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a b s t r a c t

The method of overlapping community detection based on fuzzy clustering is sensitive to the initial-
ization of community centers, which easily traps in local optima and leads to node misclassification.
This paper proposes an evolutionary multiobjective algorithm based on similarity matrix and node
correction to detect overlapping communities to solve the above problems. Firstly, the algorithm
determines a similarity community for each node by setting the similarity threshold. Then, the central
nodes are found more accurately through the similarity distribution of the similarity communities. Sec-
ondly, under the framework of the evolutionary multiobjective algorithm, the similarity communities
of the central nodes are used as the initial communities to obtain the nonoverlapping communities. In
addition, the algorithm proposes a correction strategy for the noncentral nodes based on the similarity
communities. The correction strategy obtains the adjacent nodes of each node’s similarity community.
It then uses each adjacent node’s community to correct the nonoverlapping community. Finally,
the algorithm adjusts the noncentral nodes’ correction strategy. This correction strategy corrects the
overlapping nodes according to the number of each overlapping node’s labels. It takes the separation
operation to further correct overlapping nodes to obtain the corrected overlapping communities. This
paper uses seventeen real networks and a variety of synthetic networks with different parameters to
verify the proposed algorithm’s effectiveness. And the proposed algorithm achieves higher accuracy of
community detection in most networks than four state-of-the-art overlapping community detection
algorithms.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

In many areas of the real world, network science models
eal systems within them and analyzes those real systems [1],
uch as social networks [2], scientific collaboration networks [3],
iological networks [4], etc. Nodes in the network can repre-
ent the entities in the system, and edges connect the enti-
ies [5]. The analysis process of these networks is the disclosure
f their topological characteristics [6], such as small-world [7]
nd scale-free [8], which can be studied in depth to increase the
nderstanding of complex networks and thus better mine the
otential information contained in data. In recent years, com-
unity structure has become one of the critical directions in
tudying network properties [9] and is highly influential in the
evelopment of fields related to data mining [10]. Although re-
ated research scholars have proposed many excellent community
etection algorithms [11,12], there is no definition of commu-
ity structure that has been generally accepted by researchers
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ttps://doi.org/10.1016/j.asoc.2022.109397
568-4946/© 2022 Elsevier B.V. All rights reserved.
so far [13]. For a complex network with a distinct community
structure, the community structure refers to dividing a network
into communities, where nodes within the same community have
dense connections and different communities have sparse con-
nections [5]. Usually, for the same community in a network, its
nodes share essentially the same attributes or have more similar
functions. Therefore, along with the rapid development of mod-
ern technology and the fast transmission of network information,
community structure detection in complex networks has become
a necessary technique in network science, social science, and
physical science [14].

Many scholars have proposed algorithms for community struc-
ture in complex networks, such as Newman’s fast algorithm [15],
the extreme value optimization algorithm [16] and algorithm
based on modularity and simulated annealing method [17]. These
algorithms focus on discovering nonoverlapping communities,
i.e., there are no duplicate nodes among the communities di-
vided in the network. However, in some real-world networks,
the passage of time may lead to gradual changes in different
stages of communities. As communities continue to change, there
is a tendency to overlap [18]. In overlapping networks, some
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ommunities intersect with each other, i.e., some nodes have
ultiple community identities [19]. For example, in social net-
orks, people may join various clubs. Due to the diversity of
any scientists’ research fields, their corresponding identification

nformation is no longer limited to a single. Thus, the practical
ignificance of dividing overlapping communities can be reflected
rom multiple perspectives of the real world. In general, over-
apping communities can be classified into two types: clear and
uzzy [20]. The clear overlapping communities mainly refer to
he fact that every node in the network entirely belongs to the
ommunity associated with it. In contrast, the fuzzy overlapping
ommunities mainly refer to the fact that some nodes in the
etwork belong to communities with varying attribution factors.
To effectively detect overlapping communities in complex net-

orks, the algorithms of overlapping community detection have
een proposed by some scholars, such as Palla et al. [21] used ef-
ective technique to explore large-scale overlapping communities,
n algorithm based on the concept of splitting [22], Lancichinetti
t al. [23] used local optimization to find overlapping commu-
ities, and so on. More and more scholars have improved the
volutionary multiobjective algorithm and applied it in other
ields. For instance, Zhang et al. [24] proposed determinantal
oint processes to balance convergence and population diversity
n high-dimensional objective space. In time series classifica-
ion, Gong et al. [25] simultaneously optimized representation
apacity, separation capacity, and network size to obtain the
dvantage of each objective. In neural network ensembles, Chen
t al. [26] defined the crossover operator and the mutation opera-
or, followed by finding the best trade-off among empirical error,
orrelation, and regularization. In software project scheduling,
hen et al. [27] balanced multiple objectives: satisfaction, dura-
ion, robustness, and cost. In job shop scheduling, Shen et al. [28]
chieved dynamic and flexible job shop scheduling by process-
ng multiple objectives simultaneously and combining multiple
euristics. Many scholars have also achieved good results using
volutionary multiobjective in overlapping community detection
lgorithms. The fuzzy clustering technique allowed a node to
ppear in different clustering results, which then achieved the
ffect of overlap between multiple clusters. Therefore, the fuzzy
lustering has become one of the effective overlapping com-
unity detection techniques [29]. Over the past decade or so,

