structures of different samples and make full use of the geometric structure of original
data, GDGCNN constructs different feature graphs for different training batches to fully exploit the local
geometry of data. Moreover, the discriminant regularization is introduced into GDGCNN to effectively utilize
the discriminant information contained in original data. Therefore, GDGCNN has good discriminative ability
and robustness. The experimental results show that GDGCNN can perform feature extraction tasks very well,
and it is superior to some existing methods for classification in terms of accuracy and F1-Score.
. Introduction

In recent years, the research and development of big data processing
nd data mining have been continuously promoted with the explosive
rowth of data dimensions and data sizes (De Una et al., 2018; Krishnan
t al., 2018; Shang et al., 2016a). For massive high-dimensional data,
xtracting features efficiently is needed (Shang et al., 2021). Recently,
hen extracting features from original data, traditional machine learn-

ng and deep leaning are the two kinds of technologies that are often
ased on Shang et al. (2020). For example, both methods can be used
o process the handwritten digits dataset. However, both methods have
heir own advantages and disadvantages.

Traditional machine learning algorithms usually have certain phys-
cal meanings and interpretability, and can extract effective feature
nformation contained in original data by simple calculations. However,
hese methods usually need to determine the features in advance. If
he number of features is too small, it may not be able to classify
t accurately, that is under-fitting. If the number of features is too
arge, they may pay too much attention to a certain feature in the
lassification process and result in high classification errors, that is
ver-fitting.

The concept of deep learning is derived from the study of artificial
eural networks (Ptucha et al., 2019; Zhang et al., 2019; Xie et al.,
019). For example, the multi-layer perceptron with many hidden
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layers is a deep learning structure. Deep learning combines low-level
features to form more abstract high-level representation or features,
which can discover distributed feature representations of data.

Since Hinton et al. proposed the concept of deep learning in 2006
(Hinton and Salakhutdinov, 2006), deep learning has attracted more
and more attention. Deep learning is a new field in machine learning,
whose motivation is to build and simulate a human brain neural
network for analysis and learning. It simulates the mechanism of the
human brain to interpret data such as images, sounds and texts. In fact,
in 1998, Lecun et al. proposed the first multi-layer structure learning
algorithm, the Convolutional Neural Network (CNN) (LeCun et al.,
1998). Multi-dimensional input images can be directly input into CNN,
which avoids the complexity of data reconstruction in feature extrac-
tion and classification in traditional machine learning. CNN uses the
convolutional layer and the pooling layer to form multiple convolution
groups and extract features layer by layer, which can continuously
reduce the dimensions of large-scale data in the image recognition, and
finally make it easy to be trained. CNN reduces the complexity of the
network with its special structure of local weight sharing, thus it has
some unique advantages in speech recognition and image processing,
and is widely used in many real-world applications (Pu et al., 2018;
Luo et al., 2017). However, the convolution and pool operators in CNN
are only used for regular grids and not suitable for graph-structured
ttps://doi.org/10.1016/j.engappai.2021.104364
eceived 6 May 2020; Received in revised form 19 June 2021; Accepted 21 June 2
vailable online 5 July 2021
952-1976/© 2021 Elsevier Ltd. All rights reserved.
021

https://doi.org/10.1016/j.engappai.2021.104364
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2021.104364&domain=pdf
mailto:xdyangmeng@163.com
https://doi.org/10.1016/j.engappai.2021.104364


R. Shang, Y. Meng, W. Zhang et al. Engineering Applications of Artificial Intelligence 104 (2021) 104364
data such as gene data on biological regulatory networks, user data
on social networks. In order to extend CNN, many scholars combine
it with spectral theory to form graph convolutional neural networks
(GCNNs) (Defferrard et al., 2016; Kipf and Welling, 2016; Yang et al.,
2017; Zhuang and Ma, 2018; Chen et al., 2017; Veličković et al., 2018).
Thus, the applications of GCNNs are more extensive.

Although some machine learning methods are technical and elabo-
rated, deep learning methods enable feature learning with multi-layer
networks, which show advantages in many problems, especially on
large-scale data. However, deep learning methods usually lack cer-
tain physical significance and explainability, and their performance
needs to be improved. Therefore, traditional machine learning methods
with new deep learning methods GCNNs are combined to form a
new algorithm, which can have the advantages of these two kinds of
methods. In view of the shortcomings of the existing GCNNs, Graph
Convolutional Neural Networks with Geometric and Discrimination
information (GDGCNN) is proposed. GDGCNN not only can effectively
mine graph-structured data, but also can make full use of local structure
information and discrimination information. Therefore, it can extract
features more efficiently for further clustering and classification. The
main contributions of this paper are summarized as follows:

1. GDGCNN constructs different feature graphs for different train-
ing batches to address the issue in GCNNs of neglecting the
difference between the local structures of different samples in
the dataset. Therefore, it can fully exploit the local geometry of
original data.

2. GDGCNN effectively uses the discrimination information of orig-
inal data to extract more discriminative features, and thus it has
better learning ability and discriminating ability.

3. GDGCNN integrates traditional machine learning ideas into the
new framework of GCNN to further improve the performance
of feature extraction. The experimental results also verify that
GDGCNN has higher accuracy and F1-Score in the image classi-
fication task.

The rest of this paper is organized as follows: in Section 2, the
classical CNN and Graph Convolutional Neural Networks (GCNNs)
is reviewed. In Section 3, the theoretical model of Graph Convolu-
tional Neural Networks with Geometric and Discrimination information
(GDGCNN) is introduced. In Section 4, the proposed algorithm is
compared with the related algorithms, extensive experiments are done
to prove the efficiency and effectiveness of the proposed GDGCNN.
In Section 5, the paper and look forward to the future work are
summarized.

2. Related work

In recent years, with the rapid development of artificial intelli-
gence and the explosive growth of data, how to extract effective fea-
tures of data has become one of the study hotspots in big data pro-
cessing and data mining. Machine learning (Shang et al., 2017; Xu
et al., 2019; Shang et al., 2019a), deep learning (Zhao and Kumar,
2019; He and Schomaker, 2019; Kuang et al., 2018) and spectral
theory (Shang et al., 2018; Cai et al., 2007) have become hot research
directions. For massive high-dimensional data, efficient feature extrac-
tion is needed (Shang et al., 2019b; Cai et al., 2010; Meng et al., 2018a)
before the image clustering and classification. Before introducing our
model, the classical CNN and Graph Convolutional Neural Networks
(GCNNs) are reviewed in this part.

