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a b s t r a c t

As one of the main applications of graph embedding, community detection has always been a hot issue
in the field of complex network data mining. This paper presents a complex network graph embedding
method based on the shortest path matrix and decomposition multi-objective evolutionary algorithm
(SP-MOEA/D) for community detection, which can better reflect the network structure at the level of
network community structure. Firstly, by calculating the shortest path matrix between nodes in the
network, the node relationship matrix is obtained by adding the node similarity. Next, aiming at the
problem of community detection in disconnected networks, a decomposition-based multi-objective
optimization method is proposed to assign distances to unrelated nodes. Then, the network similarity
matrix is calculated based on the relationship matrix of network nodes, and the low-dimensional
vector representation of nodes is obtained by random surfing strategy and multi-dimensional scaling
method. Finally, the community structure of the network can be detected based on the obtained node
representation structure. Starting from the essence of network structure and the tightness between
nodes, this method can reflect the relationship characteristics of network nodes more effectively, and
then obtain the vector representation of nodes which can more accurately reflect the information
of community structure in networks. The test results on 11 networks show that the node vector
representation results obtained by this method can better reflect the community structure information
in complex networks.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Many complex systems can be represented by graphs, allow-
ng efficient storage and access of relational knowledge about
nteractive entities [1]. Individuals in complex systems are ab-
tracted as nodes in network graphs, and relationships among
ndividuals are abstracted as edges. There are many forms of
dges: weighted or un-weighted, directed or undirected, signed
r unsigned, etc. [2]. According to the connection of nodes, the
etworks can also be divided into connected networks (there
xists at least one path between any pairs of node) and discon-
ected networks (there is at least one pair of nodes with no
ath to reach) [3]. Graph not only reflects structured information,
ut also plays a key role in modern machine learning methods.
any machine learning methods use graph structured data as

eature information to predict or discover new patterns [4]. Typi-
al applications of graph analysis include: structure visualization,
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community detection [5,6], node classification [7], and connection
prediction [8] etc. Community detection aims at finding sub-
network structures with tight internal connections and sparse
external connections. In addition to according to the observed
connection relationships, the labels of nodes can be used to find
the partition of the node set. In social networks, node labels
may represent interests or beliefs; in citation networks, node
labels may represent document topics or keywords; in biological
networks, node labels may represent individual functions. The
traditional community detection methods can be divided into two
categories. One is to optimize the modularity [9] or modularity
density [10] function. This kind of method is mainly based on
multi-objective evolutionary optimization methods [11–13] and
community integration methods. Due to the resolution limitation
of modularity function and modularity density function, this kind
of method may lose important network topology information
although they can obtain good convergence results. The other
one is based on network topology structure. For example, the
methods based on spectral analysis [14] and the method based
on random walk [15]. This kind of method mainly determines the

similarity between nodes for community detection.
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Graph representation learning is a very extensive research
direction in the field of graph mining in recent years. Each node
in the graph structure is represented by a low-dimensional and
dense vector, that is, the encoding process of nodes in the graph.
This is called graph embedding or node embedding [16]. It is an
important application direction of graph representation method
to encode the high dimensional non Euclidean information of
graph structure into feature vector and further discover com-
munity structure. Node embedding methods can be divided into
three main categories: factorization based method, random walk
based method and deep learning based method [17]. The algo-
rithm based on factorization represents the connection between
nodes in the form of matrix, and the matrix factorization is used
to obtain the embedded representation of nodes. Locally Linear
Embedding (LLE) method [18] assumes that each node is a linear
combination of adjacent nodes in the embedded space. Laplacian
Eigenmaps method [19] keeps two nodes embedded more closely
when the weight of edges is higher. The method uses a quadratic
penalty function for the distance between embeddings. Therefore,
while maintaining node similarity, the difference information
is often destroyed. Cauchy Graph Embedding [20] solves this
problem by changing the formula of quadratic function. Hope
method [21] uses Singular Value Decomposition (SVD) to ob-
tain node similar matrices to maintain high-order approxima-
tion. Random walk models are often used to describe individuals
moving in unpredictable ways [22]. Random walk method is
especially useful when the graph size is too large to obtain
the topological structure of the whole graph. In recent years,
graph embedding method based on random walk model has
been proposed and improved continuously. Deepwalk [23] is the
earliest node embedding method based on random walk. Based
on the node vector representation model of Word2vec [24], the
random walk paths of nodes is constructed to imitate the pro-
cess of text generation, and then obtain the sequence of nodes.
Finally, Skip-gram and Hierarchical Softmax models are used to
model the probabilities of the nodes in the sequence. Node2vec
method [25] is further extended on the basis of Deepwalk. The
random walk of the nodes in DeepWalk is a uniform and ran-
dom distribution. Node2vec controls the breadth-first search and
depth-first search in the random walk process by introducing two
search bias parameters. Breadth-first search pays attention to the
regional network representation, while depth-first search pays
attention to the similarity between nodes. The objective functions
of Deepwalk and Node2vec are non-convex and easily fall into
local optimum [26]. HARP coarsens the graph by aggregating the
nodes into the structure of the front layer, then generates the
embedding of the coarsest graph, and improves the solution by
better initialization of weight and avoids local optimum. Combin-
ing HARP with Deepwall and Node2vec based on random walk
can get better result of graph embedding. FGE method [27] is
a method based on open flow network model, which is used to
reveal the underlying flow structure and hidden metric space of
different random walk strategies on the network. It helps to find
new potential applications in embedding. The above methods can
reflect the network structure information well. But when further
discovering the community structure of some non all connected
networks, it is easy to appear fuzzy state at the edge of some com-
munities. With more and more research on deep learning, a large
number of deep neural network methods for graphics have been
proposed. Structural Deep Network Embedding (SDNE) [28] uses
a deep autoencoder to maintain the proximity of the first-order
and second-order networks. The model consists of two parts: un-
supervised and supervised. The former includes an autoencoder
to find an embedded node that can reconstruct its neighborhood.
The latter is based on Laplacian feature mapping. When similar

nodes are far away from each other in the embedded space, the
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feature mapping will be punished. Inspired by PageRank [29],
DNGR [30] combines random surfing with deep autoencoder to
obtain network embedding results. The model consists of three
parts: random surfing to obtain the sequence of nodes; generating
probability co-occurrence matrix and transforming to positive
pointwise mutual information (PPMI) matrix; superimposing de-
noising autoencoder. Graph Convolutional Networks (GCNs) [31]
iteratively aggregates the neighborhood embedding of nodes, and
uses the obtained embedding and its embedding function in
the previous iteration to obtain new embedding. The aggregate
embedding of local neighborhoods makes it scalable. Multiple
iterations allow learning to embedding nodes to describe global
neighborhoods. In addition to the above three typical node em-
bedding methods, there are other methods, the more common
is LINE method [32]. The method defines two functions for first
and second order approximation respectively, and minimizes the
combination of the two functions. The first-order adjacency func-
tion is similar to graph decomposition in order to keep the
embedded adjacency matrix and dot product close. The difference
is that LINE defines two joint probability distributions for each
pair of nodes, one using adjacency matrix and the other using
embedding.

