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The deep learning algorithm has made great breakthroughs in optical image processing. Some deep
learning algorithms require a large number of labeled samples for training. For PolSAR data sets, due
to the influence of speckle noise and other factors, high-quality labeled data are limited. Therefore,
it is meaningful to use deep learning algorithm to solve PolSAR classification problem in limited
labeled dataset. This paper proposes a spatial feature-based convolutional neural network (SF-CNN).
The network adopts a dual-branch CNN structure. Both of the two branches have the same structure
and share parameters. SF-CNN can receive more than one sample as input. SF-CNN’s special structure
can expand the original training set by combining different samples, and alleviate the problem of
insufficient labeled training data in PolSAR image classification tasks. When training, SF-CNN maps
high-dimensional PolSAR image to low-dimensional feature space. In low-dimensional feature space,
SF-CNN enhances the ability of network to extract discriminative features by maximizing or minimizing
the distance between feature centers of different classes. In order to dig up the relationship between
the samples, the test sample features are compared with every training sample feature when testing.
Finally, labels of test samples are determined by the comparison result. The result of SF-CNN in PolSAR
image classification task is better than that of standard CNN.
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1. Introduction principle and imaging mechanism of PolSAR images. We can
get different information by decomposing the covariance matrix,
scattering matrix or coherent matrix of PolSAR image. Through
these information, different features of PolSAR data can be ob-
tained. The representative algorithms include Pauli decomposi-
tion [3], Cameron decomposition [4], Freeman decomposition [5],
H/alpha decomposition [6], Huynen decomposition [7], Krogager
decomposition [8] and so on. The algorithms based on scattering
mechanism are simple and effective, and can be applied to many
PolSAR dataset.

The second category is the algorithm based on statistical
distribution. Researchers usually model PolSAR data based on
different distributions. Lee et al. proposed an unsupervised Pol-

Polarimetric synthetic aperture radar (PolSAR) overcomes the
shortcomings of optical remote sensing images which are sen-
sitive to illumination and weather. PolSAR system can work at
all-weather condition, and has a strong penetrating ability. It can
accurately describe the polarimetric scattering characteristics of
objects on the earth’s surface. The advantages of PolSAR make it
widely used in earth observation, resource exploration, disasters
pre-assessment and troop disposition [1,2].

The PolISAR classification problem has attracted more and
more attention from researchers. It is one of the essential steps
in PolSAR image interpretation. In this task, every pixel in PoISAR

image will be labeled as one class.
1.1. Related work on three kinds of polsar classification algorithms

The first category is the algorithm based on the scattering
mechanism of PolSAR data, which mainly considers the physical
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SAR classification method which utilizes H/alpha decomposition
and complex Wishart classifier [9]. Liu et al. proposed Wishart
deep belief network (W-DBN) to classify PolSAR images with
local spatial information [10]. Jiao and Liu put forward a classifi-
cation algorithm by combining Wishart distribution with Deep
Stacking Network (W-DSN) [11]. Xie et al. proposed Wishart-
AE and Wishart-CAE algorithms, which are based on complex
Wishart distribution and Convolutional Autoencoder (CAE) [12].
In addition, polarimetric G distribution [13] and polarimetric K
distribution [14] are also often used to describe PolSAR data.
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The third category is the algorithm based on machine learning
or deep learning. Some commonly used methods include Support
Vector Machine (SVM) [15,16], K-Singular Vector Decomposition
(KSVD) [17], methods based on graph cut [18] and Markov Ran-
dom Field (MRF) [19,20] and so on. Deep neural networks show
extraordinary talents in natural images processing. The repre-
sentative networks include LeNet [21], VGG [22], ResNet [23],
DenseNet [24] and so on. Some deep learning algorithms also
performs well in PolSAR image classification. Hou et al. designed
multilayer autoencoders with superpixels to distinguishing the
multiple classes of PoISAR data [25]. Zhou et al. designed a new
CNN to extract spatial features of PolSAR data and achieved good
results [26]. Zhang et al. designed a complex convolutional neural
network (CV-CNN) [27], which get better results than real-valued
CNN in PolSAR classification task.

1.2. Motivation and innovation

Although deep learning algorithm [28,29] has stronger fitting
ability than other algorithms, the performance of deep learn-
ing algorithms is restricted by the number of training samples.
Insufficient samples are more likely to bring about overfitting
problem. In order to improve the performance of deep learning
algorithms under the condition of insufficient training sample,
some researchers have proposed deep metric learning methods.
Deep metric learning can extract simple and effective feature
from complicated data using deep neural networks. Due to the
influence of speckle noise and other factors in polarimetric SAR
data set, high quality annotation data is very limited [30]. These
networks can accept multiple samples input at the same time in
the architecture to achieve the purpose of sample expansion to
alleviate the problem of insufficient annotation data [31]. There
are a lot of deep metric neural networks. Siamese neural net-
work [32,33] is a representative deep metric learning algorithm,
it was first proposed by Bromley et al. to solve the signature
verification problem. Matching Nets were proposed by Vinyals
et al. [34], which use attention and external memories in network
to do rapid feature learning. Snell et al. proposed prototypi-
cal networks [35]. It can prototype representations of different
classes to classify every sample in metric space. Sung et al. pro-
posed Relation Network [36], which computes relation scores
between query samples and support samples to do classification
effectively.

While in the current PolSAR classification task, there are two
problems that should not be ignored. One is the limited num-
ber of available labeled samples, and the other one is the low
quality of the samples, which are affected by the speckle noise of
PoISAR data. Therefore, the number of labeled samples that can
be used is very scarce. To solve this problem, we design a new
spatial feature-based network (SF-CNN) inspired by deep metric
learning and CNN. Compared with standard CNN, SF-CNN have
the following characteristics:

(1) SF-CNN uses a dual branch CNN structure, and the two
branches have the same structure and share the training weights.
The network uses a sample group instead of single sample as
input. For each branch of SF-CNN, one of training set categories
is randomly selected, and then several samples are randomly
collected from the selected category as a sample group. SF-CNN
uses the sample group formed by multiple samples as input,
which greatly enhance the number of original training samples
and alleviating the problem of lacking labeled data.