2.1. Convolutional Neural Network (CNN)

Before the emergence of CNN, SIFT, HoG or other algorithms are
used to extract distinguishing features. SIFT has invariance to a certain
degree of distortion, translation, rotation, angle change, brightness
adjustment and other distortions, which is one of the most important
2

image feature extraction methods in the past. Based on feature extrac-
tion methods (such as SIFT), the classifier (such as SVM) should be used
for the image recognition. However, SIFT has limited ability to extract
features, and the biggest challenge of early image recognition is how to
organize and extract features. Convolutional neural network (CNN) was
originally designed to solve the problems like the image recognition.
Now, CNN is widely used not only for images and video, but also for
time series signals such as audio signals, text data and so on (He et al.,
2018; Liao et al., 2018).

Convolutional neural network (CNN) is a multi-layer neural network
that can continuously reduce the dimensions of large-scale data in the
image recognition, and finally make it easy to be trained. CNN was first
proposed by Yann LeCun and successfully applied to the handwritten
digits dataset MNIST (LeCun et al., 1998). The network proposed by
LeCun is called LeNet-5, which is the most typical convolutional neural
network consisting of convolutional layers, pooling layers and fully
connected layers. The convolutional layer and the pooling layer cooper-
ate to form a plurality of convolution groups to extract features layer by
layer, and finally the classification is completed through several fully
connected layers.

The input images of LeNet-5 are 32 × 32 grayscale images, followed
by convolutional layers, pooling layers and fully connected layers.
C1 is a convolutional layer with 6 feature maps with convolution
kernel size is 5 × 5, so there are (5 × 5 + 1) × 6 = 156 parameters.
S2 is a 2 × 2 average pooling layer for subsampling, followed by a
Sigmoid activation function for nonlinear processing. C3 is the second
convolutional layer with 16 feature maps with convolution kernel size
is 5 × 5. S4 is the second pooling layer which is same as the first pooling
layer S2. C5 is the third convolutional layer with 120 feature maps
with convolution kernel size 5 × 5. As the input image size of C5 is
also 5 × 5, it constitutes a full connection, and can be considered as
a fully connected layer. F6 is a fully connected layer with 84 hidden
nodes and a Sigmoid activation function. Gaussian (full) connection
layer consists of Euclidean radial basis function units, which outputs
the final classification results.

In summary, CNN is inspired by the concept of local receptive
field, which simulates feature distinction by the convolution and local
connection. By sharing the weights of convolution, CNN can reduce
the amount of network parameters, and greatly reduce the training
complexity. Therefore, CNN not only can avoid the over-fitting, but
also can give the convolution network tolerance to translation by
the local weight sharing. The pooling layer is mainly to reduce the
data dimensions. Subsampling in the pool layer further reduces the
amount of output parameters, and gives the model tolerance to the
slight deformation, which can improve the generalization ability of the
model. Finally, classification and other tasks can be accomplished by
traditional neural networks.

2.2. Graph Convolutional Neural Networks (GCNNs)

With the diversification of data, researchers have found that the
classical convolutional neural networks show drawbacks in many data,
such as non-Euclidean structure data. Log data on telecommunication
networks, gene data on biological regulatory networks, user data on
social networks, or text documents on word embeddings are all impor-
tant data examples on irregular or non-Euclidean domains (Defferrard
et al., 2016).

The convolution and pool operators in CNN are only suitable for
regular grids. To address this issue, Defferrard et al. present a formu-
lation of CNN in the context of spectral graph theory to form graph
convolutional neural networks (GCNN) (Defferrard et al., 2016), which
is suitable for graph-structured data. Based on similar idea, Kipf et al.
present a similar method, 1stGCNN (Kipf and Welling, 2016). The new
filters defined in GCNN and 1stChebNet are localized in the graphs. The
learned weights can be shared with different locations in a graph. The
spectral graph convolutions operation in GCNN is 𝐾-localized since it is
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a 𝐾th order Chebyshev polynomial in the Laplacian, which can remove
the require to compute the eigenvectors of the Laplacian. In addition,
1stGCNN limits 𝐾 = 1 for the layer-wise spectral graph convolution
operation in GCNN to deal with the problem of overfitting for graphs
with the wide node degree distributions.

Moreover, Yang et al. proposed a graph regularized deep neu-
ral network (GR-DNN) (Yang et al., 2017), which can preserve the
high-level semantics and the geometric structure within local man-
ifold tangent space. Zhuang and Ma proposed a simple and scal-
able semi-supervised learning method for graph-structured data called
dual graph convolutional neural network (DGCN) (Zhuang and Ma,
2018), where two convolutional neural networks are devised to em-
bed the local-consistency-based and global-consistency-based knowl-
edge, respectively. Chen et al. proposed a new method Stochastic
Training of Graph Convolutional Networks with Variance Reduction
(StoGCNN) (Chen et al., 2017), which used the historical activa-
tions of nodes as a control reduce the receptive field size for GCNN.
Veličković et al. proposed an unsupervised method for learning node
representations on the graph-structured data, which is called Deep
Graph Infomax (DGI) (Veličković et al., 2018). DGI is based on max-
imizing mutual information between patch representations and the
corresponding high-level summaries of graphs, which are both obtained
from the established graph convolutional network architectures. The
subgraphs centered around nodes of interest are summarized by the
patch representations, which can be reused for downstream node-wise
learning tasks. DGI can be readily applicable to both inductive and
transductive learning setups since it does not rely on random walk
objectives like most prior GCNNs.

These GCNNs are common methods to any geometric structures,
and they have the same learning complexity and linear computational
complexity as the classical CNN. However, there are some shortcomings
for these GCNNs. For example, on the same dataset, they construct the
same feature graph for graph convolution, so the difference between
the local structures of different samples in the dataset are neglected. In
addition, these existing GCNNs only use the geometric structure of the
data but ignore the discrimination information, and thus they cannot
extract more discriminative features.