Graph embedding method starts from the topological struc-
ture and node attributes of the graph, which is more helpful
to understand the internal structure information and the rela-
tionship between nodes. Therefore, it has more advantages for
further community detection applications. Due to the diversity of
datasets in community detection, more focused methods should
be proposed and studied. Some networks are not fully connected.
In which some subgraphs or nodes are structurally independent.
That is, there are no edges between them. When processing
such data, the distance between some nodes is equal to infin-
ity, and the similarity between them is 0. In addition, many
datasets do not contain node attribute information. Therefore,
it is more challenging to obtain the node vector representation
results suitable for community detection problems with random
walk method or graph information matrix based graph represen-
tation method. This paper will focus on the community detection
of graph embedding method, which is an important applica-
tion of network node embedding method. A decomposition-based
multi-objective evolutionary optimization method is proposed to
solve the problem of node embedding in disconnected networks.
Firstly, the shortest path matrix between nodes in the network
is calculated, and then the relational matrix between nodes is
obtained by adding the similarity between nodes. The distance
matrix between nodes can reflect the network topology and
the tightness between nodes. As the name implies, the similar-
ity function between nodes can reflect the degree of similarity
between nodes. Combining the distance matrix and similarity
between nodes, the initial sequence matrix of nodes reflect-
ing the network structure can be obtained better. Aiming at
the problem of community detection in disconnected networks,
a decomposition-based multi-objective optimization method is
proposed to assign distances to unrelated nodes. Two objective
functions are designed, which are combined with the network
core nodes (potential community structure center), so that the
low-dimensional vector representation results of the nodes can
better reflect the network structure and the tightness between
nodes at the community structure level. Experiments show that
the proposed method is more conducive to the application of
node vector representation results to community detection in dis-
connected networks. After calculating the distance matrix and the
similarity of nodes to get the network node relationship matrix,
the network similarity matrix is further calculated, and then the
low-dimensional vector representation of nodes is obtained by

random surfing strategy and multi-dimensional scaling method.
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Fig. 1. A network with 34 nodes and 78edges.

inally, the community structure of the network can be detected
ased on the obtained node representation structure. The main
ontributions of this paper are as follows:
(1) By combining the distance matrix with the similarity ma-

rix, the initial sequence matrix of nodes reflecting the network
tructure can be obtained. It helps to collect the information
ontained in the network more comprehensively.
(2) A decomposition-based multi-objective optimization

ethod is proposed to assign distances to disconnected nodes.
t is helpful to improve the fuzzy community boundary caused
y the infinite distance between some nodes in disconnected
etworks.
(3) Starting from the essence of network structure and the

nformation of nodes, The proposed algorithm can reflect the re-
ationship characteristics of network nodes more effectively, and
hen obtain more accurate expression of network node vectors
hich can better reflect the network structure at the level of
etwork community structure.

. Background

.1. Graph representation for community detection

Given a graph G with n nodes and m edges. Graph embedding
s a process of obtaining the node vector representation by ran-
om walk, matrix decomposition or deep learning. Community
etection, one of the applications of graph embedding, is the
rocess of dividing a graph into several subgraphs according to
ts topological structure and node attributes. The internal nodes
f these subgraphs are closely connected, while the external links
re sparse. The graph embedding method maps the topological
tructure and node attributes of the graph to the node vector
epresentation. For the graph structure shown in Fig. 1, the vi-
ualization result of the node vector representation obtained by
raph embedding method is shown in Fig. 2(a). Then using the
ode vector in Fig. 2(a), a simple clustering method can be used
o further obtain the community detection results, as shown in
ig. 2(b). The nodes in the rectangular box belong to the same
ommunity. This paper is a further study of community detection
ased on graph embedding.

.2. Random walk based node embedding

Since the vectorization model of DeepWalk nodes based on
ord2vec was proposed, the network embedding method based
n random walk has been proposed continuously. These meth-
ds generate the sequence of nodes by random walk strategy,
nd finally obtain the result of node embedding. Compared with
eepWalk, Node2vec introduces breadth-first search and depth-
irst search into the generation of random walk sequences by

ntroducing two parameters p and q. Probability p controls the
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probability of jumping up to the neighbor of the last node, and
q controls the probability of jumping up to the non-neighbor of
the last node. Given the source nodei, and simulating a random
walk with length l. Let ch be the hth walking node and the starting
node c0 is set to i. Node ch follows the following distribution:

P(ch = j|ch−1 = i) =

⎧⎨⎩
pij
Z

if (i, j) ∈ E

0 otherwise
(1)

where pij is the transition probability from node i to node j, Z is
used for standardization.

It can be seen that the method of obtaining sampling sequence
of nodes by random walk needs to set the sequence length in
advance. The neighbor information of fringe nodes is often dif-
ficult to be captured comprehensively. In addition, it is difficult
to determine parameters such as step size and step number of
random walk. The random walk strategy reflects the neighbor-
hood information of nodes, the sequence information of unrelated
nodes will be very different when dealing with disconnected
networks. The node vectors obtained in this way will have some
influence when they are applied to community detection. This
paper calculates the shortest path matrix of network nodes, and
then calculates the similarity matrix of network nodes according
to the shortest path matrix and the similarity between nodes.

2.3. Floyd–Warshall

Floyd–Warshall algorithm [33] is a common algorithm for
finding the shortest path in graph in dynamic programming. The
pseudocode of the Floyd–Warshall algorithm is as follows:

where n is the number of nodes, i, j are any nodes in the network.
It can be seen that the shortest path matrix between nodes can
reflect the tightness between nodes from the reverse side. The
shortest path between nodes is larger, which indicates that the
two nodes are less closely connected.

2.4. Random surfing

Random surfing is mainly inspired by PageRank. PageRank,
also known as web page ranking, is a technology used by search
engines to calculate web page ranking based on hyperlinks be-
tween web pages. In Random surfing model, the transition matrix
T is defined to represent the transition probability between dif-
ferent nodes. Introducing row vectors pk, The jth entry denotes
the probability of reaching node j after k-step transfer. p0 is a
ector with only one term of 1 and all the others are 0. Random
urfing considers the case of restart, that is, there is a certain
robability to return to the initial node. There are the following
elationships:

k = α · pk−1T + (1 − α)p0 (2)

The shortest path matrix of network nodes is calculated first.
Then the network node similarity matrix based on the shortest
distance matrix is calculated. The node similarity matrix is used
as the transition matrix in Random Surfing to obtain the sequence
of nodes.
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Fig. 2. Visualization results of the network in Fig. 1. (a) Node vector representation result. (b) Community detection result.
Fig. 3. The flow chart of the proposed algorithm SP-MOEA/D.
. Graph representation method for complex network