he methods of overlapping community detection based on the
uzzy clustering have been continuously proposed. For example,
sorakis et al. [30] proposed a probabilistic approach based on
he model of Bayesian non-negative matrix factorization for over-
apping community detection. The approach obtained the feature
atrix by non-negative matrix factorization. Then, the feature
atrix was combined into model parameter inference to get the
oft assignment. Wu et al. [31] proposed a dynamic clustering
ethod for overlapping community detection via network oscil-

ators. The evolution of nodes with random initial phases was
erformed by designing a specialized set of differential equations.
he phase of the overlapping nodes quantified the affiliation of
he communities to which the overlapping nodes belong. Wang
t al. [32] implemented fuzzy overlapping community detec-
ion by introducing local random wandering-based distances. The
ethod measured the local distance using the similarity index
ased on random wandering and found overlapping communities
y fuzzy c-means clustering.
Although the above fuzzy clustering-based overlapping com-

unity detection algorithms can be well used to discover over-
apping communities, their effectiveness and detection accuracy
till need to be improved. Moreover, the following problems
xisted in using the fuzzy clustering methods. For example, Wang
t al. [33] proposed a fuzzy c-mean clustering algorithm based
n particle swarm optimization by analyzing the advantages and
2

disadvantages of the fuzzy c-mean clustering algorithm. Izakian
et al. [34] proposed a hybrid fuzzy clustering method using the
benefits of fuzzy c-mean clustering algorithm and fuzzy particle
swarm algorithm. Wikaisuksakul et al. [35] proposed a multi-
objective evolutionary method that did not require the number
of clusters. The method introduced an adaptive mechanism to
combine the fuzzy c-mean clustering algorithm with NSGA-II.
Since the fuzzy clustering was more sensitive in initializing com-
munity centers, it led to the fact that the divisions obtained by
these methods were prone to local optima. After that, Havens
et al. [36] proposed the new formula for fuzzy validity metrics
by generalizing the modularity function. Wang et al. [37] intro-
duced a structural similarity based on local interactions between
adjacent vertices to measure the fuzzy relationship between ver-
tices. Ding et al. [38] identified and removed all links in the
derived link community by the node clustering technique. Then, a
network decomposition-based overlapping community detection
algorithm was proposed. Biswas et al. [39] proposed a fuzzy
cohesive community detection method by iteratively updating
node affiliation. However, before these algorithms could be run,
it was also necessary to define the number of communities or the
relevant parameters for fuzzy clustering. These parameters could
hardly be determined in advance, but they played a crucial role
in the clustering results.

This paper proposes an evolutionary multiobjective algorithm
based on similarity matrix and node correction for overlapping
community detection. The proposed algorithm can solve the high
sensitivity of the community centers’ initialization and correct
misclassified nodes. Firstly, the algorithm uses the diffusion ker-
nel similarity to calculate the similarity matrix and sets the sim-
ilarity threshold based on the average similarity between nodes.
Nodes with a similarity greater than the similarity threshold are
used as the adjacent nodes in the similarity communities. After
that, the adjacent nodes are used to determine the similarity
communities of each node. The total similarity of each node’s
similarity community is calculated and sorted in descending or-
der, and then the central nodes are selected from the sort in
turn. At the same time, the adjacent nodes in the central nodes’
similarity communities are deleted from the sort. Secondly, under
the framework of the evolutionary multiobjective algorithm, the
similarity communities of the central nodes are used as the initial
communities. Then central nodes in the network are optimized
by minimizing the kernel k-means and the ratio cut to obtain
nonoverlapping community detection. In addition, because the
pre-division may have the wrong partition of noncentral nodes,
a similarity community based correction strategy for noncentral
nodes is proposed. The adjacent nodes of each node are obtained
according to the similarity communities. Then the adjacent nodes
with increased modularity are selected to correct the nodes after
the nodes are changed to the community to which each adjacent
node belongs. Finally, because overlapping nodes appear in divid-
ing overlapping communities, the above correction strategy needs
to be adjusted. The algorithm sorts the adjacent nodes’ labels
of the overlapping nodes in descending order. Then, according
to the number of community labels of the overlapping nodes,
the algorithm selects the same number of labels from the sort
to correct the overlapping nodes. And the overlapping nodes are
further corrected by taking the separation operation. After that,
the final corrected overlapping communities are obtained. The
main contributions of this paper are as follows:

(1) The similarity matrix is calculated by using the diffusion
kernel similarity. Then, the similarity threshold is set to divide
the similarity community of each node and determine the central
nodes more precisely.