3. Theoretical model of Graph Convolutional Neural Networks
with geometric and discrimination information

In view of the high-dimensional and large-scale data in the era of big
data, an efficient dimension reduction method to extract effective fea-
tures from high-dimensional data is needed, and further achieve better
classification performance. In this paper, traditional machine learning
methods with new deep learning methods GCNNs are combined to form
a new algorithm, which can have the advantages of these two kinds of
methods. It not only can effectively improve the performance of feature
extraction, but also has certain physical significance and explainability.

The existing GCNNs can mine the geometric structure of original
data with spectral graph convolution. However, they construct the same
feature graph for graph convolution, thus the differences between the
local structures of different samples in the dataset are neglected when
mining geometric structure. To address this issue, the proposed algo-
rithm constructs different feature graphs for different training batches
in the dataset to fully exploit the geometric structure and the difference
between the local structure of different samples in original data. More-
over, the existing GCNNs ignore the discriminant information of the
data, which is often used in the traditional machine learning methods.
In the proposed algorithm, the discriminant regularization is introduced
into GCNN, which makes the algorithm more discriminative and further

improves the performance of feature extraction. C

3

3.1. Spectral graph convolution

The spectral graph convolution instead of the regular convolu-
tion according to Defferrard et al. (2016) is used, combined with the
geometric and discrimination information.

A spectral graph convolution is defined, which is calculated by
multiplying 𝐱 ∈ ℜ𝑛 in the input data 𝐗 ∈ ℜ𝑛×𝑑 with a filter 𝑔𝜽 = 𝑑𝑖𝑎𝑔(𝜽)
in Fourier space:

𝑔𝜽 ∗ 𝐱 = 𝐔𝑔𝜽𝐔𝑇 𝐱, (1)

where 𝜽 ∈ ℜ𝑛 is a vector of Fourier coefficients, so 𝑔𝜽 is a non-
parametric filter. The Laplacian operator 𝐋 is diagonalized by the
Fourier basis 𝐔, so 𝐋 = 𝐈𝑛 − 𝐃−1∕2𝐀𝐃−1∕2 = 𝐔Λ𝐔𝑇 , 𝐀 ∈ ℜ𝑛×𝑛 is a
similarity matrix, 𝐃 = [𝐷𝑖𝑗 ] ∈ ℜ𝑛×𝑛 is a diagonal matrix, 𝐷𝑖𝑖 =

∑

𝑗 𝐴𝑖𝑗 ,
𝑇 𝐱 is the graph Fourier transform of 𝐱, Λ = 𝑑𝑖𝑎𝑔([𝜆0,… , 𝜆𝑛−1]) ∈ ℜ𝑛×𝑛,

𝜆0,… , 𝜆𝑛−1 are 𝑛 eigenvalues of 𝐋. Therefore, 𝑔𝜽 can be considered as
a function of the eigenvalues of 𝐋, such as 𝑔𝜽(Λ).

Although the graph Fourier transform can be realized by Eq. (1),
the computational complexity is very high, and is 𝑂(𝑛2). In addition,
the computation on the feature decomposition of 𝐋 is very large for
large-scale graphs. Faced with this problem, an effective solution is
to transform 𝑔𝜽(Λ) into a polynomial and determine its parameters.
In Hammond et al. (2011), Hammond et al. proposed a solution to this
problem, 𝑔𝜽(Λ) can be well-approximated by a truncated expansion in
terms of Chebyshev polynomials 𝑇𝑘(𝐱) up to 𝐾th order:

𝑔𝜽′ (Λ) ≈
𝐾
∑

𝑘=0
𝜽′𝑘𝑇𝑘(Λ̃), (2)

where Λ̃ = 2
𝜆max

Λ − 𝐈𝑛, 𝜆max is the largest eigenvalue of 𝐋, 𝜽 ∈ ℜ𝐾

s a vector of Chebyshev coefficients. Chebyshev polynomials can be
omputed recursively, such as 𝑇0(𝐱) = 1, 𝑇1(𝐱) = 𝐱, 𝑇𝑘(𝐱) = 2𝐱𝑇𝑘−1(𝐱)−
𝑘−2(𝐱), so the graph Fourier transform of 𝐱 can be expressed as:

𝜽′ ∗ 𝐱 ≈
𝐾
∑

𝑘=0
𝜽′𝑘𝑇𝑘(�̃�)𝐱, (3)

here �̃� = 2
𝜆max

𝐋−𝐈𝑛 is a 𝐾th order polynomial of the Laplacian, so it is
now 𝐾-localized, and it depends only on nodes that are within 𝐾 steps
away from the central node (𝐾th order neighborhood). Therefore, the
omputational complexity of Eq. (3) is 𝑂(|𝐸|), which is linear in the
umber of edges.

The pooling operation needs meaningful neighborhoods of graphs,
o the similar vertices should be clustered together. Therefore, the
oarsening phase of the Graclus multilevel clustering algorithm
Dhillon et al., 2007) is used, which is very effective in clustering
arious graphs.

.2. Local graph regularization

Recently, manifold learning theory and spectral clustering theory
ave proved that constructing neighborhood graphs between discrete
ata points can effectively simulate the local geometric structure of
he original data (Meng et al., 2018b). Therefore, in order to mine the
ifference between the local structures of different samples in original
ata, training samples are divided into batches and the training samples
n each batch are constructed into neighborhood graphs to obtain the
ocal graph regularization. The main differences between the proposed
lgorithm and the previous algorithms are shown in Fig. 1.