A network node embedding method based on the shortest
ath and similarity matrix of nodes is proposed for the important
pplication of graph embedding method: community detection. A
ecomposition-based multi-objective evolutionary optimization
ethod is proposed to solve the problem of node embedding in
isconnected networks. Firstly, the shortest path matrix between
odes in the network is calculated, and the node similarity is
dded to obtain the network node relationship matrix. To solve
he problem of community detection in disconnected networks,
decomposition-based multi-objective optimization method is
roposed to assign distances to unrelated nodes. Then, the net-
ork similarity matrix is calculated based on the relationship
atrix of network nodes. Finally, the low-dimensional vector

epresentation of nodes is obtained by random surfing strategy
nd multi-dimensional scaling method. Finally, the community
tructure of the network can be detected based on the obtained
ode representation structure. In summary, the flow chart of the
roposed algorithm SP-MOEA/D is shown in Fig. 3.
4

3.1. Similarity matrix based on shortest path and similarity between
nodes

A method for obtaining the vector representation of network
nodes by Multidimensional Scaling (MDS) [34] is proposed. Be-
fore adopting the MDS method, the initial representation of the
network node is needed. Community detection is the discovery of
a set of nodes with tight internal connections and sparse exter-
nal connections in complex networks. Therefore, more attention
should be paid to the network topology information and the
connections between nodes for the representation of node vec-
tors in community detection. Floyd–Warshall algorithm is used to
calculate the shortest path matrix between nodes in the network.
The elements in the matrix correspond to the minimum number
of edges that need to be passed for each pair of nodes to form a
connection. Thus, the matrix reflecting the network structure and
the tightness between nodes can be obtained preliminarily. Then,
the similarity between nodes in the network is calculated and
added to the shortest path matrix after negative to obtain a new
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Fig. 4. Part of the sub-network in the Netscience network.

matrix. The cosine similarity function [35] is used to calculate
the similarity between nodes. The cosine similarity function is
expressed as follows.

Sim =
U · V

∥U∥ ∥V∥
(3)

where U and I represent any two vectors. For the similarity be-
tween nodes in complex networks, the cosine similarity function
can be rewritten as follows:

Sim =

⏐⏐Ni ∩ Nj
⏐⏐√

|Ni|
⏐⏐Nj

⏐⏐ (4)

where i and j represent any node in the network, Ni(Nj) represents
neighbor sets of node i (j).

After getting the shortest path between nodes and the sim-
ilarity matrix between nodes, the relationship matrix between
nodes is obtained after adding the two. The elements of each
row in the relationship matrix are regarded as the characteris-
tics of each node in the network, which indicates the tightness
between this node and other nodes. Then the similarity matrix
is further calculated for the relationship matrix between nodes.
When Floyd–Warshall is used to calculate the shortest path ma-
trix among network nodes, there will be a situation where the
distance between nodes is infinite in disconnected networks. In
Section 3.3, a method obtaining a distance matrix between nodes
in a network is presented.

3.2. Connected sub-networks and core nodes in disconnected net-
work

In an disconnected network, there must be some fully con-
nected sub-networks. For example, the Netscience network [36]
is a disconnected network, which consists of 1589 nodes and
2742 edges. In Netscience network, there are 395 completely
independent sub-networks, the maximum node degree is 34, the
minimum node degree is 0, that is, there are nodes with no
neighbor nodes in the network. Part of the sub-network in the
Netscience network is shown in Fig. 4.

When the decomposition based multi-objective evolutionary
algorithm is used to obtain the shortest path matrix among nodes
in an disconnected network, the value of one of the objective
functions is determined by the network core nodes. All nodes
in the network with the largest degree in the neighborhood are
taken as the core nodes. The core nodes in the sub-network
or network community structure are often more closely con-
nected with other nodes in the network [37]. A node belongs
to the ‘‘destructive decisive critical’’ core node when the node
is removed or changed to affect the structure or robustness of
the whole network. Another kind of core node, which is ob-
tained by analyzing the information such as the centrality index
5

of nodes in the network, belongs to the ‘‘significant equivalent
to critical’’ core node. Among them, the calculation indexes of
node centrality are mainly as follows: centrality index based on
edge betweenness index, centrality index based on compactness
degree and centrality index based on node degree.

3.3. Graph embedding method based on MOEA/D for disconnected
network

The network similarity matrix is calculated by cosine similar-
ity function and distance between network nodes. The initial se-
quence of network nodes is obtained. Then, the low-dimensional
vector representation of network nodes is obtained by random
surfing and multi-dimensional scaling method. For disconnected
networks, the sequence information of unconnected nodes will be
very different. Therefore, this paper introduces a multi-objective
evolutionary optimization method to obtain the distance matrix
between nodes in the network, which can reflect the similarity
degree and attribute characteristics of nodes at the same time.
Multi-objective evolutionary optimization algorithm has been ap-
plied to many fields because it can obtain a set of Pareto optimal
solutions with different emphasis [38,39]. This section mainly in-
troduces the multi-objective optimization algorithm based on de-
composition, which assigns the shortest path to the unconnected
nodes in the disconnected network.

3.3.1. Objective functions
In order to obtain a more shortest path matrix of nodes, two

objective functions are designed as follows.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min f1 =

r∑
a=1,b=a+1

dab

min f2 = −std(
k−1∑
l=1

dl)

(5)

where r represents the number of sub-networks, dab represents
the allocation distance between sub-networks in network, a and
b represent any two sub-networks, std represents the standard
deviation operation, dl represents the distance between any
core node and other core nodes described in Section 3.2. In
the MOEA/D-Net framework, each sub-problem is represented as
follows.
min gi(x|λi, z∗) = max{λi1|f1(x) − z∗

1 |, λi2|f2(x) − z∗

2 }

Subject to x ∈ Φ ⊆ RN (6)

where λi = {λi1, λi2} represents weight coefficients, z∗
= (z∗

1 , z
∗

2 )
represents a reference point, where

λi1 = (i − 1)/(Np − 1); λi2 = (Np − i)/(Np − 1)
z∗

1 = {min f1(x)|x ∈ Φ}; z∗

2 = {min f2(x)|x ∈ Φ}
(7)

For each non-dominant point x*, there should be an appropri-
ate weight vector λ to make x* the optimal solution of the above
formula. The non-dominant solution set can be obtained by si-
multaneously optimizing the sub-problems under these different
weight vector values λ.

Both objective functions are minimized at the same time. The
first objective function calculates the mean value of the distri-
bution distance between all unrelated sub-networks, that is, the
mean value of all genes in the chromosome. The second objec-
tive function calculates the negative standard deviation of the
distance between any core node and other core nodes described
in Section 3.2. In the follow-up experiments of this paper, the first
core node is chosen as the arbitrary core node.