(2) SF-CNN can generate low-dimensional features from high-
dimensional data. Each branch CNN extracts a feature group from
the input sample group, and the feature center of the extracted
feature group will be calculated. Then, according to the labels of
feature centers, the feature centers belonging to the same class
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will be pulled together, while the feature centers from different
class will be pushed away. In this way, the feature center distance
of same class is closer, and for different class it is far away, which
makes the features extracted by CNN more distinguishable.

(3) When predict the label of test data, SF-CNN first transforms
the samples in the training set into feature vectors. Then, a k-
Nearest Neighbor (KNN) [37] model is constructed by the feature
vectors of training samples, and the distance between the test
sample feature vectors and every training sample feature vector
is calculated. Finally, the test samples are labeled according to
the calculation results. This method takes account of the relation-
ship between samples and strengthens the utilization of sample
information.

SF-CNN and standard CNN are compared on several real Pol-
SAR datasets. The experimental results show that SF-CNN is more
effective than standard CNN in multiple datasets.

The structure of this paper is arranged as follows. In Section 2,
this paper will introduce the specific methods of SF-CNN. In Sec-
tion 3, SF-CNN will be tested and the experimental results will be
analyzed. Finally, in Section 4, research content of this article will
be summarized.

2. The structure and method of SF-CNN

In this section, the preprocessing of PolSAR data will be given.
The input and the entire structure of SF-CNN will be introduced.
The training method, test method and network settings of SF-CNN
will be detailed explained.

2.1. Preprocessing of PolSAR data

In PolSAR image, according to scattering mechanism, each
PolISAR pixel can be briefly described by a complex scattering
matrix S and its size is 2 x 2. S can be expressed as:

Shh Shy
S= (1)
|:Svh va:|

There are four scattering parameters in S, namely Spp, Shy, Svn,
Syv- The First subscript of Sy is the transmitting signal polariza-
tion, and the second subscript is the receiving signal polarization.
v and h are the polarization direction of electromagnetic wave
(vertical direction and horizontal direction). If the data was col-
lected by a monostatic PolSAR radar system, then S, = S,; and
S is symmetric [10].

Covariance matrix and coherent matrix of PolSAR data have
fully polarimetric information of target. They can well describe
the statistical scattering characteristic of data. With Eq. (1), we
can get the coherent matrix of each pixel in PoISAR image. The
coherency matrix T is written as:

T Tz Ti3
T= [a, b, C]T [a*, b*, C*] = Tikz Ty Tys
T3 Ty Tss
la> ab* ac*
=|a*b |b?® bc* (2)
a‘c  b*c |c|?
where “*” is conjugate of number and a, b, ¢ are three scattering
vectors obtained by the Pauli decomposition of S, which is col-

lected by a monostatic PolSAR radar system. a, b, ¢ can be written
as:

V2 V2
a === Gt Sw) b= == (Sin = Sw), ¢ = V28, (3)
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In coherency matrix T, diagonal elements including Tiq, T2z, T33
are real number and off-diagonal elements including T7;, T}5, TJ;,
T»1, T31, T3p are complex number. T is a complex matrix. For the
convenience of calculation, every elements’ imaginary parts are
converted to real value. After removing repetitive elements, a
9-dimensional real-valued vector T, is obtained:

T, = {T11, Txz, T33, real(Tyy), real(Ty3), real(T,3), imag(Tyy),
imag(Ty3), imag(T3)} (4)

Through the above operations, each pixel in PoISAR data is trans-
formed into T,.

2.2. Training process of SF-CNN

SF-CNN adopts dual-branch CNN structure, in which each
branch CNN accepts a sample group instead of a single sample
as input. Suppose that there are totally C classes in training
data set, and each class contains N training samples. SF-CNN
randomly selects 2k (k < N) samples from the training data set
as input every time as shown in Fig. 1. The first branch CNN
randomly selects 1 class from the C classes of training set, and
then randomly selects k samples from this class. The k samples
form a sample group, and the sample group is recorded as x,
where x; = {Xq1, X2, ..., Xq¢}. Similarly, the sample group of the
second branch CNN is recorded as x,, where x, = {Xp1, Xp2, ...,
Xpk}. Xq and x;, are input to SF-CNN, and the combination of them,
{xa4, xp}, can form a new data set. Compared with original data set,
the sample number of new data sets is greatly increased.

The number of negative samples (x, and x, do not belong to
the same class) is:

C\ (N\ (N\ c.cc-1 N! 2
Ny = . . = . < ) (5)
2 k k 2 k!« (N — k)!

The number of positive samples (x, and x; belong to the same

class) is:
N N

Ny=C- k +<> (6)
2 k

The total number of new samples is:

~Q-0-<[0)0] -

Suppose there are 5 classes and 5 samples for each class. The
size of the sample group is 2, namely, C = 5, N = 5, k = 2.
Using Eq. (7), it can be calculated that the sample number of new
data set is 1275, while the original sample number is only 25.
Therefore, the sample number is greatly expanded.

In sample group, each sample is represented as a window
patch instead of a single pixel point. It contains a Uy x Uy lo-
cal pixel block centered on one pixel. The local window patch
not only captures the polarimetric information of data, but also
contains the neighboring spatial information around the central
pixels. It is beneficial to CNN to learn effective features of data,
and many algorithms use it to improve their performance.

The network structure and training process of SF-CNN are
shown in Fig. 1.

As can be seen from Fig. 1, SF-CNN has two parallel CNN
branches. These two branches share the same parameters as
shown in Table 1 in Section 2.5. This dual-branch CNN structures
can reduce network parameters by half. During training, sample
group x; and x, are input to SF-CNN. After feature extraction
and dimension reduction, low-dimensional feature groups will be
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generated. Assuming that the feature extraction process of SF-
CNN can be expressed as Fyy/(x) where and W is the weight of the
network. The feature generated by the sample x can be written
as f = Fy(x). The feature group generated by sample group x, is
{fa1, fa2, ..., fax}. Through the feature group, the group center can
be calculated. We use the mean value of multiple feature vectors
to represent the feature group center. The feature group center f,
of x, can be written as:

_ fa] +f02 + - +fak

fa , (8)
k
Similarly, the feature group center f; of x, can be written as:
Jor +foa + - + fo
fb _ 1 2 k (9)

k

Thus, when training (learning process), a gradient update pro-
cess is like this: input group x, into the CNN 1 to get the feature
fa, input group x, into the CNN 2 (same parameters as CNN 1)
to get the feature f;, according to fj, f,, calculate the loss and
carry on the back propagation to the loss to update the network
parameters.