Suppose there are 𝑁 training samples in the training set. The previ-
us algorithms construct a feature graph for training, and the similarity
atrix is shown in Fig. 1(a). In this paper, training samples are divided

nto batches and the training samples in each batch are constructed
nto neighborhood graphs. The obtained similarity matrix is shown in
ig. 1(b). Suppose there are 𝑛𝑖 training samples in the training batch
𝑖, each sample is 𝑑-dimensional, that is, 𝐗𝑖 = [𝐱1, 𝐱2,… , 𝐱𝑛𝑖 ] ∈ ℜ𝑑×𝑛𝑖 .
onstruct a graph with 𝑛 vertices, and each vertex represents a training
𝑖
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Fig. 1. Construct feature graphs. (a) The previous algorithms (b) The proposed
algorithm.

sample. For each vertex 𝑥𝑗 , find its 𝑘 nearest neighbors and establish
edges, and the weights on edges represent the similarity between the
samples. Use 𝐀𝑖 to represent the similarity matrix and use the following
formula to measure the smoothness:

1
2

𝑛𝑖
∑

𝑎=1

𝑛𝑖
∑

𝑏=1

‖

‖

𝐱𝑎 − 𝐱𝑏‖‖
2[𝐀𝑖]𝑎𝑏

=
𝑛𝑖
∑

𝑎=1
𝐱𝑇𝑎 𝐱𝑎[𝐃𝑖]𝑎𝑎 −

𝑛𝑖
∑

𝑎=1

𝑛𝑖
∑

𝑏=1
𝐱𝑇𝑎 𝐱𝑏[𝐀𝑖]𝑎𝑏

= 𝑇 𝑟(𝐗𝑇
𝑖 𝐃𝑖𝐗𝑖) − 𝑇 𝑟(𝐗𝑇

𝑖 𝐀𝑖𝐗𝑖)
= 𝑇 𝑟(𝐗𝑇

𝑖 𝐋𝑖𝐗𝑖),

(4)

where the Laplacian matrix is 𝐋𝑖 = 𝐃𝑖−𝐀𝑖, and the diagonal element of
the diagonal matrix 𝐃𝑖 is the sum of the row elements of the matrix 𝐀𝑖,
i.e. [𝐃𝑖]𝑎𝑎 =

∑

𝑏 [𝐀𝑖]𝑎𝑏. There are many ways to build weights in graphs,
the common methods are (Cai et al., 2011): Binary (0–1) Weighting,
Heat Kernel (Gaussian) Weighting, and Dot-product Weighting. The
appropriate similarity matrix can be chosen according to the specific
situation, so as to improve the accuracy of learning. For example,
for image data, Heat Kernel (Gaussian) Weighting is usually used to
measure the similarity between vertices.

GCNN constructs a neighborhood graph for the whole dataset,
which can well mine the global structure information. Based on GCNN,
the proposed algorithm constructs a neighborhood graph for the train-
ing samples in each training batch, so as to well mine the geometric
structure between samples in each training batch, which belongs to
the local structure information. Therefore, the proposed algorithm
considers both the global structure information and the local structure
information simultaneously, which can better mine the geometric struc-
ture of original data and further improve the performance of feature
extraction.

3.3. Discriminant regularization

Discriminant information is the feature that can help to distinguish
samples from other samples. In addition to the geometric structure
information of data, the discriminant information of data is also im-
portant for feature selection algorithm. Ignoring the discrimination
information of the data will lead to the failure to achieve better feature
4

selection effect. Previous studies have shown that discriminant infor-
mation can be used to improve the performance of feature selection
algorithm (Zeng et al., 2016; Yi et al., 2011). Li et al. proposed a
discriminant orthogonal nonnegative matrix factorization algorithm (Li
et al., 2014), which preserves the local manifold structure and global
discriminant information. Orthogonal constraint is introduced to con-
trol the sparsity of data representation. Shang et al. proposed a non
negative spectral clustering algorithm based on global discriminant,
which retains the global discriminant structure and geometric structure
of data at the same time. The global discriminant model is kernel
processed, so that the algorithm can be effectively used in nonlinear
datasets. Experiments show that the strategy improves the accuracy of
clustering (Shang et al., 2016b). Du et al. proposed a feature selection
algorithm based on local and global discriminant learning, which uses
local discriminant information, global discriminant information and
geometric structure information at the same time (Du et al., 2013).
Experiments show that the algorithm can also effectively select rep-
resentative features. Dornaika et al. proposed a local discriminant
embedding algorithm. The most relevant and discriminant features of
face image are captured by integrates feature selection to improve the
accuracy (Dornaika et al., 2020).

Recent studies have found that, similar to the geometric structure
of original data, the discriminant information is also beneficial to
improve the performance of feature extraction. Therefore, our algo-
rithm introduces the discriminant regularization to have better dis-
criminant ability and processing ability of data outside the samples.
A local discriminant model is introduced for the training batch 𝐗𝑖 =
[𝐱1, 𝐱2,… , 𝐱𝑛𝑖 ] ∈ ℜ𝑑×𝑛𝑖 . A label matrix is defined for the current training
batch 𝐓𝑖 = [𝐭1, 𝐭2,… , 𝐭𝑐 ] ∈ {0, 1}𝑛𝑖×𝑐 , where 𝑐 is the number of classes
of training samples, and 𝐭𝑗 ∈ {0, 1}𝑛𝑖×1 is the label indicator vector, if
𝐱𝑖 belongs to the 𝑗th class, then the 𝑖th element in 𝐭𝑗 is 𝑡𝑖𝑗 = 1, and
all other elements are 0. Since most datasets are unbalanced in sample
sizes, instead of directly using the label matrix 𝐓𝑖, it is normalized in
a similar way as in Stella and Shi (2003) and define a weighted label
matrix 𝐅𝑖 = 𝐓𝑖(𝐓𝑇

𝑖 𝐓𝑖)
−1∕2=

[

𝐭1
‖𝐭1‖2

, 𝐭2
‖𝐭2‖2

,… , 𝐭𝑐
‖𝐭𝑐‖2

]

∈ ℜ𝑛𝑖×𝑐 . In order to
mine the discriminant information in the data, a total scatter matrix 𝐕𝑖𝑡
is introduced, a between-cluster scatter matrix 𝐕𝑖𝑏 and a within-cluster
scatter matrix 𝐕𝑖𝑤 in the local discriminant regularization, which are
defined as follows:

𝐕𝑖𝑡 = �̃�𝑖�̃�𝑇
𝑖 , (5)

𝐕𝑖𝑏 = �̃�𝑖𝐅𝑖𝐅𝑇
𝑖 �̃�

𝑇
𝑖 , (6)