(2) The correction strategy of noncentral nodes is proposed
based on the similarity community in the pre-division. The nodes’
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Fig. 1. The working framework of the proposed algorithm.

djacent nodes are obtained based on the similarity community
o that the nonoverlapping communities can be corrected to
mprove the results of pre-division .

(3) The above correction strategy is adjusted to correct the
verlapping nodes according to the partition of adjacent nodes
n the similarity community of overlapping nodes. And the sepa-
ation operation further corrects the overlapping nodes.

The rest of the paper’s structure is below. Section 2 describes
he proposed algorithm in detail from the perspective of similar-
ty matrix and node correction. Section 3 provides an experimen-
al comparison of real networks and synthetic networks. Section 4
ummarizes this paper in combination with the experimental
art.

. Proposed method

To solve the problem of the high sensitivity of community
enters’ initialization and to judge and correct the nodes with
he wrong partition. This paper proposes an evolutionary mul-
iobjective overlapping community detection algorithm based on
imilarity matrix and node correction, whose working framework
s shown in Fig. 1.

The working framework of the proposed algorithm is given in
ig. 1. A four-part approach is proposed in this paper. The com-
unity initialization based on the diffusion kernel similarity, the
re-division based on the similarity community, the correction
trategy of noncentral nodes based on the similarity community,
nd the correction strategy of overlapping nodes based on the
imilarity community and the separation operation. These four
arts are described in the following.

.1. Community initialization based on diffusion kernel similarity

Traditional algorithms used the adjacency matrix to determine
he nodes’ degree directly, then selected the nodes as the central
odes based on the relationship of nodes’ degree. However, the
elationship of nodes’ connected edges was not fully considered
n this process. For the above reasons, these methods could not
rovide accurate central nodes and use these relationships to
ine for more implicit information. While dividing the network

o obtain the nodes’ situation more specifically in each commu-
ity, different noncentral nodes need to be divided into each
3

central node to form the communities. As a result, the central
nodes of the whole network must be located quickly and pre-
cisely. In this paper, the diffusion kernel similarity [40] is used to
measure the relationship between nodes and thus determine the
central nodes, which is calculated as follows:

S = e−γ L (1)

where γ should be set to 1 and L is the Laplacian matrix. The big-
ger the diffusion kernel similarity between nodes in the diffusion
kernel similarity matrix is, the closer the relationship between
nodes is. Conversely, the sparser relationship is.

According to the FCMdd algorithm [41], i.e., the central nodes
of the network were the center of each community. However,
before dividing the network, the initial communities need to be
identified based on the connected edges’ relationship between
the nodes to find the central nodes. In the initial stage of network
detection in order to make full use of the similarity relationship
between nodes, and to facilitate the setting of similarity com-
munities, this paper proposes the similarity threshold for node
i (All node i involves in this paper belong to the following range
i = 1, 2, . . . , n, n is the number of nodes in the network), which
is calculated as follows:

Sthrei =

∑n
j=1 S(i, j)

n
(2)

where S(i, j) is the diffusion kernel similarity between node i and
node j, and n is the number of nodes in the network.

After setting the similarity threshold Sthre, the similarity sit-
uation between the nodes needs to be determined based on
the relationship between the diffusion kernel similarity and the
similarity threshold of each node. Therefore, the determination
method of the similarity community Csimi is proposed in this
paper, and the equation is as follows:

Csimii =

{
Csimii ∪ j, if S(i, j) > Sthrei
Csimii , elseS(i, j) ≤ Sthrei

(3)

where Csimii is the similarity community of node i. When S(i, j)
s greater than the set similarity threshold Sthrei , it means that
rom the definition of similarity, node j should belong to the
imilarity community of node i, i.e., Csimii . Otherwise, Csimii re-
ains unchanged. Eq. (3) can fully use the relationship between

he diffusion kernel similarity of each node and the similar-
ty threshold, then determine the implied similarity commu-
ity by simple network information. Establishing the similarity
ommunity also facilitates the precise selection of the central
odes.
As shown above, this paper finds the central nodes as follows.

he nodes are selected according Eq. (3) to obtain the similarity
ommunity Csimi. Then the central nodes are obtained by the
iffusion kernel similarity between each node in each similar-
ty community Csimi. Fig. 2 shows the process of dividing the
imilarity communities and finding the central nodes.
In Fig. 2, first, the diffusion kernel similarity matrix S is cal-

ulated according to Eq. (1), then similarity threshold Sthre of
ach node is obtained in combination with Eq. (2). Second, in the
iffusion kernel similarity matrix S, the similarity communities
simi are divided for each node according to Eq. (3), and the
imilarity communities of each blue node are given in the figure,
espectively. Last, the similarity communities are summed and
orted by the diffusion kernel similarity in descending order. Then
odes in the sort are taken out in turn as the central nodes, and
he adjacent nodes of their similarity communities are deleted.
he central nodes’ set of the network can be obtained as red
odes.
Algorithm 1 is the procedure of the community initialization

ased on the diffusion kernel similarity.
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Fig. 2. The process of finding central nodes based on diffusion kernel similarity.
n