The motivation for the design of these two objective functions
is as follows. This paper focuses on the important application
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f community detection based on graph embedding method, so
t focuses on the close relationship between nodes and net-
ork structure characteristics. When distributing the distances of
isconnected nodes, the integrity of the original network topol-
gy information should be ensured, and the distribution results
hould be guaranteed to be conducive to further community
tructure detection. When the node allocation distance is initial-
zed, the initialization range should be larger than the maximum
ode degree of the sub-network where the node is located, and
ess than the maximum node degree plus the number of unrelated
ub-networks in the network. When the scale of the network
ecomes larger, the number of disconnected sub-networks will
lso increase. Therefore, in order to better ensure the distribution
esult is conducive to further community structure detection, the
irst objective function is to control the distribution distance of
odes so that it will not be too large. In addition, there should
e a restrictive relationship between the multiple objectives in
he multi-objective optimization method, so as to control the
olution obtained by the algorithm to evolve towards a more
dvantageous direction. The core node in the network can be
egarded as the potential community center node in the network,
o the distance between the core nodes can reflect the distance
etween the potential community structures in the network. The
econd objective function is to widen the distance between the
ore nodes in the network. As you can see from the previous
ntroduction, there will be at least one core node in each uncon-
ected subnet. Increase the distance between the core nodes and
nsure that the node allocation distance is not too large. In this
ay, the result of node vector representation is more conducive
o community structure detection in the network. In the following
xperiments, the validity of the two objective functions will be
urther proved.

.3.2. Algorithm framework
The multi-objective optimization method can find a series

f effective solutions in an independent operation, and the ob-
ained series of solutions always have diversity [40,41]. Among
hem, MOEA/D is one of the widely studied methods in recent
ears [42]. The MOEA/D has the following advantages. The frame-
ork of MOEA/D-Net algorithm is adopted to solve the distance
ssignment tasks of disconnected nodes in disconnected net-
orks, so as to obtain a series of more advantageous solutions.
he algorithm framework is as follows:
Firstly, a framework based on the decomposition is estab-

ished. The framework decomposes complex multi-objective op-
imization problems into several simple sub-problems of single-
bjective optimization, which can solve multi-objective optimiza-
ion problems more efficiently. Secondly, the decomposition-
ased optimization method can solve several sub-problems si-
ultaneously through the evolution of several chromosomes

solutions), so that the algorithm can run independently at each
ime. In addition, the decomposition-based optimization method
ombines the neighborhood information of each sub-problem
o optimize them. This optimization method can quickly spread
seful information containing specific structural knowledge to
he sub-problems to be solved and their neighborhood problems.
he computational cost is low. The multi-objective optimization
roblem based on decomposition adopts implicit strategies of
niformly distributed sub-problems to ensure the diversity of
olutions. After obtaining a series of Pareto optimal solutions with
ifferent emphasis on the objective functions, these solutions are
ecoded as the distance matrix between nodes in the network.
he node vector representation results are obtained by further
rocessing. Due to the different emphasis of the solution set on
he objective functions, it is more helpful to obtain the results of
ifferent evaluation indexes.
6

3.3.3. Initialization
Firstly, the connected sub-network structure in the network

is searched and the maximum node degree of each sub-network
node is calculated. Then, according to the maximum node degree
of the sub-network, initialization assignment is made for the
distance between the nodes of the sub-network. The structure of
Karate network [43] is modified and introduced as a disconnected
network. The specific method is to separate some nodes in Karate
network and get a new network Karate_t. Fig. 5 shows the original
Karate network and variant Karate_t.

Fig. 5(a) is the structure of the original Karate network, which
has 34 nodes and 78 edges. It is a connected network. The original
Karate network contains two community structures, which are
distinguished by circles and triangles. Fig. 5(b) is a variant of
the Karate network, Karate_t. There are three disconnected sub-
networks. The new independent sub-networks contain nodes 7,
17, 26, and 9, 12, 31, 32. The remaining nodes and edges remain
unchanged. In addition to the two community structures in the
original network, the two independent sub-networks will be two
new community structures. The communities are distinguished
using circles, triangles, diamonds and squares in Fig. 5(b).

As shown in Fig. 5(b), the connected sub-networks in Karate_t
network are searched and the maximum node degrees in each
sub-network are calculated, which are 14, 2 and 2, respectively.
Since the distance allocated to nodes between sub-networks is
infinite in the original distance matrix, the distance allocated to
nodes should not be less than the distance between nodes and
neighboring nodes in order to ensure that the topology and close
relationship of the original network are not destroyed. In addi-
tion, if a distance value is reallocated for each pair of unrelated
nodes, the complexity of the algorithm will be very high and
the convergence speed of the algorithm will be greatly affected.
Therefore, the form of the solution is as follows:

X = {x1, x2, . . . , xNp} (8)

where xi represents the gene value in chromosome X, Np rep-
resents the number of genes, Np = k(k − 1)/2, k represents the
number of sub-networks in the network.

As shown in Fig. 5(b), the Karate_t network consists of three
sub-networks, k = 3, Np = 3. Therefore, the solution of Karate_t
network is {x1, x2, x3}. Where x1 represents the allocation distance
between all nodes in sub-network 1 and all nodes in sub-network
2, x2 represents the allocation distance between all nodes in sub-
network 1 and all nodes in sub-network 3, x3 represents the
allocation distance between all nodes in sub-network 2 and all
nodes in sub-network 3. The distances of all nodes in each group
of sub-networks are equal. The distance is initialized as:

dab = max(ya, yb) + rand(k) (9)

where ya represents the maximum degree of nodes in sub-
network a, rand(k) represents the operation of randomly gener-
ating integers between 0 and k.

This allocation method saves a lot of computational com-
plexity, and the distance between sub-networks is not less than
the distance between nodes in sub-networks, which ensures the
original network topology.

3.3.4. Genetic operators
The genetic operators mainly include crossover operator, mu-

tation operator and selection operator. In the process of chro-
mosome optimization, through the operation of chromosome
replication, crossover or mutation, the population evolves contin-
uously, and converges to the ‘‘most suitable environment’’ popu-
lation. A series of effective non-dominant solutions are obtained.
In the process of population evolution, the crossover operator
mainly ensures that the offspring inherit the characteristics of the
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Fig. 5. Karate network and its variant structure. (a) The original Karate network structure. (b) Karate_t: the variant structure of Karate Network.
c

aternal individuals. The mutation operator obtains new offspring
ndividuals mainly by random perturbation of chromosome itself.

Two-point crossover is used as the crossover operator in the
ulti-objective optimization method. Specific operations are as

ollows: given two parents xi and xj ; randomly select two points
and b (1≤ a ≤ b ≤ r); generate a random number between (0,
); if the random number is less than the crossover probability
c , the gene values of two paternal chromosomes a and b are

exchanged.
The mutation operator adopts the single point mutation op-

erator. The mutation is only for chromosomes obtained by the
crossover operator introduced earlier. The specific operations are
as follows: for each gene on the chromosome obtained by the
crossover operator, a random number between (0,1) is generated;
if the random number is less than the mutation probability pm,
hange the value in this position. The specific changed value is the
ame as that the generation of dab. Such variation methods and
alues will ensure the diversity of individuals in the evolutionary
rocess and help to further search for effective non-dominant
olutions.