2.3. Loss function

Through SF-CNN, two high-dimensional sample groups x, and
xp are mapped to the low dimensional feature space, and the
corresponding feature centers f; and f, are obtained. The distance
between the two feature centers can be represented as:

Dw = |Fw (Xa) — Fw (xp)| = Ifa — f (10)

When the input samples x, and x; belong to the same class,
Dy should be relatively a small value. And when x, and x; are
not belong to the same class, it should be relatively a large value.
The proving process can be found in [32].

Dw(fa, fo) + 8 < Dw(fa f) (11)

where § is a positive constant. In Eq. (11), a proper W can
be obtained by training the network, which make the distance
between the same-class samples are smaller than the distance
between the different-class samples.

In order to make SF-CNN have the ability to extract discrimi-
native features, we use the contrastive loss function to train the
entire network. Suppose that there are N’ samples in new data
set. Each sample is recorded as (x4, xp)!, and its label is y;, where
i=1,2,...,N. When x, and x;, belong to the same class, y; = 1.
When x, and x; belong to different classes, then y; = 0. The loss
function is written as:

1
Ld(W) =2 3 (Dw) - yi + max(e — Dw, 0F - (1 =y~ (12)
i=1

The threshold value « is a constant, and o > 0. When y; = 1,
the input two sample groups belong to the same class. The first
term of the formula works, and the loss function reduces the
distance between the same features. When y; = 0, the two input
sample groups do not belong to the same class. At this time,
the second term of the formulas works, and the loss function
increases the distance between different-class features until the
distance is greater than the threshold value «. Therefore, the
penalty range of Euclidean distance is not so important when the
value of « is small to a certain extent.

2.4. Test process of SF-CNN
When testing the network, test sample x; is input to the

network and generate the sample feature f;. Similarly, training
samples {x1, X2, ..., Xcy } can generate multiple features {fi, f>, ...,
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Fig. 1. Network structure and training process of SF-CNN.
i Table 1
| Network structure of SF-CNN.
p— Layer Type/stride Filter Input feature map
- ) - —
¢ 1 Conv/s1 6 x6x9x 32 15 x 15 x 9
Test sample 2 Max Pool/s2 2 x2 10 x 10 x 32
3 Conv/s1 3 x3x 64 5x5x 32
i — Predict the label 4 Dropout 0.5 3 x 3 x 64
Training samples SRS U ® of test sample 5 Conv/s1 3 x 3 x 128 3% 3 x64
I
" @ ,
X .
? ‘ N CNN " I I 2.5. Network settings

Xen ‘ h Ao Jon

Fig. 2. Test process of SF-CNN.

fen}. With Dy, the distance between feature f; and the training
sample features {fi, f>, ..., fov } can be calculated. k; training
samples feature having the shortest distance with f; are selected.
Counting their true labels, the most frequent label will be the
label of x;.

The testing process of SF-CNN is shown in Fig. 2.

The whole testing algorithm process is shown in Algorithm 1.

Algorithm 1: SF-CNN test algorithm

Input: Iterations: iter, test samples x;, training samples {x1, x2, ..
W and ki.
Output: y/.
for 1: iter
fi=Fw(x;)«input x; into the CNN network;
feature group{ fi, f2, ..., fov }«—input { x1, x2, ..., xcv } into the CNN network;
for i=1: CN
Dw(xs, xi) < Eq. (10);
end

., xcn}, network parameter

Dwi<select the smallest &, value of Dyw;
for j=1: ki
count the label of Dy1(xs, x));
end
end
output: the most-counted label y: .

This process is equivalent to using KNN algorithm to model
the features of training samples, and then use the built KNN
model to classify test samples. This method uses training sample
features to predict the labels of test samples. It takes account of
the relations between samples, which is conducive to improving
the performance of the network.

SF-CNN adopts a dual-branch CNN structure, the two branches
have same structure, and the structure of CNN is shown in Ta-
ble 1.

In Table 1, the s1 represents the stride is 1, and s2 represents
the stride is 2. The network is a full convolutional neural network.
It only contains convolutional layer and pooling layer, and the
fully connected layer is removed. With this special structure, the
parameters of the network are greatly reduced, which effectively
prevents the network from overfitting. The whole network has
three convolutional layers. The first convolutional layer is used
for extracting the low-level features of the image, it is followed
by a max pooling layer to reduce the size of feature maps. The size
of max pooling layer is 2 x 2, and the stride is 2. In max pooling
layer, the output feature’s size changes to half of the input feature
map [28].

The second convolutional layer can extract the middle-level
features of the image. And the last convolutional layer works for
extracting the high-level features of the image, its filter size is
3 x 3. Dropout layer [38] is also applied in the network. Dropout
can introduce some noise component into the network and in-
crease the generalization performance of the network. Finally, the
input 15 x 15 x 9 image blocks are transformed into 1 x 1 x
128 dimensional vectors through CNN to achieve dimensionality
reduction. The activation function of the network is sigmoid
function, sigmoid is a continuous function and has derivative
everywhere. The range of the sigmoid function is between (0, 1).

When training SF-CNN, back propagation (BP) algorithm [39]
is used to optimize the network. Adam optimizer is used to
update the training parameters. Adam algorithm’s decay rate
pl = 0.9 and p2 = 0.999. And the learning rate is 0.001. The
training batch size is 32, and the dropout rate is 0.5. It can be seen
from Eqs. (6) and (7) that the positive and negative samples are
unbalanced in the new sample set. In order to ensure the balance
of positive and negative samples, we put the same number of
positive and negative samples in each batch, and both of them
are 16 per batch.
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(a) PoISAR Pseudo-color Image

.Occan . Forest D low-density
urban
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Fig. 3. San Francisco PolSAR data set.

3. Experimental results and discussion
3.1. Comparing algorithms and data sets

In order to evaluate the performance of SF-CNN, we tested SF-
CNN on the real PolSAR dataset. The three datasets are collected
by the NASA Jet Propulsion Laboratory (JPL) using the Airborne
SAR system (AIRSAR), and the Canadian Space Agency using the
RADARSAT-2 system. These PoISAR images cover the scene of San
Francisco, Xi'an and Flevoland.