O

Algorithm 1 The community initialization based on the diffusion
kernel similarity
Input: adjacency matrix Amat , number of nodes n, number of

populations N .
Output: diffusion kernel similarity matrix S, similarity commu-

nity Csimi, initial population POP .
1: Initialization: calculate S by (1) and the similarity threshold

Sthre by (2);
2: for i = 1; i < n; i++ do
3: for j = 1; j < n; j++ do
4: Csimii ← The similarity community of node i is obtained

by (3);
5: end for
6: end for
7: Ssimi ←Sum the diffusion kernel similarity of each Csimi and

sort them in descending order;
8: nodeall ←Recording the node set of Ssimi;
9: while size(nodeall) ̸= null do
0: nodecn ← Select nodes from nodeall and delete the adjacent

nodes according to its similarity community;
1: end while
2: for m = 1; m < N; m++ do
3: Randomly select 2 ∼ size(nodecn) nodes from nodecn;
4: end for
5: return S, Csimi and POP .

2.2. Pre-division based on similarity communities

After selecting the central nodes, existing methods usually
nly used the central nodes for nonoverlapping community de-
ection. Therefore, these methods led to a time-consuming net-
ork initialization in the subsequent detection process. This
aper proposes a pre-division method based on the similarity
ommunity to fully consider the edge-connected information
f nodes and speed up the process of nonoverlapping commu-
ity detection. NSGA-II [42] includes fast non-dominated sorting,
rowding distance sorting, and elite retention strategy, which
an obtain the nondominated frontier and the solution sets with
ood convergence. Therefore, under the framework of NSGA-II,
he similarity communities of each central node are used as the
nitial communities in the process of pre-division. Two objective
unctions KKM [43] and RC [44], are minimized to complete
ontinuous optimization of detection results, where KKM is the
nternal connection density of each community and RC is the
onnection density between different communities.
In [43], it was stated that the smaller values of KKM indicated

higher density of connectivity in communities. In comparison,
4

the smaller values of RC indicated a lower density of connectivity
between communities. To achieve the purpose of community de-
tection, i.e., the connectivities within communities are tight, but
the connectivities between communities are sparse. Therefore,
both KKM and RC objective functions need to be minimized. The
objective functions are specified as follows:

min

{
KKM = 2(n− k)−

∑t
q=1

L(Cq,Cq)
|Cq|

RC =
∑t

q=1
L(Cq,Cq)
|Cq|

(4)

where n is the number of nodes in the network, k is the number of
communities in the network, and Cq represents the qth commu-
ity, L(Cq, Cq) =

∑
i∈Cq

∑
j∈Cq Amatij , L(Cq, Cq) =

∑
i∈Cq

∑
j∈Cq Amatij ,

and Amat is the adjacency matrix of the network.
In the framework of NSGA-II, the central nodes are contin-

uously optimized. After that, the number of communities can
be determined automatically. However, the obtained results of
community detection are nonoverlapping. And it is necessary
to divide the overlapping nodes and thus get the overlapping
communities. This paper uses the second stage of [45] as the final
partition for dividing overlapping communities.

Following is the procedure to obtain the pre-division by the
similarity communities based on the initial population POP , as
shown in Algorithm 2.

Algorithm 2 The pre-division based on the initialization of the
diffusion kernel similarity
Input: similarity community Csimi, number of populations N , ini-

tial population POP , number of iterations Gen, mutation
operation Mutation, crossover operation Crossover .

utput: populations of pre-division POPpre.
1: for k = 1; k < N; k++ do
2: The initial communities←Select Csimi of each central node

and set the unique label label = {1, 2, . . . , q}, with q being
the number of central nodes;

3: Calculate the KKM and RC of POPk and each child←Obtain
the children of POPk using Mutation and Crossover;

4: Use NSGA-II to get the new POPk;
5: end for
6: POPpre = {POP1, POP2, ..., POPk};
7: return POPpre.

2.3. The correction strategy of noncentral nodes based on similarity
community

In the pre-division method, there is the case that the non-
central nodes are incorrectly divided. However, in the method of
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nitializing community-based on diffusion kernel similarity, each
ode can judge the similarity community it belongs to by diffu-
ion kernel similarity. Therefore, the correction of each commu-
ity can be completed by the community’s situation of adjacent
odes in the similarity community. To sum up the above, this pa-
er proposes a similarity community-based correction strategy to
orrect noncentral nodes, and the correction equation proposed
n this paper is as follows:

abeli =
{
labelsimii , if∆Qov > 0
labeli, else∆Qov ≤ 0 (5)

here labeli denotes the label of node i and labelsimii denotes the
abels of adjacent nodes in the similarity community of node i.