.4. Dimensionality reduction method based on multi-dimensional
caling method

According to the operation in Sections 3.1–3.3, the network
ode relationship matrix is obtained firstly by obtaining the
7

shortest path and node similarity between network nodes. Then
the elements in the matrix are used as network node char-
acteristics for further similarity calculation. The network simi-
larity matrix is processed by random surfing strategy. Finally,
the low-dimensional vector representation of network nodes
is obtained by dimensionality reduction by multi-dimensional
scale scaling method. The basic idea of multi-dimensional scaling
method is to map points in high-dimensional coordinates into
low-dimensional space, while keeping the distance (similarity)
between nodes as constant as possible. The concrete operation
steps are as follows: firstly, the distance matrix of the nodes
in the original space is calculated; the inner product matrix is
calculated according to the distance matrix; secondly, the eigen-
value matrix and eigenvector matrix are obtained by eigenvalue
decomposition of the inner product matrix; finally, the first M
term in the eigenvalue matrix and its corresponding eigenvector
are remained, whereM is the final vector dimension. The distance
matrix of the nodes in the original space is the network similarity
matrix. Similarity matrix can be regarded as a matrix reflecting
the distance between points in the original space.

3.5. Complexity analysis

Assuming there are n nodes and m edges in the graph. For
onnected networks, the complexity of computing the shortest
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able 1
onnected network information.
Network Node Edge

Karate 34 78
Dolphin 62 159
Football 115 613
Polbooks 105 441
SFI 118 200
Power 4941 6594

Table 2
Disconnected network information.
Network Node Edge

Karate_t 34 62
Dolphin_t 62 136
Email-Eu-core 1005 16064
Polblogs 1490 16717
Netscience 1589 2742

distance matrix, computing node similarity, random surfing and
MDS is O(n2), and the complexity of K-means is O(n). Therefore,
the time complexity of the proposed algorithm for connected
networks is 4O(n2)+O(n)≈O(n2). For disconnected networks, the
complexity of finding the core node is O(m). In MOEA/D algo-
ithm, The operation of crossover, mutation operation, selecting
pdating solution and updating neighborhood solution need O(n)
asic operations, and the time complexity of updating reference
oint is O(1). Therefore, the time complexity of the proposed
lgorithm for disconnected networks is 4O(n2) + O(n) + 4O(n) +

(m) + O(1) ≈ O(n2).

. Experimental results and analysis

.1. Comparison algorithms and datasets

In order to better analyze the effectiveness of this algorithm,
his section compares the algorithm with the following meth-
ds: Deepwalk method, Node2vec method, LINE method, DNGR
ethod, DNE-SBP method [44] and ECD method [45]. The ECD
ethod uses evolutionary computation method to detect com-
unity directly. There is no graph embedding results, so the
isualization results of the ECD method are not compared.
After obtaining the node vector representation by the above

ix graph embedding methods, the community structure of the
ode representation results is detected. In this paper, K-means
lustering method is used. In addition, the network similarity
atrix obtained in this algorithm is used as the data matrix input

n the DNGR algorithm. After obtaining the node vector repre-
entation through the above 6 methods, the community structure
f the node representation results can be detected. The K-means
lustering method is used in this paper. In this experiment, it is
pplied to unsigned networks for testing. The information of 6
onnected and 5 disconnected real-world networks are given in
ables 1 and 2.
Karate network is a network built according to the commu-

ity relationship among members of a Karate club. The Karate
etwork consists of 34 nodes and is divided into two commu-
ities due to differences between club directors and coaches. The
olphin network was acquired by Lusseau and others when they
tudied a group of bottlenose dolphins living in Magic Bay, New
ealand. The network consists of 62 nodes. The network is divided
nto two communities due to the separation of dolphins labeled
‘SN100’’ for a certain period of time. Football network is the com-
etition network of American college football team in autumn
999 regular season. It contains 115 nodes representing 115 foot-

all teams from 12 leagues. The nodes in Polbooks Network [12] (

8

epresent books on American politics sold by amazon.com, an
nline bookstore. The SFI network represents 271 scientists and
heir collaborators staying underground at the Santa Fe Institute
nd other institutions at any time from 1999 to 2000. The edges of
he network represent two scientists working together on one or
ore projects at the same time. Power network is an undirected
etwork, which represents the topology of the western power
rid in the United States. There are 4941 nodes representing 4941
ower base stations.
In order to more intuitively compare the graph representation

esults of various algorithms on the disconnected network, the
arate network and the dolphin network are transformed into the
arate_t network and the dolphin_t network. Karate_t network
eparates several nodes in Karate network to form two sub-
etworks. The independent nodes are node 7, 17, 26, and node
, 12, 31, 32. The remaining nodes and edges remain unchanged.
imilarly, the Dolphin_t network separates several nodes in the
olphin network into two sub-networks. The independent nodes
re node 5, 12, 29, 40, 52, and node 13, 22, 34. The remain-
ng nodes and edges remain unchanged. The Email-Eu-core net-
ork [46] is generated from e-mail data from a large European
esearch institute. E-mail represents the communication between
embers of an organization. When there is communication, an
dge is generated. The network contains 42 community struc-
ures. Polblogs Network [47] is a data set of political blogs. The
onnections between blogs in the network are automatically ex-
racted from the front page of the blog. Netscience network is
compilation of review bibliographies on two networks. 1589
odes represent 1589 co-authors.

.2. Evaluation indexes

There are three main evaluation indicators for community de-
ection: Normalized Mutual Information (NMI) [48], Modularity
Q ), Modularity Density (D).

1) Normalized Mutual Information (NMI)
Normalized Mutual Information detects the validity of net-

ork partitioning results based on real network partitioning. For
wo different partitions A and B, NMI is defined as follows:

MI =
−2

∑CA
u=1

∑CB
v=1 Cuv · ( Cuv ·n

Cu·Cv
)∑CA

u=1 Cu log( Cun ) +
∑CB

v=1 Cv log( Cv

n )
(10)

here n is the number of nodes, C is confusion matrix, the
element Cuv in the matrix denotes the number of nodes belonging
o u community in A partition and v community in B partition.
A(CB) is the number of communities in A(B) partition, Cu.(Cv) is
he sum of the elements in line u(v) of matrix C. The greater the
alue of NMI, the more similar the division A and B are. When the
alue of NMI is 1, the division A and B are identical.

2) Modularity (Q)
Modularity function is the most commonly used indexes to

valuate the structure of network community. The greater the
odularity, the closer the internal connection of the community
tructure in the network, that is, the better the result of net-
ork partition. For an un-weightless and undirected network, the
odularity function is as follows:

=
1
2m

N∑
c=1

[2lc −
(dc)2

2m
] (11)

where N is the number of communities, m is the total number of
edges in the network, c is the community number, lc is the total
umber of edges within the community C, dc is the sum of the
ode degree of the nodes in the community C.