𝐕𝑖𝑤 = �̃�𝑖�̃�𝑇
𝑖 -�̃�𝑖𝐅𝑖𝐅𝑇

𝑖 �̃�
𝑇
𝑖 , (7)

where �̃�𝑖 = 𝐗𝑖𝐔𝑛𝑖 is a centralized matrix of training batch, 𝐔𝑛𝑖 =
𝐈𝑛𝑖 − (1∕𝑛𝑖)𝟏𝑛𝑖𝟏

𝑇
𝑛𝑖
∈ ℜ𝑛𝑖×𝑛𝑖 is a centralized matrix, 𝟏𝑛𝑖 is a 𝑛𝑖-dimensional

vector, whose elements are all 1.
From Yang et al. (2010), Mika et al. (1999) and Yang et al. (2011),

in order to achieve a better division of the data with the discriminant
information, the distance between the data in different classes needs
to be made as large as possible, and the distance between the data
in the same class as small as possible. The distance between the data
in different classes can be represented by the between-cluster scatter
matrix 𝐕𝑖𝑏, and the distance between the data in the same class can
be represented by the within-cluster scatter matrix 𝐕𝑖𝑤. Therefore,
the between-cluster scatter matrix 𝐕𝑖𝑏 needs to be maximized, and
minimize within-cluster scatter matrix 𝐕𝑖𝑤 or the total scatter matrix
𝐕𝑖𝑡. Inspired by Fisher discriminant analysis (Mika et al., 1999), this
problem can be transformed into the following objective function:

𝐅∗
𝑖 = argmax

𝐅𝑖
𝑇 𝑟[(𝐕𝑖𝑡 + 𝜇𝐈𝑑 )−1𝐕𝑖𝑏]

= argmax
𝐅𝑖

𝑇 𝑟[(�̃�𝑖�̃�𝑇
𝑖 + 𝜇𝐈𝑑 )

−1�̃�𝑖𝐅𝑖𝐅𝑇
𝑖 �̃�

𝑇
𝑖 ]

= argmax
𝐅𝑖

𝑇 𝑟[𝐅𝑇
𝑖 �̃�

𝑇
𝑖 (�̃�𝑖�̃�𝑇

𝑖 + 𝜇𝐈𝑑 )
−1�̃�𝑖𝐅𝑖],

(8)

where 𝐈𝑑 is the identity matrix, 𝜇 > 0 is the regular parameter, which is
fixed at 104 in this paper. For convenience, the maximization problem
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in Eq. (8) can be transformed into the minimization problem in Eq. (9)
by adding a regular term 𝑇 𝑟(𝐅𝑇

𝑖 𝐔𝑛𝑖𝐅𝑖):

∗
𝑖 = argmin

𝐅𝑖
𝑇 𝑟[𝐅𝑇

𝑖 𝐔𝑛𝑖𝐅 − 𝐅𝑇
𝑖 �̃�

𝑇
𝑖 (�̃�𝑖�̃�𝑇

𝑖 + 𝜇𝐈𝑑 )
−1�̃�𝑖𝐅𝑖]. (9)

According to Lemma 1 in Mika et al. (1999), the minimization
roblem in Eq. (9) can be rewritten as follows:
∗
𝑖 = argmin

𝐅𝑖
𝑇 𝑟{𝐅𝑇

𝑖 [𝐔𝑛𝑖 (�̃�
𝑇
𝑖 �̃�𝑖 + 𝜇𝐈𝑑 )−1𝐔𝑛𝑖 ]𝐅𝑖}. (10)

.4. Cross-entropy error

Construct a graph convolutional neural network model by stack-
ng multiple convolutional layers in the form of Eq. (10), each layer
ollowed by point-wise nonlinearity. Now, limit the layer-wise convo-
ution operation to 𝐾 = 1, which is linear with regard to 𝐋, so the graph
aplacian spectrum is a linear function.

In this linear formula, approximate 𝜆max ≈ 2 because neural network
arameters can be expected to adapt to this scale change during train-
ng. Under these approximations, Eq. (10) can be simplified as follows:

𝜽′ ∗ 𝐱 ≈ 𝜽′0𝐱 + 𝜽′1(𝐋 − 𝐈𝑛)𝐱 = 𝜽′0𝐱 − 𝜽′1𝐃
−1∕2𝐀𝐃−1∕2, (11)

here 𝜽′0 and 𝜽′1 are two parameters. In practice, in order to avoid the
verfitting and minimize the number of operations in each layer (such
s matrix multiplications), further limit the number of parameters and
et the following expression:

𝜽 ∗ 𝐱 ≈ 𝜽(𝐈𝑛 + 𝐃−1∕2𝐀𝐃−1∕2)𝐱, (12)

here 𝜽′0 and 𝜽′1 can be combined into a single parameter 𝜽 = 𝜽′0 = −𝜽′1.
n addition, let �̃� = 𝐀 + 𝐈𝑛, �̃�𝑖𝑖 =

∑

𝑗 �̃�𝑖𝑗 , and 𝐈𝑛 + 𝐃−1∕2𝐀𝐃−1∕2 can be
e-normalized to �̂� = �̃�−1∕2�̃��̃�−1∕2. Therefore, the forward propagation
odel of the two-layer graph convolutional neural network can be

xpressed as follows:

= 𝑓 (𝐗,𝐀) = softmax(�̂�Relu( ̂𝐀𝑋𝐖(0))𝐖(1)), (13)

here 𝐖(0) ∈ ℜ𝐶×𝐻 is the weight matrix between the input layer
nd the hidden layer, 𝐻 is the number of feature maps in the hidden
ayer, and 𝐖(1) ∈ ℜ𝐻×𝑀 is the weight matrix between the hidden
ayer and the output layer. The softmax activation function is defined
s: softmax(𝑥𝑖)=

1
𝑧 exp(𝑥𝑖), 𝑧 =

∑

𝑖 exp(𝑥𝑖). The cross-entropy error is
defined as follows:

−
∑

𝑙∈𝑦𝑙

𝑀
∑

𝑚=1
𝑌𝑙𝑚𝐼𝑛𝑍𝑙𝑚, (14)

where 𝑦𝑙 is the sample set with labels.
Based on the above ideas, GCNN with the geometric and discrim-

ination information are combined to form the proposed algorithm
GDGCNN. GDGCNN considers the local graph regularization, the dis-
criminant regularization and the cross entropy error generated in the
GCNN forward propagation simultaneously to form the total error
function of our algorithm. The weight matrices in the neural network
with the full dataset are trained by performing batch gradient descent
for each training iteration. The algorithm is feasible as long as the
dataset is suitable for memory. Therefore, the total error of GDGCNN is
shown in Fig. 2, where 𝐆𝑖 and 𝐒𝑖 denote the local graph regularization,
nd the discriminant regularization of each batch, respectively, 𝑖 =
1, 2,… , 𝑛𝑖]. 𝐂𝐄 denotes the cross entropy error generated in the GCNN
orward propagation.