Under the judgment of Eq. (5), the correction of noncentral
odes in the network can be completed. The correction strategy of
oncentral nodes for the whole network based on the similarity
ommunities is shown in Fig. 3.
In Fig. 3, for the blue node. First, each adjacent node in simi-

arity community Csimi1 of the blue node is found, then the blue
ode’s label is changed to the label of adjacent node labelsimi2
nd labelsimi6 , respectively. Then, according to Eq. (5) to decide
hether to correct the label. Finally, the community label of the
lue node is output after the correction.
The procedure of the correction strategy is as shown in Algo-

ithm 3.

Algorithm 3 The correction strategy of the noncentral nodes
based on the similarity community
Input: similarity community Csimi, number of populations N ,

number of nodes n, pre-divided populations POPpre.
Output: corrected population POPcorrect1 .
1: for k = 1; k < N; k++ do
2: for i = 1; i < n; i++ do
3: Select adjacent nodes of node i from Csimii ;
4: labelsimi =

{
labelsimi1 , labelsimi2 , . . . , labelsimiq

}
← Get the

community labels of the adjacent nodes, with q being the
number of adjacent nodes;

5: for j = 1; j < q; j++ do
6: Set the label of node i to labelsimin ;
7: Determine the correction according to equation (5);
8: end for
9: end for

10: end for
11: return POPcorrect1 .

2.4. The correction strategy of overlapping nodes based on similarity
community and separation operation

After correcting noncentral nodes in pre-division, the final
artition is used to get the overlapping communities. Because
he core of the final partition lies in discovering the overlapping
odes. Therefore, the overlapping nodes in the final division need
o be corrected.

In order to utilize the distribution of the similarity com-
unities to which overlapping nodes belong, the following ad-

ustment is required. According to the number of communities
o which overlapping nodes belong, the algorithm can select
he same number of communities of adjacent nodes among the
imilarity communities of overlapping nodes. Subsequently, the
ccurrences of the adjacent nodes’ communities are sorted in
escending order and selected. Based on the above analysis, the
verlapping nodes’ correction equation proposed in this paper is
s follows:

abelsimi−ovj = argmax(sort(labelsimii )) (6)

r

5

where labelsimij is the adjacent nodes’ label in the similarity com-
munity of the overlapping node j, labelsimi−ovj is the set of label
orrections for overlapping node j. Thus, Eq. (6) represents a
tatistical count of labelsimij to obtain the class of labels that makes
he largest count, denoted as r .

Based on the above correction strategy, in order to make fur-
her correction to the overlapping nodes. Therefore, the
eparation operation can then be decided by separating over-
apping nodes and judging the situation of ∆Qov . This paper
elects the overlapping communities composed of blue and pink
ommunities for the separation operation, as shown in Fig. 4.

Algorithm 4 Overlapping nodes’ correction strategy based on the
similarity community and the separation operation
Input: similarity community Csimi, number of populations N ,

number of overlapping nodes nov , final population of the
final partition POPlast .

Output: corrected populations POPcorrect2 .
1: for k = 1; k < N; k++ do
2: for j = 1; j < nov; j++ do
3: Select adjacent nodes of overlapping node j from Csimij ;
4: labelsimi ← Put the community labels of the adjacent

nodes;
5: The number of each type of community in the labelsimi is

counted and sorted in descending order;
6: labelsimi−ov ←According to the number of labels of over-

lapping node j and equation (6) to obtain the set of label
corrections;

7: Set the community label of overlapping node j to the label
appearing in labelsimi−ov;

8: if ∆Qov > 0 then
9: The overlapping node j is judged to successfully

corrected;
10: else
11: The label of overlapping node j is set to the original

label;
12: end if
13: Set the label of overlapping node j to its individual labels

in turn;
14: if ∆Qov > 0 then
15: Judge the successful separation of overlapping node

j and select the label with the largest increase in
extended modularity Qov;

16: else
17: Set the label of overlapping node j to its original label.
8: end if

19: end for
20: end for
21: return POPcorrect2 .

In Fig. 4, the purple overlapping node is considered as a
nonoverlapping in the blue and pink community. After that, Qov
is calculated before and after each case. If ∆Qov > 0, the over-
lapping node is separated. Otherwise, the overlapping node will
not be separated. Finally, based on the judgment of ∆Qov , the
overlapping node is obtained to belong to the blue community.

The final partition’s correction strategy is as shown in Algo-
rithm 4.