3) Modularity Density (D)
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For the resolution of modularity, another commonly used eval-
uation criterion in community detection is modularity density
function. The modularity density function is expressed as follows:

D =

N∑
u=1

L(cu, cu) − L(cu, cu)
|cu|

(12)

here cu is a community in the network partition result, L(cu, cu)
s the number of connections between the nodes in the cu com-
unity, L(cu, cu) is the number of connections between nodes
ithin the community cu and the nodes outside the cu commu-
ity, |cu| is the number of nodes in community cu.

.3. Parameter analysis

In this section, the parameter selection in this algorithm will
e explained experimentally. The main parameters are: proba-
ility parametera in Random Surfing strategy, population size
opsize, maximum iteration number gmax, sub-problem neigh-
orhood size Ns, crossover probability pc , mutation probability
m.
The parameter α in Random Surfing strategy represents the

robability that the operation will continue in the random surfing
rocess. 1-α represents the probability that the surfing process

will return to its original node and restart. Keep the other pa-
rameters in the algorithm unchanged, Fig. 6 shows the effect of
α parameters in [0.9, 1] interval on the experimental results on
four networks. popsize is set to 100, gmax is set to 30, and Ns is set
to 15.

As can be seen from Fig. 6, when α is taken in the range of
[0.9, 0.98], the impact on the results of community detection on
four networks is not obvious, but when the value is higher than
0.98, the results decrease significantly. Therefore, the parameter
α is taken in the interval of [0.9, 0.98] according to the different
network.

Fig. 7 shows the effect of parameter popsize on experimental
results on three networks. Among them, α is set to 0.98, gmax is
set to 30, and Ns is set to 15. The values of the three evaluation
indexes on Email-Eu-core network are quite different. For the
convenience of display, double ordinates are adopted in Email-
Eu-core network. The right ordinate corresponds to the D value.
So as Figs. 8–9. In evolutionary algorithms, too small population
size can easily lead to poor individual diversity of the generated
offspring. When the population size is too large, redundant in-
dividuals are prone to occur. Therefore, the population size is
chosen between [60, 200].

As can be seen from Fig. 7, the size of the population has
little effect on the results of small-scale networks. For large-scale
networks, too small population size settings may lead to poor
iteration results. Therefore, the popsize parameter is set to 100.

Set α to 0.98, popsize to 100 and Ns to 15. Test the effect of
gmax parameters on experimental results on three networks as
shown in Fig. 8. As can be seen from Fig. 8, the setting of the
maximum number of iterations has little effect on the results
of small-scale networks. For large-scale networks, too small the
maximum number of iterations may lead to poor iteration results.
Therefore, the maximum number of iterations gmax parameter is
set to 30.

The effect of the values of Ns parameters on the experimental
results is tested on three networks as shown in Fig. 9. The α is
set to 0.98, popsize is set to 100, gmax is set to 30. As can be
seen from Fig. 9, the setting of sub-problem neighborhood size
has little effect on the results of small-scale networks. For large-
scale networks, too large or too small neighborhood size settings
of sub-problems may lead to poor iteration results. Therefore, the
value of the neighborhood size N of the sub-problem is set to 15.
s

9

pc and pm are the crossover probability and mutation probabil-
ity of MOEA/D algorithm. Based on the experience of evolutionary
algorithm, the values of pc and pm are 0.8 and 0.5, respectively.

4.4. Visualization results

In this section, several visualization results of node embed-
ding on the network are given for the algorithm and the com-
parison algorithm. The nodes with different shapes and colors
represent the distribution of nodes in the real network partition
results. Fig. 10 shows the visualization results of six algorithms in
Karate network. The horizontal and vertical coordinates represent
the coordinates of node vector representation results. Therefore,
the relationship and distribution of the nodes in the embedded
results are more clear. So as Figs. 11–13.

As can be seen from Fig. 10, the visualization results of Deep-
walk algorithm and Node2vec algorithm in the node embedding
problem are very similar and the effect is very good. The advan-
tages of LINE method and DNE-SBP algorithm in visual results are
not obvious. In the case of node embedding obtained by DNGR
algorithm, the location of a few nodes is inaccurate. As can be
seen from the visualization result obtained by the proposed algo-
rithm, the location of nodes in the same community is relatively
centralized, which can well reflect the node relationship in the
network.

Fig. 11 shows the visualization results of six algorithms node
embedding in Dolphin network.

As shown in Fig. 11, the results of Dolphin network embedding
obtained by Deepwalk and Node2vec algorithms are still similar,
and they can well reflect the tightness between nodes in the
network. Both LINE algorithm and DNGR algorithm have a few
nodes whose locations cannot effectively reflect the tightness be-
tween nodes in the network. As can be seen from the visualization
result obtained by the proposed algorithm, although the overall
network node distribution is relatively compact, it can still reflect
the relationship between nodes in the network through node
embedding.

Fig. 12 is the visualization results of six algorithms embedding
nodes in Karate_t network. From Fig. 12, it can be seen that the
boundary between the independent sub network and other nodes
is not clear in the embedded results of the Karate_t network
nodes obtained by Deepwalk algorithm, Node2vec algorithm and
DNGR algorithm. Results of LINE algorithm and DNE-SBP do not
reflect the relationship between independent sub-network and
other nodes very well. However, the proposed algorithm can still
accurately describe the tightness between nodes in the network.

Fig. 13 shows the visualization results of six algorithms em-
bedding nodes on Dolphin_t network. As shown in Fig. 13, the
Deepwalk and Node2vec algorithms can identify the indepen-
dent sub-networks in the network more accurately. However,
the algorithm based on random walk is affected by the large
distance between independent sub-networks, which can easily
blur the boundaries of nodes between connected communities.
This will lead to inaccurate application in community detection.
The results of LINE algorithm and DNGR algorithm are poor when
dealing with complex networks with independent sub-networks.

It can be seen that the proposed algorithm can identify inde-
pendent sub-networks accurately, and effectively distinguish the
original connected communities, which is more conducive to the
application of complex network embedding results to community
detection tasks.
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Fig. 6. The effect on three indices of parameter α values on four networks. (a) NMI. (b) Q. (c) D.
Fig. 7. The effect of parameter popsize on three networks. (a) Karate_t. (b) Dolphin_t. (c) Email_Eu_core.
.5. Community detection results

In order to further verify the effectiveness of the proposed al-
orithm, this section will give the results of community detection
f network embedding in connected and in connected networks.
10
Table 3 shows the NMI values obtained by six algorithms on eight
networks with real partitions.