We compare the experimental performance of SF-CNN with
several commonly used algorithms, including SVM [16], W-DBN
[10], CV-CNN [27], standard CNN [27] and VMW [40] on three dif-
ferent PolSAR datasets. The test evaluation indexes include overall
accuracy (OA), average accuracy (AA) and Kappa coefficient. In the
three experiment, the size of data patch window U, is set to 15,
and the size of the input data of the network is 15 x 15 x 9, the
threshold of loss function is set to 5, the size of the sample group
k is 5, and the kt value in KNN model for testing is set to 5.

3.2, Evaluation and analysis in San Francisco PolSAR data set

The data set covers the scene of San Francisco area in the
United States and it is a classic data set in the PolSAR terrain
classification task. The data set was collected by RADARSAT-2
platform on April 2, 2008 under 8 m spatial resolution and C band
conditions. The size of the original map is 2820 x 14416, and
only a part of the original map is used for the experiment. Its
size is 1300 x 1300. The pseudo-color image of the data set is
shown in Fig. 3(a). The ground truth map is shown in Fig. 3(b)
and the legends of different label are shown in Fig. 3(c). Each
color represents a category, and black represents the unlabeled
category, which will not be included in the final test result. As
can be seen from the figure, the data set contains 5 categories,
including ocean, forest, low-density urban, high-density urban
and grassland.

The number of training set samples and total samples of San
Francisco PolSAR data set is shown in Table 2.

As can be seen from Table 2, the number of ocean samples
is very large while the number of grassland samples is relatively
small. In order to better reflect the robustness of SF-CNN algo-
rithm, cross validation is used to obtain the classification results.

The specific method is to randomly select 1000 different samples
in each class as the training set and the remaining samples as the
testing set. The average of the ten classification results is shown
as the final result. Other algorithms do not use cross validation.
Taking San Francisco data as an example, the expanded sample
size is oo according to Eq. (7). The final results are shown in
Table 3.

The final result maps of each algorithm are shown in Fig. 4.

From Table 3, we can see that SF-CNN achieves the best
results on OA, AA and Kappa, which have reached 97.24%, 98.1%
and 0.9715 respectively. It is easy to distinguish ocean sam-
ples, and there are significant differences between ocean samples
and other samples in Fig. 3(a). All the algorithms have achieved
nearly 100% accuracy on ocean category. For the classification
of urban areas, SF-CNN shows obvious advantages. Especially in
low-density urban areas, SF-CNN has greatly improved compared
with other algorithms. Its OA is 3.7% higher than CV-CNN algo-
rithm and 3.89% higher than standard CNN algorithm. In Fig. 4,
there are very little low-density urban samples being misclassi-
fied in SF-CNN classification result map. While for CNN, CV-CNN
and W-DBN, some low-density urban samples are falsely assigned
as high-density urban category or forest category. For the high-
density urban category, SF-CNN'’s OA is 2.41% higher than W-DBN
algorithm and 2.69% higher than standard CNN algorithm. In
vegetation category, there is little difference between SF-CNN and
CV-CNN in the classification result. The OA of SVM algorithm is
only 92.68%, which is much lower than other algorithms.

3.3. Evaluation and analysis in Xi’an PolSAR data set

The second experimental PolSAR data set is from Xi'an area.
The data set is collected by RADARSAT-2 platform under C-band
condition in 2009. It captures the scene of the western area of
Xi'an City, Shanxi Province, China. Its size is 512 x 512. The
PolSAR pseudo-color image of this data set is shown in Fig. 5(a).
The ground truth map is shown in Fig. 5(b) and the legends of
different labels are shown in Fig. 5(c). As can be seen from the
figure, the data set contains 4 categories, including urban, grass,
water and crop.

The number of training set samples and total samples of Xi'an
PolISAR data set is shown in Table 4.

From Table 4 and Fig. 5(b), it can be seen that the number
of crop samples is the smallest and mainly concentrated around
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Table 2

Training sample number and total sample number of San Francisco PolSAR data set.
Number Ocean Forest Low-density urban High-density urban Grassland
Training set number 1000 1000 1000 1000 1000
Testing set number 688807 197 602 111261 274674 64573
Total number 689807 198602 112261 275674 65573

i
i!lllﬂl ‘

f!

(d)

(a) PolISAR Pseudo-color Image (b) Ground Truth Map

. Urban

. Grass |:| Water

(c) Legends of Different Labels

. Crop

Fig. 5. Xi'an PolSAR data set.
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Fig. 6. Classification result maps of Xi’an PolSAR data set: (a) SF-CNN (b) CNN (c) CV-CNN (d) W-DBN (e) SVM.

Table 3

Classification results of San Francisco PolSAR data set.
Class SF-CNN VMW  CNN CV-CNN W-DBN SVM
Ocean 09991 0.9999 09998 0.9999 0.9997 0.9935
Forest 09615 0.9498 0946 09515 0.9477 0.9479
Low-density urban  0.9658 0.9741 0.9269 0.9288 0.9437 0.8915
High-density urban 0.9581 0.9566 0.9312 0.9498 0.9340 0.7598
Grassland 09773 09772 09457 0.9725 0.9373 0.9452
AA 09724 09715 09499 0.9605 0.9525 0.9076
OA 09810 09764 0.9686 0.9749 0.9706 0.9268
Kappa 09715 0.9601 09529 09623 0.9558 0.8915

Table 4

Training sample number and total sample number of Xi'an PolSAR data set.
Number Urban Grass Water Crop
Training set number 500 500 500 500
Testing set number 80571 109936 36265 8651
Total number 81071 110436 36765 9151

the upper right corner of the ground truth map. While the sam-
ple numbers of other three classes are relatively adequate and
geographically distributed. In order to better reflect the robust-
ness of SF-CNN algorithm, cross validation is used to obtain the
classification results. The specific method is to randomly select
500 different samples in each class as the training set and the
remaining samples as the testing set. The average of the ten
classification results is shown as the final result. Other algorithms
do not use cross validation. The final results are shown in Table 5
and Fig. 6.

From Table 5, we can see that SF-CNN achieves the best results
in AA, OA compared with standard CNN, CV-CNN, W-DBN and
SVM. Although the VMW algorithm gets the highest value on

713

(a) PolSAR Pseudo-color Image

(b) Ground Truth Map

. Rapeseed . Bare soil I:I Potato
. Wheat . Pea D Barley

(c) Legends of Different Labels

. Beet
D Lucerne

Fig. 7. Flevoland PolSAR data set.

kappa, the SF-CNN algorithm can still get higher kappa value than
the other 4 algorithms.