2.5. Overall procedure of the algorithm

With the integration of the previous four parts, the overall
procedure of the evolutionary multiobjective overlapping com-
munity detection algorithm based on similarity matrix and node

correction is represented in Algorithm 5.
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Algorithm 5 Overall procedure of the algorithm
Input: adjacency matrix Amat , number of nodes n, number of pop-

ulations N , number of iterations Gen, mutation operation
Mutation, crossover operation Crossover .

Output: the corrected nonoverlapping and overlapping results.
1: while Gen ̸= 0 do
2: Use Algorithm 1 to initialize the communities;
3: Divide the nonoverlapping communities by Algorithm 2;
4: Gen = Gen− 1;
5: end while
6: The corrected nonoverlapping communities are obtained

by Algorithm 3 to each node of the nonoverlapping
communities;

7: Use the final partition based on AR-MOEA to detect overlap-
ping communities;

8: The overlapping nodes are corrected and separated through
Algorithm 4 to obtain the corrected overlapping communi-
ties;

9: return the corrected nonoverlapping and overlapping results.

2.6. Time complexity analysis

Suppose that the number of nodes and edges in graph G are
n and m, respectively. N is the population size in nonoverlapping
partition, N ′ is the population size in overlapping partition, and
Gen is the number of iterations. Then the time complexity of the
proposed algorithm consists of five components: Algorithm 1 is
O(n2
+ n+N), Algorithm 2 is O((n+m+N2)×N), Algorithm 3 is

(N×n2), Algorithm 4 is O(N×n), and the time complexity at the
econd stage of [45]. The total time complexity of the proposed
lgorithm is finally obtained according to Algorithm 5. Since the
umber of nodes is much larger than the population size of two
artitions, the total time complexity of the proposed algorithm
an be simplified to O(n2

× N × N ′ × Gen).
 a

6

3. Experiment and analysis

The experimental part is implemented on matlab2020a soft-
ware. The processor is Intel(R) Core(TM) i5-8250U CPU @ 1.60
GHz, the memory is 16.0 GB, and the operating system is Win-
dows 10. In the pre-division method, variation operation and
crossover operation are performed by the bitwise variation and
the uniform crossover, respectively. Population size and the max-
imum number of generations are set to 100.

3.1. Evaluation metrics

The generalized normalized mutual information (gNMI) [23] is
the first evaluation metric to verify the algorithm’s performance.
This evaluation metric compares the real partitions of the net-
work with the algorithm’s detection results and can only be used
in networks where the real partition exists. gNMI is defined as:

gNMI(A, B) =
−2

∑KA
i=1

∑KB
j=1 Cij log(Cij · n/Ci.C.j)∑KA

i=1 Ci. log(Ci./n)+
∑KB

j=1 C.j log(C.j/n)
(7)

where n denotes the total number of nodes in the network, KA
and KB denote the number of real communities and the number
of communities detected by algorithm, respectively, Cij denotes
the number of the same nodes between the community i in A and
the community j in B, and Ci.(C .j) denotes the sum of elements in
ow i (column j) of C . The value of gNMI(A, B) ranges from [0, 1],
nd the higher value of gNMI(A, B) indicates that the effect of
ommunity detection is better. Some clarifications are provided
elow. If gNMI(A, B) = 0, it indicates that A and B are completely
ifferent, whereas gNMI(A, B) = 1, it signifies that A and B are
dentical, i.e., the algorithm detects the true community structure
f the network.
The second evaluation metric is Qov [46], which measures the

ifference between the number of edges in the given community
nd the expected number when edges are randomly distributed.
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Table 1
Specific parameters of the LFR networks.
Network name N µ On Om Cmin Cmax Others

LFR1 100 {0.1,0.2,0.3,0.4,0.5} 0.1N {2,4,6,8} 10 20 k = 10
LFR2 500 {0.1,0.2,0.3,0.4,0.5} 0.1N {2,4,6,8} 30 60 kmax = 40
LFR3 1000 {0.1,0.2,0.3,0.4,0.5} 0.1N {2,4,6,8} 30 60 τ1 = 2, τ2 = 1
a
v
t
d
t
D
g
r

Obviously, Qov can be used when the real community structure
is unknown. Because of this, the variety of networks used for
detection is greatly increased. Qov is defined as:

ov =
1
2m

l∑
q=1

∑
i∈Cq,j∈Cq

1
OiOj

(Amatij −
kikj
2m

) (8)

here m is the number of edges in the network, Oi is the number
of communities to which node i belongs, and ki is the degree of
node i.

3.2. Comparison algorithms

This paper adopts the following four algorithms for compari-
son, the algorithm based on fuzzy methods (EMOFM-DK) [45], the
local spectral diffusion based approach (LEMON) [47], the algo-
rithm based on seed expansion (NISE) [48], and the Bayesian non-
negative matrix factorization based approach (NMF) [30]. In this
paper, the experimental parameters in both synthetic networks
as well as real networks are set according to the parameters
recommended by the four algorithms.