From Table 3, we can see that the network embedding results
obtained by six embedding methods are applied to eight kinds
of network community detection with real partition. Deepwalk
algorithm obtains the max NMI values in Dolphin network and



W. Zhang, R. Shang and L. Jiao Applied Soft Computing Journal 97 (2020) 106764
Fig. 8. The effect of parameter gmax on three networks. (a) Karate_t. (b) Dolphin_t. (c) Email_Eu_core.
Fig. 9. The effect of parameterNs on three networks. (a) Karate_t. (b) Dolphin_t. (c) Email_Eu_core.
Email-Eu-core network, respectively. LINE algorithm also obtains
the max NMI value in Dolphin network. The proposed algorithm
can obtain the best detection results on seven networks. More-
over, in Karate_t and Dolphin_t networks containing independent
11
sub-networks, the proposed algorithm can distinguish the in-

dependent sub-networks and each community structure very

accurately. In the Email-Eu-core network, although the algorithm
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Fig. 10. Visualization results of node embedding on Karate network. (a) Deepwalk. (b) Node2vec. (c) LINE. (d) DNGR. (e) DNE-SBP. (f) SP-MOEA/D.
Fig. 11. Visualization results of node embedding on Dolphin network. (a) Deepwalk. (b) Node2vec. (c) LINE. (d) DNGR. (e) DNE-SBP. (f) SP-MOEA/D.
Table 3
NMI values obtained by six algorithms on 8 networks.
NMI Deepwalk Node2vec LINE DNGR DNE-SBP ECD SP-MOEA/D

Karate 0.4006 0.6766 0.5739 0.6458 0.6499 0.6994 1
Dolphin 0.8888 0.8141 0.8888 0.7531 0.3562 0.5852 0.8888
Football 0.9241 0.9268 0.9128 0.7787 0.8706 0.9268 0.9314
Polbooks 0.5894 0.5632 0.5629 0.5336 0.5858 0.5639 0.6557
Email-Eu-core 0.7283 0.7201 0.6874 0.3692 0.2037 0.5620 0.6854
Polblogs 0.4124 0.4248 0.4058 0.0155 0.5092 0.3914 0.5204
Karate_t 0.6095 0.5497 0.5241 0.8396 0.7000 0.8570 1
Dolphin_t 0.9343 0.9343 0.9343 0.8091 0.7934 0.8038 1
does not get the max NMI value, compared with DNGR algo-
ithm and DNE-SBP algorithm, the algorithm is still significantly
mproved.

As shown in Table 4, the network embedding results obtained
y six embedding methods are applied to 11 networks. Node2vec
12
algorithm achieves the highest modularity value in Football net-
work and Power network, respectively. Where ‘‘-’’ means that
the algorithm cannot get effective community detection results
within 10 h. DNE-SBP algorithm achieves the highest modularity
value in Polblogs network. Due to its high time complexity, ECD
method cannot obtain effective community detection results in
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Fig. 12. Visualization results of node embedding on Karate_t network. (a) Deepwalk. (b) Node2vec. (c) LINE. (d) DNGR. (e) DNE-SBP. (f) SP-MOEA/D.
Fig. 13. Visualization results of node embedding on Dolphin_t network. (a) Deepwalk. (b) Node2vec. (c) LINE. (d) DNGR. (e) DNE-SBP. (f) SP-MOEA/D.
a certain period of time when the network scale increases. ECD
method obtains the highest Q value in 5 networks.

But reviewing Table 3, the NMI value corresponding to ECD
method results is not ideal. This is because the modularity func-
tion Q, as the evaluation index of community detection results,
which can reflect the internal compactness of community struc-
ture, but it cannot reflect the most accurate real community
structure of the network. The proposed algorithm can get the
maximum Q value of modularity on 3 networks. At the same
time, it can be seen that although the proposed algorithm does
not get the highest modularity value on football network, pol-
blogs network and power network, it is not much different from
the highest modularity value. This shows that the algorithm can
still get the detection result with closer internal connections of
community structure on the basis of getting closer to the real
network partition result.

It can be seen from Table 5 that the network embedding
results obtained by six embedding methods are applied to 11 net-
works. Where ‘‘-’’ means that the algorithm cannot get effective
13
community detection results within 10 h. The node2vec algo-
rithm achieves the highest modularity density value on power
network. ECD method obtains the highestD value on six networks.
In the same way as described in the previous paragraph, the
modularity density can reflect the internal compactness of the
community structure, and improve the resolution limitation of
the modularity function when the network scale increases, but
it still has limitations in reflecting the most accurate real com-
munity structure of the network. The proposed algorithm can
get the maximum modularity density on 3 networks. This shows
that the proposed algorithm can still get the detection result with
closer internal connections of community structure on the basis
of getting closer to the real network partition result.

Wilcoxon signed rank test is used to analyze the results of the
proposed algorithm and 6 comparative algorithms. The Wilcoxon
signed rank test results of the proposed algorithm and the com-
parison algorithms are shown in Tables 6–8. Where SF represents
the proposed algorithm.
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Table 4
Q value of community detection on 11 networks.
Q Deepwalk Node2vec LINE DNGR DNE-SBP ECD SP-MOEA/D

Karate 0.2524 0.3205 0.3123 0.3132 0.3132 0.402 0.3715
Dolphin 0.3787 0.3688 0.3698 0.3898 0.2772 0.5202 0.3926
Football 0.6005 0.6010 0.5935 0.4648 0.5384 0.5932 0.5958
Polbooks 0.5012 0.5151 0.5189 0.4641 0.5118 0.5122 0.5204
Email-Eu-core 0.2929 0.2925 0.2771 0.0591 0.0292 0.095 0.3166
Polblogs 0.1423 0.1342 0.1357 0.0001 0.4230 0.4159 0.4180
Karate_t 0.3619 0.3771 0.3771 0.4182 0.2615 0.4817 0.4880
Dolphin_t 0.5429 0.5293 0.5376 0.441 0.4192 0.5662 0.4868
SFI 0.7191 0.7213 0.7114 0.7189 0.2439 0.7476 0.7263
Netscience 0.2121 0.2101 0.2099 0.6568 0.5271 0.9494 0.6670

Power 0.9259 0.9290 0.9255 0.4162 0.5184 – 0.9075
Table 5
D value obtained by community detection on 11 networks.
D Deepwalk Node2vec LINE DNGR DNE-SBP ECD SP-MOEA/D

Karate 4.7059 5.9028 5.8246 6.1391 6.1391 7.845 6.833
Dolphin 9.0750 8.5068 9.0750 8.9030 6.2643 11.461 9.0750
Football 41.846 41.210 40.482 4.4034 25.713 40.185 41.997
Polbooks 17.686 18.005 18.329 14.569 15.542 18.487 18.595
Email-Eu-core −432.79 −413.06 −542.78 −1024.5 −386.16 −8850.1 −205.71
Polblogs 8.9594 8.2847 8.3394 27.231 39.430 49.677 37.753
Karate_t 4.0278 4.3024 4.5960 7.9167 1.3376 9.8002 9.8828
Dolphin_t 12.762 12.762 10.762 7.8258 8.3124 14.472 12.747
SFI 16.070 16.225 15.741 15.898 −2.3427 25.304 16.362
Netscience −785.94 −823.37 −807.69 78.83 57.287 714.48 87.978