As can be seen from the PolSAR pseudo-color image of
Fig. 5(a), grass samples and crop samples in this data set are very
close and easy to be confused. As can be seen from Table 5 and
Fig. 6, the classification accuracies of standard CNN and CV-CNN
for grass category are 70.14% and 73.58%, and for crop category
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Fig. 8. Classification result maps of Flevoland PoISAR data set: (a) SF-CNN (b) CNN (c) CV-CNN (d) W-DBN (e) SVM.

Table 5
Classification results of Xi'an PoISAR data set.

Class SF-CNN VMW CNN CV-CNN W-DBN SVM

Urban 0.9212 0.9362 0.9154 0.8977 0.9034 0.9559
Grass 0.7333 0.7158 0.7014 0.7358 0.7282 0.6075
Water 0.9368 0.9137 0.9324 0.9368 0.9129 0.9061
Crop 0.9059 0.8519 0.9090 0.8394 0.5814 0.7033
AA 0.8743 0.8544 0.8646 0.8524 0.7814 0.7932
OA 0.8347 0.8257 0.8174 0.8257 0.8107 0.7746
Kappa 0.7551 0.8102 0.7318 0.7405 0.7165 0.6724

they are 90.90% and 83.94%. Obviously, standard CNN achieves
better results than CV-CNN in crop classification, but it performs
poorly in grass classification. On the contrary, CV-CNN performs
well in grass but worse in crop. However, neither CNN nor CV-
CNN can achieve good results in both crop and grass classification.
The accuracy of SF-CNN in grass and crop is 77.55% and 90.90%
respectively, which both are the best among the algorithms.
It shows that SF-CNN has the best performance to distinguish
grass and crop. SF-CNN has strong ability to distinguish similar
terrain objects, which also proves the effectiveness of the special
structure of SF-CNN.

OA (%)

=== SF-CNN

0.86
15 45 75 105 135 165 195

Training sample number

Fig. 9. The influence of training sample number on the overall accuracy of
SF-CNN.

3.4. Evaluation and analysis in Flevoland PolSAR data set

The third experimental PolSAR data are captured in the farm-
land areas of Flevoland, Netherlands. During the MAESTRO-1
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Table 6
Training sample number and total sample number of Flevoland PolSAR data set.
Number Rapeseed Bare soil Potato Beet Wheat Pea Barley Lucerne
Training set number 100 100 100 100 100 100 100 100
Testing set number 11800 5100 4194 4150 14500 6245 7550 1044
Total number 11900 5200 4294 4250 14600 6345 7650 1144
0.006 1 As can be seen from Fig. 8, compared with other algorithms,
ESVM SF-CNN only makes classification errors at the edges of each pixel
0.005 1 = WDBN blocks. The mistakes mainly occurred when distinguishing wheat
CNN and barley. SF-CNN, CNN and CV-CNN are easy to confuse wheat
0.004 1 B CVCNN with barley. All of the three CNN based algorithms achieve rela-
_ VMW Fively gpod result on wheat category, and their wheat accuracy
4 0.003 1 SF-CNN is all higher than 98_%. When classing ])arley, SF-CNN’s barley
E accuracy also keeps higher than 99%. While for CNN and CV-CNN,
& their barley accuracy dropped to 96.18% and 97.58%. The best
0.002 1 algorithm for wheat classification is SVM, but the disadvantage of
SVM is also very clear. It has only about 87% accuracy in pea and
0.001 7 . Lucerne categories, which is far lower than other deep learning
algorithms. The possible reason maybe be that the fitting ability
0 - — — —— of SVM algorithm is not strong enough, which lead to an impre-
San Francisco Xi’an Flevoland cise classification result. Generally speaking, the performance of
Fig. 10. Time of each algorithm to process one sample. SF-CNN is better than Othe.rs' ..
In order to analyze the influence of the training sample num-
ber on the network, we tested the overall accuracy of all al-
Elae:)s]seichation results of Flevoland PoISAR data set. gprithms under different training sample numbers as shown in
Class SF-CNN VMW  CNN CV-CNN  W-DBN  SVM Fig. 9. . .
Rapeseed  0.9988 09952  0.9842  0.9988 09817  0.9663 . As can be seen from Flg'. S whep the training sample m_meer
Bare soil 09972 09843 09703  0.9899 0.981 0.9813 is between 15 and 60, OA rises rapidly. Especially when using 65
Potato 0.9950 09859 09816 09766 0.9950 0.9990 training samples, the OA of SF-CNN has been up to 99.1%. It can
Beet 09922 09540 09959  0.9745 09723 09157 be seen that SF-CNN is very efficient in the use of samples. After
\I;Vheat g-ggég g-gggg g-gggg g-gggg g-gggg g-g;’gg the training sample number more than 80, the OA of SF-CNN is
B:?ley 09950 09855 09618 09758 09970 09732 above 9'9% and increases s}oyvly. Therefore, it can be d'rawn some
Lucerne 09993 10000 10000 09965 09965 08733 conclusions. When the training sample number is relatively small,
AA 09961 09868 09844  0.9865 09875  0.9480 providing more samples is conducive to the rapid improvement
OA 09958 09886  0.9822  0.9872 0.9861 0.9635 of the network. When the number of samples is sufficient, the
Kappa 09950 09863 09786  0.9846 09833  0.9561

project in 1989, NASA Jet Propulsion Laboratory used the AIR-
SAR platform to collect the data under L-band, fully polarized
conditions. The shooting resolution is 6.6 x 12.10 m. The PolSAR
pseudo-color image of the data set is shown in Fig. 7(a), and there
are many different kinds of crops in the figure. The characteristics
of each crop are quite obvious and easy to distinguish. The size
of the image is smaller than the former two data sets, it is
300 x 400. Its ground truth map is shown in Fig. 7(b) and the
label legends are shown in Fig. 7(c). Each color represents a
category, and black color represents the unlabeled category. As
can be seen from the figure, this data set contains 8 categories,
including rapeseed, bare soil, potato, beet, wheat, peas, barley and
lucerne.

The numbers of training samples and total samples for each
class of Flevoland PoISAR data set are shown in Table 6.