3.3. Experimental results on the LFR networks

3.3.1. LFR networks
Lancichinetti et al. proposed the LFR network [49], and this pa-

per uses the LFR model to generate different synthetic networks.
Some adjustable parameters are included in the LFR network to
control the network’s structure: N is the number of nodes in the
etwork, i.e., the size of the network; k and kmax are the average
ode degree and the maximum node degree of the network, re-
pectively; τ1 and τ2 are the exponents of power-law distribution
ollowed by node degree and community size, respectively; µ
is to control the degree of connectivity between communities;
On is the number of overlapping nodes in the network; Om is
he number of communities to which each overlapping node
elongs; Cmin and Cmax are the minimum and maximum size of
ach community, respectively.
This paper sets the size N of the LFR networks to 100, 500,

nd 1000. Subsequently, these LFR networks are denoted as LFR1,
FR2, and LFR3. The community size of LFR1 is [Cmin, Cmax] =
10,20], and the community size of LFR2 and LFR3 is [Cmin, Cmax]
[30,60]. The other parameters of the three LFR networks are set

dentically: k and kmax are set to 10 and 40, respectively. τ1 and
2 are set to 2 and 1, respectively. µ is varied from 0.1 to 0.5 in
teps of 0.1. On is set to 0.1N . Om is varied from 2 to 8 in steps of
. The specific parameters of the three LFR networks are listed as
hown in Table 1.

.3.2. The results and analysis of LFR networks
For the three different LFR networks, LFR1, LFR2, and LFR3,

ach algorithm is run 20 times to obtain community results. Since
FR networks’ corresponding real structures are obtained when
hey are generated, the experimental results for LFR networks are
easured using gNMI and Qov metrics.
Fig. 5 shows the gNMI for the results of community detection

s µ changes from 0.1 to 0.5 for LFR1 with Om set to 2, 4, 6, and
, respectively.
In Fig. 5(a), when 0.1 ≤ µ ≤ 0.3, the gNMI values of the

roposed algorithm and EMOFM-DK always remain above 0.85,
7

nd the gNMI values of NMF can stay above 0.75. The gNMI
alues of these three algorithms can maintain certain stability in
his interval. However, after µ > 0.3, the gNMI values of NMF
ecrease rapidly and drop to about 0.1 at µ = 0.5. At the same
ime, the gNMI values of the proposed algorithm and EMOFM-
K decrease but remain about 0.5 at µ = 0.5. In Fig. 5(b), the
NMI values of the proposed algorithm and EMOFM-DK always
emain above 0.65 when 0.1 ≤ µ ≤ 0.3, and the gNMI values
of EMOFM-DK rise back to about 0.7 when µ = 0.3. However,
after µ > 0.3, the gNMI values of the proposed algorithm and
EMOFM-DK decrease, and only the proposed algorithm remains
around 0.5 at µ = 0.5. In Fig. 5(c) and (d), the gNMI values of the
proposed algorithm always stay above 0.5 throughout the change
of µ, which can ensure good stability. In summary, in the LFR1
network, the gNMI values of the proposed algorithm have a good
advantage. And the stability of the proposed algorithm can be
better and better as the overlap of the network gradually deepens.
For the other three algorithms, they cannot guarantee stability.

Fig. 6 shows the gNMI for the LFR2 network. And the change
process of µ and Om is consistent with the LFR1.

Corresponding to Fig. 6, the LFR2 network’s size is 500, and
the proposed algorithm show good stability in Fig. 6(c) and (d). In
Fig. 6(a), all algorithms show a similar decreasing trend after µ >
0.3, while the proposed algorithm and EMOFM-DK can maintain
some stability before that. In Fig. 6(b), when 0.1 ≤ µ ≤ 0.3, the
gNMI values of the proposed algorithm, EMOFM-DK, and NMF all
remain above 0.5. And as the relationship between communities
is gradually blurred, the gNMI values of most algorithms first
decrease steadily, and the gNMI values of all algorithms decrease
rapidly after µ exceeded 0.4. In Fig. 6(c), as µ increases to 0.3,
the gNMI values of the proposed algorithm, EMOFM-DK, and NMF
can remain around 0.5. However, as the relationships within the
community become more sparse, only the gNMI values of the
proposed algorithm and EMOFM-DK show some decrease and
remain above 0.5. In Fig. 6(d), the proposed algorithm is more
stable throughout the change of µ, and the gNMI values always
stay around 0.5. It can be seen that the proposed algorithm
has better overall results in the LFR2 network and shows better
stability at Om = 8. EMOFM-DK also achieves good results in
most cases. However, NMF only achieves good values of gNMI and
stability when µ is small.

Fig. 7 shows the gNMI for the LFR3. And the change process of
µ and Om is consistent with the LFR1 and LFR2.