Power 96.949 97.074 96.256 −226.95 21.493 – 50.455
Table 6
Wilcoxon signed rank test results of NMI values of the proposed algorithm and comparison algorithms.
NMI SF/Deepwalk SF/Node2vec SF/LINE SF/DNGR SF/DNE-SBP SF/ECD

p h p h p h p h p h p h

Karate 0.000046 1 0.000016 1 0.000055 1 0.00004 1 0.000033 1 0.000046 1
dolphin 0.014801 1 1.000000 0 0.724189 0 1.000000 0 0.000123 1 0.01615 1
football 0.000063 1 0.000063 1 0.000063 1 0.000064 1 0.000064 1 0.000062 1
polbooks 0.005102 1 0.000155 1 0.000163 1 0.00006 1 0.002119 1 0.00006 1
email-Eu-core 0.000183 1 0.000183 1 0.909688 0 0.000183 1 0.000183 1 0.000179 1
polblogs 0.000162 1 0.000064 1 0.000064 1 0.000064 1 0.729792 0 0.000178 1
Karate_t 0.000033 1 0.000024 1 0.00006 1 0.000057 1 0.000063 1 0.000016 1
dolphin_t 0.000061 1 0.000049 1 0.000063 1 0.000055 1 0.000064 1 0.000046 1
Table 7
Wilcoxon signed rank test results of Q values of the proposed algorithm and comparison algorithms.
Q SF/Deepwalk SF/Node2vec SF/LINE SF/DNGR SF/DNE-SBP SF/ECD

p h p h p h p h p h p h

Karate 0.000046 1 0.000016 1 0.000055 1 0.00004 1 0.000033 1 0.000046 1
dolphin 1.000000 0 1.000000 0 1.000000 0 1.000000 0 0.00011 1 0.000047 1
football 0.001421 1 0.017092 1 0.000063 1 0.000064 1 0.000064 1 0.001401 1
polbooks 0.728679 0 0.788122 0 0.098237 0 0.000055 1 0.101112 0 0.016949 1
email-Eu-core 0.000183 1 0.000183 1 0.000183 1 0.000182 1 0.000183 1 0.000179 1
polblogs 0.000076 1 0.000024 1 0.000024 1 0.000024 1 0.000066 1 0.000137 1
Karate_t 0.000033 1 0.000024 1 0.00006 1 0.000057 1 0.000063 1 0.000016 1
dolphin_t 0.016902 1 0.015505 1 0.114946 0 0.000055 1 0.000064 1 0.000046 1
SFI/6 1.000000 0 1.000000 0 1.000000 0 1.000000 0 0.000145 1 0.002383 1
netscience/396 0.000181 1 0.00018 1 0.000181 1 0.307125 0 0.000181 1 0.000176 1
power/40 0.000181 1 0.000181 1 0.000181 1 0.000181 1 0.000181 1 – –
r
w
t
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The p value represents the probability that the median value
f two samples is equal. When p is close to 0, the null hypothesis

should be questioned. The h value represents the test result.
When h = 0, it means that the median difference between the
two samples is not significant. While h = 1 means that the
difference between the median of two samples is significant. The
ECD algorithm cannot get effective community detection results
within 10 h. Compared Tables 6–8 with Tables 3–5, the proposed
algorithm can obtain the highest NMI value on 7 networks, and
the Wilcoxon signed rank test results show that most of the
differences between the proposed algorithm and the comparison
algorithms are obvious. Although there are not many networks
 o

14
with the highest Q andD values obtained by the proposed algo-
ithm, the differences of the improvements are obvious compared
ith all the algorithms. This further verifies the effectiveness of
he proposed algorithm.

. Conclusion

A complex network graph embedding method (SP-MOEA/D)
ased on shortest path matrix and decomposition multi-objective
volutionary algorithm is proposed, which can better reflect the
etwork structure at the level of community structure in net-
ork. This paper presents a network embedding method based
n node distance matrix. By calculating the shortest path matrix
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Table 8
Wilcoxon signed rank test results of D values of the proposed algorithm and comparison algorithms.
D SF/Deepwalk SF/Node2vec SF/LINE SF/DNGR SF/DNE-SBP SF/ECD

p h p h p h p h p h p h

Karate 0.000046 1 0.000016 1 0.000055 1 0.00004 1 0.000033 1 0.000046 1
dolphin 0.014607 1 1.000000 0 0.723867 0 1.000000 0 0.000121 1 0.000053 1
football 0.000064 1 0.000063 1 0.000063 1 0.000064 1 0.000064 1 0.000062 1
polbooks 0.02334 1 0.012818 1 0.378325 0 0.000058 1 0.000168 1 0.44014 0
email-Eu-core 0.000183 1 0.000183 1 0.000183 1 0.000183 1 0.000183 1 0.000178 1
polblogs 0.000161 1 0.000063 1 0.000063 1 0.000063 1 0.000144 1 0.000177 1
Karate_t 0.000033 1 0.000024 1 0.00006 1 0.000057 1 0.000063 1 0.000016 1
dolphin_t 0.114321 0 0.43572 0 0.001407 1 0.000055 1 0.000064 1 0.000046 1
SFI/6 0.468465 0 0.731586 0 1.000000 0 0.340125 0 0.000161 1 0.000054 1
netscience/396 0.000182 1 0.000182 1 0.000182 1 0.427181 0 0.140316 0 0.000173 1
power/40 0.000181 1 0.000182 1 0.000245 1 0.000181 1 0.000178 1 – –
and the similarity between nodes in the network, the network
node relationship matrix reflecting the network topology and
the degree of node tightness is obtained. The network similarity
matrix is further calculated, and then the low-dimensional vec-
tor representation of nodes is obtained by random surfing and
multi-dimensional scaling. Then, the community structure of the
network can be detected based on the obtained node representa-
tion structure. Starting from the essence of network structure and
the tightness between nodes, this method can reflect the relation-
ship characteristics of network nodes more effectively, and then
obtain the vector representation of network nodes which can
more accurately reflect the information of community structure.
Two objective functions are designed, which are combined with
the network core nodes (potential community structure center).
So that the low-dimensional vector representation results of the
nodes can better reflect the network structure and the tightness
between nodes at the community structure level. Furthermore,
a decomposition based multi-objective optimization method is
proposed to allocate distances to unrelated nodes for commu-
nity detection in disconnected networks. This method can better
reflect the community structure information in the disconnected
networks. The proposed algorithm still needs to be improved. For
example, the complexity of evolutionary optimization algorithm
is high, so it has less advantages in dealing with large-scale
network data sets. In the future research work, we will focus on
the larger scale of complex network embedding problem to solve
the more complex community detection problem.
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