In order to better reflect the robustness of SF-CNN algorithm,
cross validation is used to obtain the classification results. The
specific method is to randomly select 100 different samples in
each class as the training set and the remaining samples as the
testing set. The average of the ten classification results is shown
as the final result. Other algorithms do not use cross validation.
The final results are shown in Table 7.

As can be seen from Table 7, SF-CNN achieves the best results
compared with other algorithms, with AA, OA and Kappa reaching
99.61%, 99.58% and 0.995 respectively. SF-CNN also achieves more
than 99% accuracy in each class. The final results of different
algorithms are shown in Fig. 8.

network has no obvious improvement by continually increasing
the training sample number. Because the work of labeling data is
labor-intensive, a reasonable number of training samples is very
important.

3.5. Time execution needed to process from certain number of sam-
ples

This section will analyze the running time of each algorithm.
Fig. 10 shows the comparison result of the time required for each
algorithm to process one sample.

The average time required for processing a certain number of
samples in the running process of 6 algorithms is tested. As can be
seen from Fig. 10, the maximum time required by all algorithms
to process a single sample is in the order of 103, and most of
them are in the order of 1074, With the increase of the size of
the datasets, the time required for SVM algorithm and CV-CNN
algorithm increases significantly. The time of W-DBN algorithm,
CNN algorithm, VMW algorithm and SF-CNN algorithm needed
to process a single sample in the process of data scale increasing
is more stable. And we can see that SF-CNN algorithm needs the
least time to process a single sample in three kinds of datasets.

3.6. Analysis of threshold o

A threshold « is set in Eq. (12) to increase the distance be-
tween features of different classes until the distance is greater
than «. This loss calculation method limits the Euclidean distance
of different classes of features to be between (0, «). When the
distance exceeds «, that is, the features of different classes are



R. Shang, J. Wang, L. Jiao et al.

Applied Soft Computing 123 (2022) 108922

1 0.86
0.99 0.84
) 0.82
. 0.98 WW
o 0.8
0.97 J
0.78
0.96 == San Francisco Flevoland Xi'an 0.76
0.95 0.74
Q'Q\\W”)b“;‘o‘\"ooj\Q\\\’\,\’b\b‘\‘;\‘o\‘\\%\Q,&
a
Fig. 11. Classification accuracy OA obtained on three datasets with different o values.
Table 8

Comparison results of two structures running on San Francisco dataset for 10 times.

San Francisco SF-CNN_ave  Trinal-branch_ave SF-CNN_max  Trinal-branch_max
Ocean 0.9991 0.9996 0.9997 1.0000
Forest 0.9615 0.9696 0.9643 0.9644
Low-density urban 0.9658 0.9683 0.9692 0.9755
High-density urban  0.9581 0.9561 0.9641 0.9653
Grassland 0.9773 0.9782 0.9801 0.9831
AA 0.9724 0.9743 0.9733 0.9729
OA 0.9810 0.9827 0.9822 0.9823
Kappa 0.9715 0.9711 0.9733 0.9735
Time (s) 461.37 643.42 480.52 679.89
Table 9

Comparison results of two structures running on Xi'an dataset for 10 times.

Xi'an SF-CNN_ave Trinal-branch_ave SF-CNN_max Trinal-branch_max
Urban 0.9212 0.9104 0.9313 0.9212

Grass 0.7333 0.7422 0.7654 0.7728

Water 0.9368 0.9415 0.9452 0.9544

Crop 0.9059 0.9185 0.9204 0.9245

AA 0.8743 0.8782 0.8798 0.8932

0A 0.8347 0.8352 0.8461 0.85

Kappa 0.7551 0.7536 0.7704 0.7754

Time (s) 479.67 616.28 487.21 625.87

far away, the loss is very low. Fig. 11 shows the results of classi-
fication accuracy OA obtained on three datasets with different «
values.

In order to better show the results, the double ordinates are
used in Fig. 11. It can be seen from Fig. 11 that on the three
datasets, « varies from 1 to 20, which has no significant effect on
the accuracy of classification results. However, when o = 0.01,
that is, when the value of « is small to a certain extent, the OA
value is low. Therefore, the penalty range of Euclidean distance is
not so important when the value of « is small to a certain extent.
So the o can be selected randomly in the range of more than 1
and less than 20. The value selected in this paper is 5.

3.7. The results of trinal-branch CNN

A dual-branch parallel CNN structure is introduced in this
paper, which can reduce the parameters and accept multiple
groups of samples as input to realize sample expansion. This
structure can be extended to three branches and more, but at
the same time of improving the accuracy, it brings about the
increase of calculation cost. In this section, the results of the
trinal-branch CNN structure are compared with the original dual-
branch structure. Triplet loss was used for loss calculation [41].

10

The triplet loss in paper is calculated as Eq. (13).
N

Tloss = Y [ [£6x0) = G5 = ) = fx) |5 + 8]

i

(13)

where (x% xP, x") represents a set of data of anchor, positive
and negative. 8 is a constant, which is assigned as 1 in this
experiment. Through learning, the distance between classes is
greater than that within classes.

Tables 8-10 shows the maximum, average results and time
required for the two structures to run 10 times on three datasets.

It can be seen from Tables 8-10 the classification accuracy
of trinal-branch CNN network on most classes is improved to
some extent, but the gap is not particularly obvious. At the same
time, due to the increase of calculation cost, the running time
of the algorithm also increases. Therefore, the establishment of
multi-branch network should be selected according to different
requirements.

4. Conclusion

In order to overcome the limitation of high-quality labeled
data in PoISAR data, we propose a spatial feature-based CNN
model (SF-CNN). The network can accept multiple samples as
input at the same time, which can greatly expand the original
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Comparison results of two structures running on Flevoland dataset for 10 times.