The overall network structure is composed of two network layers
n this paper. The input of the first layer is a sparse matrix with
imension 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑎𝑚𝑝𝑙𝑒𝑠×𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠. Firstly, some values
n the sparse matrix are randomly deleted with a probability of 0.5.
hen the input data is output by graph convolution operation. The
atrix with dimension 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑎𝑚𝑝𝑙𝑒𝑠×16 is obtained by using the
eLu activation function. The input of the second network layer is the
5

Fig. 2. The total error of GDGCNN.

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑎𝑚𝑝𝑙𝑒𝑠× 16 of the output of the upper layer. Some values in
the sparse matrix are randomly deleted with a probability of 0.5. Then
the input data is output through graph convolution operation. Finally,
the output matrix with dimension Number of samples × Number of
classes is obtained. The proposed algorithm is shown in Algorithm 1.

Algorithm 1 Procedure of GDGCNN.
Require: Data sets,
1: Construction of model calculation chart;
2: Initialize model parameters;
3: 𝑖 = 1;
4: while 𝑖 < 𝑒𝑝𝑜𝑐ℎ𝑠 do
5: Prepare training data X and label T;
6: Calculate the predicted value 𝑃 according to X;
7: Calculate the Cross-entropy Error according to the predicted value 𝑃

and label T;
8: Calculate the L2 loss according to the model weight;
9: Calculate the total loss;

10: Update the model parameters according to the Cross-entropy Error;
11: 𝑖 = 𝑖 + 1;
12: end while
13: Prepare test data;
14: Calculate the predicted values according to the test data;
15: Determine the classes of samples according to the predicted values;
16: Output: Classes.

4. Experiments and analysis

In order to verify the performance of the proposed GDGCNN in data
representation and classification,it is compared with the state-of-the-art
models on lots of datasets.

4.1. Evaluation metrics

In this paper, two common evaluation metrics are used to compare
the classification performance achieved by each algorithm: accuracy
(ACC) and F1-Score. Before defining these two evaluation metrics, the
results of the binary classification problem are explained as shown in
Table 1.

As can be seen from Table 1, there are four classification results: (1)
True Positive (TP), if a sample is positive and predicted to be positive;
(2) False Negative (FN), if a sample is positive but predicted to be
negative; (3) False Positive (FP), if a sample is negative but predicted
to be positive; (4) True Negative (TN), if a sample is negative and
predicted to be negative.
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Table 1
Description of classification results.

Actual Results

1 0 total

Predictive Results
1 True Postive (TP) False Postive (FP) Predictive Positive (PP)
0 False Negative (FN) True Negative (TN) Predictive Negative (PN)
total Actual Positive (AP) Actual Negative (AN) All
T
E

c

n

Table 2
Experimental image datasets.

Dimension Train/Test Classes

MNIST 28 × 28 60,000/10,000 10
Fashion 28 × 28 60,000/10,000 10
CIFAR10 32 × 32 × 3 50,000/10,000 10

𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲(𝐀𝐂𝐂) ∶ The ratio of the number of samples correctly clas-
ified by the classifier to the total number of samples, so the calculation
ormula is as follows:

CC = TP+TN
TP+TN+FP+FN = TP+TN

AP+AN = TP+TN
PP+PN . (15)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛: The ratio of True Postive to Predictive Positive, which is
calculated as TP/(TP+FP)=TP/PP, so 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is more concerned with
alse Postive (FP).
𝑅𝑒𝑐𝑎𝑙𝑙: The ratio of True Postive to Actual Positive, which is calcu-

ated as TP/(TP+FN)=TP/AP, so 𝑅𝑒𝑐𝑎𝑙𝑙 is more concerned with False
Negative (FN).

𝐅𝟏 − 𝐒𝐜𝐨𝐫𝐞 ∶ The harmonic mean of the precision and the recall, the
calculation formula is as follows:

F1 = 2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

= 2TP
2TP+FN+FP . (16)

F1-Score is a comprehensive metric of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙, so
𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙 are no longer calculated separately. In this ex-
eriment, accuracy (ACC) and F1-Score are taken as the evaluation
etrics.

.2. Compared algorithms

In order to show the performance of the proposed GDGCNN, it
s compared with some common networks, including CNN (LeCun
t al., 1998), GCNN (Defferrard et al., 2016), and three state-of-the-art
etworks 1stGCNN (Kipf and Welling, 2016), StoGCNN (Chen et al.,
017) and DGI (Veličković et al., 2018). In addition, in order to show
he performance of the local graph regularization and the discrimi-
ant regularization in GDGCNN, two deformation algorithms based on
CNN are introduced. The two algorithms are summarized as follows:
GCNN introduces the local graph regularization into GCNN separately

o show the effect of the local graph regularization in GDGCNN; DGCNN
ntroduces the discriminant regularization into GCNN separately to
how the effect of the discriminant regularization in GDGCNN.

.3. Datasets

The compared algorithms mentioned in Section 4.2 on the datasets
Defferrard et al., 2016; Kipf and Welling, 2016; Chen et al., 2017) are
ested. The results are shown in Tables 2 and 3.

(1) MNIST
The MNIST handwritten digital dataset is a classical deep learning

ntry-level dataset. MNIST contains 70,000 gray-scale images with size
8 × 28, in which 60,000 training images and 10,000 test images can
e divided into 10 classes.

(2) Fashion
The Fashion dataset is also called Fashion-MNIST because it has the

ame image size and the same structure of training and test segmen-
ation as MNIST. Fashion is an image dataset for clothing recognition,
6

able 3
xperimental citation networks datasets.