Flevoland SF-CNN_ave Trinal-branch_ave SF-CNN_max Trinal-branch_max
Rapeseed 0.9988 0.9996 1.0000 1.0000
Bare soil 0.9972 0.9953 0.9998 0.9986
Potato 0.9950 0.9953 0.9997 0.9997
Beet 0.9922 0.9937 0.9969 0.9972
Wheat 0.9946 0.9955 0.9981 0.9999
Pea 0.9962 0.9969 1.0000 1.0000
Barley 0.9950 0.9934 0.9988 0.9986
Lucerne 0.9993 0.9992 1.0000 1.0000
AA 0.9961 0.9961 0.9976 0.9993
OA 0.9958 0.9943 0.9969 0.9976
Kappa 0.9950 0.9931 0.9963 0.9971
Time (s) 474.62 669.28 483.36 680.97
data set. SF-CNN adopts the dual-branch CNN structure, and the References

two CNN branches share training parameters. Each CNN is a full
convolutional neural network, which removes the full-connected
layers. This special structure can greatly reduce the parameters
of network and decrease the risk of overfitting. When training,
SF-CNN maximizes the distance of different-class feature centers
and minimize the distance of same-class feature centers, which
makes the features extracted by SF-CNN more discriminative.
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algorithms. Experimental results show that SF-CNN is better than
standard CNN and other algorithms in indexes of AA, OA and
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its special structure. However, the SF-CNN uses the Euclidean
distance. This kind of artificial measurement function is more
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network to automatically learn the measurement function. When
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learning. This automatic learning method would be better adapt
to different data and learn more appropriate similarity measure-
ment function. And the whole process can be “end-to-end”, which
will be very efficient.

CRediT authorship contribution statement

Ronghua Shang: Editing and revising the article, Supervi-
sion, Project administration. Jiaming Wang: Methodology, Inves-
tigation, Drafting the article. Licheng Jiao: Supervision, Project
administration, Funding acquisition. Xiaohui Yang: Validation,
Revising the article. Yangyang Li: Resources, Revising the article.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

We would like to express our sincere appreciation to the
editors and the anonymous reviewers for their insightful com-
ments, which have greatly helped us in improving the quality
of the paper. This work was partially supported by the National
Natural Science Foundation of China under Grants Nos. 62176200,
61773304, and 61871306, the Program for Cheung Kong Schol-
ars and Innovative Research Team in University, China under
Grant IRT1170, the National Key R&D Program of China and the
Guangdong Provincial Key Laboratory, China under Grant No.
2020B121201001, the Open Research Projects of Zhejiang Lab,
China under Grant 2021KGOABO3.

11

[1] M. Bielecka, S. Porzycka-Strzelczyk, J. Strzelczyk, SAR images analysis based
on polarimetric signatures, Appl. Soft Comput. 23 (2014) 259-269.

H. Liy, S. Yang, S. Gou, S. Liu, L. Jiao, Terrain classification based on spatial
multi-attribute graph using polarimetric SAR data, Appl. Soft Comput. 68
(2018) 24-38.

E. Pottier, Dr. J.R. Huynen’s main contributions in the development of po-
larimetric radar techniques and how the ‘radar targets phenomenological
concept’ becomes a theory, in: Radar Polarimetry, 1993, pp. 72-85.

W.L. Cameron, LK. Leung, Feature motivated polarization scattering matrix
decomposition, in: IEEE International Conference on Radar, 1990, pp.
549-557.

A. Freeman, S.L. Durden, A three-component scattering model for po-
larimetric SAR data, IEEE Trans. Geosci. Remote Sens. 36 (3) (1998)
963-973.

S.R. Cloude, E. Pottier, An entropy based classification scheme for land
applications of polarimetric SAR, IEEE Trans. Geosci. Remote Sens. 35 (1)
(1997) 68-78.

J-R. Huynen, Physical reality of radar targets, in: Proc. SPIE Radar
Polarimetry, 1993, pp. 86-96.

E. Krogager, New decomposition of the radar target scattering matrix,
Electron. Lett. 26 (18) (1990) 1525-1527.

J.S. Lee, M.R. Grunes, T.L. Ainsworth, LJ. Du, D.L. Schuler, S.R. Cloude,
Unsupervised classification using polarimetric decomposition and the com-
plex wishart classifier, IEEE Trans. Geosci. Remote Sens. 37 (5) (1999)
2249-2258.

F. Liu, L. Jiao, B. Hou, S. Yang, POL-SAR image classification based on
Wishart DBN and local spatial information, IEEE Trans. Geosci. Remote
Sens. 54 (6) (2016) 3292-3308.

L. Jiao, F. Liu, Wishart deep stacking network for fast POLSAR image
classification, IEEE Trans. Image Process. 25 (7) (2016) 3273-3286.

W. Xie, L. Jiao, B. Hou, W. Ma, ]. Zhao, S. Zhang, F. Liu, POLSAR image
classification via Wishart-AE model or Wishart-CAE model, IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 10 (8) (2017) 3604-3615.

A.C. Frery, H]. Muller, C.CF. Yanasse, SJ.S. Sant’Anna, A model for ex-
tremely heterogeneous clutter, IEEE Trans. Geosci. Remote Sens. 35 (3)
(1997) 648-659.

S.H. Yueh, J.A. Kong, J.K. Jao, RT. Shin, L.M. Novak, K-distribution and
polarimetric terrain radar clutter, J. Electromagn. Waves Appl. 3 (8) (1989)
747-768.

D. Zhang, L. Jiao, X. Bai, S. Wang, B. Hou, A robust semi-supervised SVM
via ensemble learning, Appl. Soft Comput. 65 (2018) 632-643.

C. Lardeux, P.L. Frison, C. Tison, ].C. Souyris, B. Stoll, B. Fruneau, J.P.
Rudant, Support vector machine for multifrequency SAR polarimetric data
classification, IEEE Trans. Geosci. Remote Sens. 47 (12) (2009) 4143-4152.
C. He, M. Liu, ZX. Liao, B. Shi, X.N. Liu, X. Xu, M.S. Liao, A learning-
based target decomposition method using Kernel KSVD for polarimetric
SAR image classification, EURASIP ]J. Adv. Signal Process. (1) (2012) 159.
M. Jager, A. Reigber, O. Hellwich, Unsupervised classification of polarimet-
ric SAR data using graph cut optimization, in: 2007 IEEE International
Geoscience and Remote Sensing Symposium, 2007, pp. 2232-2235.

Y. Wang, C. Han, F. Tupin, PoISAR data segmentation by combining tensor
space cluster analysis and Markovian framework, IEEE Geosci. Remote
Sens. Lett. 7 (1) (2010) 210-214.

A.P. Doulgeris, An automatic U-distribution and Markov random field
segmentation algorithm for PolSAR images, IEEE Trans. Geosci. Remote
Sens. 53 (4) (2015) 1819-1827.

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied
to document recognition, Proc. IEEE 86 (11) (1998) 2278-2324.

K. Simonyan, A. Zisserman, Very deep convolutional networks for
large-scale image recognition, in: International Conference on Learning
Representations, 2015.

2

3

[4

5

[6

(7

8

(9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]


http://refhub.elsevier.com/S1568-4946(22)00280-0/sb1
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb1
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb1
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb2
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb2
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb2
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb2
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb2
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb3
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb3
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb3
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb3
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb3
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb4
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb4
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb4
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb4
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb4
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb5
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb5
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb5
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb5
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb5
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb6
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb6
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb6
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb6
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb6
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb7
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb7
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb7
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb8
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb8
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb8
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb9
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb9
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb9
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb9
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb9
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb9
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb9
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb10
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb10
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb10
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb10
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb10
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb11
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb11
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb11
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb12
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb12
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb12
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb12
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb12
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb13
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb13
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb13
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb13
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb13
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb14
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb14
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb14
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb14
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb14
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb15
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb15
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb15
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb16
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb16
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb16
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb16
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb16
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb17
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb17
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb17
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb17
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb17
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb18
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb18
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb18
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb18
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb18
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb19
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb19
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb19
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb19
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb19
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb20
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb20
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb20
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb20
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb20
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb21
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb21
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb21
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb22
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb22
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb22
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb22
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb22

R. Shang, ]. Wang, L. Jiao et al.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

K. He, X. Zhang, S. Ren, ]. Sun, Deep residual learning for image recognition,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Las Vegas, NV, 2016, pp. 770-778.

G. Huang, Z. Liu, LV.D. Maaten, K.Q. Weinberger, Densely connected con-
volutional networks, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, 2017, pp. 2261-2269.

B. Hou, H. Kou, L. Jiao, Classification of polarimetric SAR images using
multilayer autoencoders and superpixels, IEEE ]. Sel. Top. Appl. Earth
Observ. Remote Sens. 9 (7) (2016) 3072-3081.

Y. Zhou, H. Wang, F. Xu, Y.Q. Jin, Polarimetric SAR image classification
using deep convolutional neural networks, IEEE Geosci. Remote Sens. Lett.
13 (12) (2016) 1935-1939.

Z. Zhang, H. Wang, F. Xu, Y.Q. Jin, Complex-valued convolutional neural
network and its application in polarimetric SAR image classification, I[EEE
Trans. Geosci. Remote Sens. 55 (12) (2017) 7177-7188.

Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015)
436-444.

R. Shang, J. Wang, L. Jiao, R. Stolkin, B. Hou, Y. Li, SAR targets classifi-
cation based on deep memory convolution neural networks and transfer
parameters, IEEE J-STARS (99) (2018) 1-13.

R. Shang, J. He, J. Wang, K. Xu, L. Jiao, Dense connection and depthwise
separable convolution based CNN for polarimetric SAR image classification,
Knowl.-Based Syst. (2020) 105542.

F. Cakir, K. He, X. Xia, B. Kulis, S. Sclaroff, Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp.
1861-1870.

[32] ]. Bromley, I. Guyon, Y. LeCun, E. Sickinger, R. Shah, Signature verification

using a Siamese time delay neural network, in: 7th Annual Neural
Information Processing Systems Conference, 1994, pp. 737-744.

12

[33]

[34]

Applied Soft Computing 123 (2022) 108922

S. Zagoruyko, N. Komodakis, Learning to compare image patches via
convolutional neural networks, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 4353-4361.

0. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, Matching networks for
one shot learning, in: Advances in Neural Information Processing Systems,
2016, pp. 3630-3638.

[35] J. Snell, K. Swersky, R. Zemel, Prototypical networks for few-shot learn-

[36]

[37]

[38]

[39]

[40]

[41]

ing, in: Advances in Neural Information Processing Systems, 2017, pp.
4077-4087.

F. Sung, Y. Yang, L. Zhang, T. Xiang, P.H. Torr, T.M. Hospedales, Learning to
compare: Relation network for few-shot learning, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp.
1199-1208.

N.S. Altman, An introduction to kernel and nearest neighbor nonparametric
regression, Am. Stat. 46 (3) (1992) 175-185.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
Dropout: a simple way to prevent neural networks from overfitting, J.
Mach. Learn. Res. 15 (1) (2014) 1929-1958.

D.E. Rumelhart, G.E. Hinton, RJ. Williams, Learning representations by
back-propagating errors, Cogn. Model. 5 (3) (1988) 1.

Q. Wu, B. Hou, Z. Wen, L. Jiao, Variational learning of mixture Wishart
model for PolSAR image classification, IEEE Trans. Geosci. Remote Sens. 57
(1) (2019) 141-154.

F. Schroff, D. Kalenichenko, ]. Philbin, et al., FaceNet: A unified embedding
for face recognition and clustering, Comput. Vis. Pattern Recognit. (2015)
815-823.


http://refhub.elsevier.com/S1568-4946(22)00280-0/sb23
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb23
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb23
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb23
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb23
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb24
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb24
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb24
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb24
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb24
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb25
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb25
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb25
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb25
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb25
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb26
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb26
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb26
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb26
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb26
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb27
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb27
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb27
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb27
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb27
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb28
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb28
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb28
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb29
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb29
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb29
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb29
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb29
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb30
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb30
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb30
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb30
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb30
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb32
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb32
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb32
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb32
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb32
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb33
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb33
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb33
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb33
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb33
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb34
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb34
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb34
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb34
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb34
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb35
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb35
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb35
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb35
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb35
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb36
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb36
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb36
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb36
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb36
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb36
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb36
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb37
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb37
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb37
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb38
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb38
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb38
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb38
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb38
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb39
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb39
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb39
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb40
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb40
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb40
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb40
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb40
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb41
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb41
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb41
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb41
http://refhub.elsevier.com/S1568-4946(22)00280-0/sb41

	Spatial feature-based convolutional neural network for PolSAR image classification
	Introduction
	Related work on three kinds of polsar classification algorithms
	Motivation and innovation

	The structure and method of SF-CNN
	Preprocessing of PolSAR data
	Training process of SF-CNN
	Loss function
	Test process of SF-CNN
	Network settings

	Experimental results and discussion
	Comparing algorithms and data sets
	Evaluation and analysis in San Francisco PolSAR data set
	Evaluation and analysis in Xi'an PolSAR data set
	Evaluation and analysis in Flevoland PolSAR data set
	Time execution needed to process from certain number of samples
	Analysis of threshold  
	The results of trinal-branch CNN

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