Nodes Edges Features Classes

Cora 2708 5429 1433 7
Citeseer 3327 4732 3703 6
Pubmed 19,717 44,338 500 3

Table 4
The classification results of GDGCNN with different nearest neighbors 𝑘.
𝑘 Accuracy-mean(%) F1-Score-mean(%)

MNIST Fashion CIFAR10 MNIST Fashion CIFAR10

2 99.36 96.99 30.26 99.13 96.58 30.11
5 99.56 96.85 63.74 99.35 96.48 62.53
8 99.48 96.70 74.48 99.27 96.28 73.29

which consists of 60,000 training images and 10,000 test images of 10
classes, and each datum is a 28 × 28 grayscale image.

(3) CIFAR10
The CIFAR10 dataset contains 60,000 color images of 10 classes,

6,000 images per class, and each image is with size 32 × 32. In the
60,000 color images, 50,000 are training images and 10,000 are test
images.

For each of these three image datasets, 5000 data from its training
data are selected as the validation data.

(4) Cora
The Cora dataset contains 2708 machine learning publications di-

vided into seven classes. The citation network contains 5429 links.
The dictionary contains 1433 unique words. Each publication in Cora
dataset is set as a 0/1-valued word vector, which indicates the ab-
sence/presence of the corresponding word from the dictionary.

(5) Citeseer
The Cora dataset contains 3327 scientific publications divided into

six classes. The citation network contains 4732 links. The dictionary
contains 3703 unique words. Each publication in Citeseer dataset is set
as a 0/1-valued word vector, which indicates the absence/presence of
the corresponding word from the dictionary.

(6) Pubmed
The Pubmed dataset contains 19,717 diabetes-related publications

divided into seven classes. The citation network contains 44,338 links.
The dictionary contains 500 unique words. Each publication in Pubmed
dataset is described by a term frequency–inverse document frequency
(TF–IDF) vector.

4.4. Parameter analysis

Classification experiments are run on some related algorithms and
the proposed GDGCNN. For the sake of fairness, we use the same
network framework to test these algorithms. The parameters for the
other compared algorithms are stated in detail in LeCun et al. (1998),
Defferrard et al. (2016), Kipf and Welling (2016) and Chen et al.
(2017). Here we mainly introduce the parameters for GDGCNN. The
classification results of GDGCNN with the main parameters the nearest
neighbors 𝑘 and batch size 𝑠 are shown in Tables 4 and 5. The best
lassification results for each dataset are marked in bold.

From the classification results of GDGCNN with different nearest
eighbors 𝑘 in Table 4, it can be seen that different 𝑘 should be chosen

on different datasets to obtain the best classification results. In addition,
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Table 5
The classification results of GDGCNN with different batch sizes 𝑠.
𝑠 Accuracy-mean(%) F1-Score-mean(%)

MNIST Fashion CIFAR10 MNIST Fashion CIFAR10

50 99.09 96.70 74.48 98.88 96.28 73.29
100 99.48 95.71 73.62 99.27 95.19 72.31
150 99.24 94.86 73.45 99.03 94.51 72.16

GDGCNN is not sensitive to 𝑘 on MNIST and Fashion, and sensitive to
𝑘 on CIFAR10.

From the classification results of GDGCNN with different batch sizes
𝑠 in Table 5, it can be seen that GDGCNN is not sensitive to 𝑠 and has
strong robustness on these three image datasets.

4.5. Classification results and analysis

For the sake of fairness, the similar network structure is used
for several compared methods. C32/C64 represents a convolutional
layer with 32/64 feature maps, and GC32/GC64 represents a graph
convolutional layer with 32/64 feature maps. P4 represents a pooling
layer with of size and stride 4. FC512 represents a fully connected layer
with 512 hidden units.

In addition, the same number of iterations on the same dataset are
set for different algorithms. Table 6 shows the accuracy (ACC) results
of five compared algorithms on the validation sets of the three image
datasets in Table 2. Table 7 shows the F1-Score results of five compared
algorithms on the validation sets of these three image datasets. the
best classification results for each dataset are marked in bold and the
second are marked underlined. Tables 6 and 7 numerically show the
classification results of five compared algorithms on the validation sets
of the three image datasets in Table 2. All these experimental results
confirm the following conclusions:

• Overall, the proposed GDGCNN performs best in terms of both
ACC and F1-Score results. The performance of GDGCNN is much
better than CNN and GCNN in terms of these two evaluation
metrics, especially on CIFAR10.

• From the comparison between GCNN and GGCNN, it can be
seen that GGCNN is better than GCNN in terms of both ACC
and F1-Score results. It shows that the introduction of the local
graph regularization can effectively mine the local structure in-
formation of original data, which is conducive to improving the
classification performance of classification algorithms.

• From the comparison between GCNN and DGCNN, it can be seen
that DGCNN is better than GCNN in terms of both ACC and F1-
Score results. It shows that the introduction of the discriminant
7

regularization can effectively mine the local discriminant infor-
mation of original data, which is conducive to improving the
classification performance of the classification algorithms.

• From the comparison between GDGCNN and the other four al-
gorithms, it can be seen that GDGCNN which considers both
local structure information and discriminant information, can
fully exploit the potential information of original data and obtain
better classification results.

In order to show the classification performance of these five com-
pared algorithms on the validation set of the three datasets more
intuitively, the classification accuracy are plotted in Fig. 3, while F1-
Score figure which is similar to Fig. 3, is no longer plotted. In Fig. 3,
the abscissa represents the number of iterations, and the ordinate
represents the classification accuracy (ACC) results.

Fig. 3 visually shows the classification accuracy of five compared
algorithms on the validation sets of the three datasets. It can be seen
from Fig. 3, as the increase of the number of iterations, the ACC results
of five compared algorithms are on the rise. In addition, the ACC curve
of the proposed GDGCNN is marked with a solid red line, which is
above the other curves in most positions in Fig. 3(a), and all above
the other curves in Fig. 3(b) and (c). This means that GDGCNN has the
best classification performance on the three datasets. In addition, the
ACC curves of GGCNN and DGCNN are mostly higher than the ACC
black dotted line of GCNN in Fig. 3(a), and all above it in Figs. 3(b)
and 3(c). It is shown that both the local structure information and the
discriminant information can effectively mine the potential information
of original data and improve the performance of the classification
algorithms.

In addition, a classification comparison experiment of 1stGCNN
(Kipf and Welling, 2016), StoGCNN (Chen et al., 2017), DGI (Veličković
et al., 2018) and GDGCNN on three citation networks datasets (Chen
et al., 2017) is performed in Table 3. The ACC results show as shown
in Fig. 4.

It can be seen that the yellow one representing GDGCNN achieve
the good classification performance on these three citation networks
datasets. GDGCNN can achieve the best ACC results on Citeseer and
Pubmed. For quantitative analysis of the ACC results, the ACC results
are also presented in Table 8.

From Table 8, it can be seen that the classification results of
GDGCNN are better than the other three state-of-the-art algorithms
on these three citation networks datasets. The average ACC result of
GDGCNN is 1.1%, 0.7%, 1.0% higher than 1stGCNN, StoGCNN and DGI
respectively. Therefore, it indicates that GDGCNN can make full use
of local structure information and discrimination information, which

allows for the effective feature learning.
Table 6
The ACC results of five compared algorithms on the validation sets of the three datasets.
Model Architecture Accuracy-peak(%) Accuracy-mean(%)

MNIST Fashion CIFAR10 MNIST Fashion CIFAR10

CNN C32-P4-C64-P4-FC512 98.66 89.82 60.84 98.53 88.93 59.37
GCNN GC32-P4-GC64-P4-FC512 98.94 90.88 63.98 98.78 90.32 62.22
GGCNN GC32-P4-GC64-P4-FC512 99.20 92.16 67.08 98.98 91.88 66.13
DGCNN GC32-P4-GC64-P4-FC512 99.34 93.38 70.26 99.17 93.02 68.80
GDGCNN GC32-P4-GC64-P4-FC512 99.48 96.70 74.48 99.27 96.28 73.29
Table 7
The F1-Score results of five compared algorithms on the validation sets of the three datasets.
Model Architecture F1-Score-peak(%) F1-Score-mean(%)

MNIST Fashion CIFAR10 MNIST Fashion CIFAR10

CNN C32-P4-C64-P4-FC512 98.66 89.71 60.70 98.14 87.69 56.42
GCNN GC32-P4-GC64-P4-FC512 98.94 90.85 63.99 98.78 90.19 62.04
GGCNN GC32-P4-GC64-P4-FC512 99.20 92.05 67.11 98.98 91.70 65.95
DGCNN GC32-P4-GC64-P4-FC512 99.34 93.21 70.20 99.17 92.83 68.58
GDGCNN GC32-P4-GC64-P4-FC512 99.48 96.60 74.24 99.27 96.09 72.99
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Fig. 3. The ACC results of five compared algorithms on the validation sets of the three
atasets.

able 8
he ACC results of four state-of-the-art algorithms on three citation networks datasets
ACC(%) Citeseer Cora Pubmed Average

1stGCNN 70.3 81.5 79.0 76.9
StoGCNN 70.9 82.0 79.0 77.3
DGI 71.8 82.3 76.8 77.0
GDGCNN 72.6 82.0 79.5 78.0
8

Fig. 4. The ACC results of four state-of-the-art algorithms on three citation networks
datasets. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

4.6. Convergence study

Here the convergence of the proposed GDGCNN on the three image
datasets (MNIST, Fashion and CIFAR10) are mainly showed in Fig. 5.
For each graph, the abscissa represents the number of iterations and
the ordinate demotes the training loss.

From Fig. 5, it can be seen that the training loss of GDGCNN
has a decreasing trend on these three datasets, which can achieve
convergence. The convergence speed on the first two datasets is slow,
which needs more than 10,000 times to converge. On CIFAR 10, it
can converge only about 3000 times. From the classification results in
terms of the two evaluation metrics (ACC and F1-Score), it can be seen
that the performance of GGCNN is better than that of GCNN, which
indicates that the introduction of the local graph regularization can
effectively mine the local structure information of original data and
improve the classification performance of classification algorithms; the
performance of DGCNN is better than that of GCNN, which indicates
that the introduction of discriminant regularization can effectively
mine the local discriminant information of original data and improve
the classification performance of classification algorithms; GDGCNN
has the best classification performance, which indicates that GDGCNN
considering both local structure information and discriminant infor-
mation can fully exploit the potential information of original data
and improve the classification performance. In addition, from the clas-
sification results on three common citation networks datasets Cora,
Pubmed, and Citeseer in detail, it can be seen that GDGCNN has the
better classification performance than some state-of-the-art methods.
From the convergence experiment, it can be seen that the training
loss of GDGCNN has a decreasing trend and can achieve convergence
on all three datasets. Although GDGCNN has some advantages over
other algorithms, there are still some shortcomings, such as the longer
computation time when constructing neighborhood graphs. Therefore,
GDGCNN will be improved to further accelerate the construction of
the neighborhood graph, and make it simpler, more practical and more
efficient.

5. Summary and future work

In recent years, with the rapid growth of data dimension and data
volume, it continuously promotes the research and development of
big data processing and data mining. The existing graph convolution

network algorithms usually ignore the discrimination information and
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Fig. 5. Convergence of GDGCNN on the validation sets of the three datasets.

the local structure differences of different samples. A Graph Convolu-
tional Neural Network with Geometric and Discrimination information
(GDGCNN) is proposed in this paper. GDGCNN is an effective graph
convolutional neural network, which combines classical CNN with
spectral theory to solve the graph-structured data. GDGCNN constructs
different feature graphs for different training batches in the same
dataset, which can not only solve the problem of ignoring the difference
between the local structures of different samples in previous Graph
9

Convolutional Neural Networks (GCNN), but also fully exploit the
geometric structure of original data. GDGCNN can not only mine the
graph structure data more effectively, but also make use of the local
structure information and discriminant information in the original data
at the same time. So it has better learning ability and discriminative
ability, and can carry out more effective feature learning. GDGCNN
integrates the traditional machine learning idea into the framework of
graph convolution network, which has certain physical meaning and
interpretability, and can further improve the performance of feature
extraction.
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