Corresponding to Fig. 7, since the size of the LFR3 network
is 1000 at this time, it is very comparatively difficult to main-
tain certain stability within the same distribution of On and the
variation range of µ as LFR1 and LFR2. The gNMI values of all
algorithms basically decrease with increasing µ, and none can
maintain stability. And only the NMF’s values of gNMI rebound
in a few cases with µ = 0.3 in Fig. 7(b) and (d). From the
comprehensive analysis of the LFR3 network, the overall results
of the proposed algorithm are better, while EMOFM-DK and NMF
can also achieve good results in most cases.

Qov is then used to measure the results of community detec-
tion as µ changes from 0.1 to 0.5 for each LFR network with Om
set to 2, 4, 6, and 8, respectively, as shown in Fig. 8.

As can be seen in the various subplots in Fig. 8. In the LFR1
network, the Qov of the proposed algorithm and EMOFM-DK
can achieve better results, and the results of the proposed al-
gorithm are more stable when O is 4, 6, and 8, respectively.
m
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Fig. 5. gNMI values for the LFR1 network.

Fig. 6. gNMI values for the LFR2 network.

Fig. 7. gNMI values for the LFR3 network.

Fig. 8. Qov values for LFR1, LFR2, and LFR3 networks.
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Table 2
Specific information of the real networks.
Network Node Edge Average

degree
Real clusters Reference

ENZYMES_g163 12 22 3.67 Unknown [50]
Karate 34 78 4.59 2 [51]
Dolphin 62 159 5.13 2 [52]
Polbook 105 441 8.4 3 [53]
Football 115 613 10.66 12 [53]
SFI 118 200 3.39 Unknown [44]
Jazz 198 2742 27.70 Unknown [54]
Gene-fusion 291 279 1.92 Unknown [55]
Celegansmetabolic 453 2025 8.94 Unknown [56]
Email 1133 5451 9.62 Unknown [38]
Yeast-D2 1443 6993 9.69 162 [57]
Netscience 1589 2742 3.45 Unknown [44]
Y2H 1966 2705 2.75 203 [58]
ego-Facebook 4039 88234 43.69 Unknown [59]
Powergrid 4941 6594 2.67 Unknown [7]
Erdos 6927 11850 3.42 Unknown [56]
Lastfm-asia 7624 27806 7.29 Unknown [60]

Comprehensive analysis of LFR2 and LFR3 networks, as the fuzzy
degree of the network structure deepens, the Qov of the proposed
algorithm, EMOFM-DK, and NMF can achieve better results.

Through the above analysis of gNMI and Qov metrics for each
LFR network, the following conclusions can be synthesized. In
terms of the accuracy of the metric results, although the proposed
algorithm, EMOFM-DK, and NMF can achieve higher accuracy
in most cases, the proposed algorithm can basically achieve the
highest accuracy metric results. In terms of stability, the proposed
algorithm can maintain good stability of the results in many
cases. Therefore, the proposed algorithm can maintain a better
advantage in terms of the accuracy of results and the stability.

3.4. Experimental results on the real networks

3.4.1. Real networks
Seventeen real networks are used in this experiment, six of

which have real clusters. The specific information of real net-
works is shown in Table 2.

3.4.2. The results and analysis of real networks
In this section, the networks’ detection results of the proposed

algorithm and all comparison algorithms are measured using
gNMI and Qov . The maximum value, average value and standard
deviation of each metric are listed. The experimental results are
obtained by running each algorithm independently 20 times, and
‘‘−’’ indicates that the algorithm cannot give the networks’ detec-
tion results in effective time. Table 3 lists the values of gNMI for
six networks with the real community structures. In comparison,
Table 4 lists the values of Qov for all seventeen networks.

From Table 3, it can be seen that the proposed algorithm
can achieve the best detection results in both the maximum and
average values of gNMI in six real networks. The proposed algo-
rithm and EMOFM-DK can correctly divide the Karate network,
i.e., gNMI_max = gNMI_avg = 1. For the Dolphin network, both
the proposed algorithm and EMOFM-DK’s the maximum value of
gNMI is 1. Still, the overall operation of the proposed algorithm is
more stable. The advantage of the proposed algorithm is obvious
from the maximum and average results of gNMI for Polbook
and Football networks. For the Yeast-D2 network, although both
the proposed algorithm and EMOFM-DK achieve 0.5401 for the
maximum value of gNMI, the proposed algorithm increases the
average gNMI value from 0.3137 to 0.3565. Therefore, the pro-
posed algorithm is significantly better than other comparative
algorithms in terms of networks’ division for the six known
communities.
9

Table 3
The values of gNMI detected by five algorithms on six real networks.

Metric NMF NISE LSC EMOFM-DK Proposed

Karate
gNMI_max 0.4067 0.8887 0.9214 1.0000 1.0000
gNMI_avg 0.3130 0.8887 0.8998 1.0000 1.0000
gNMI_std 0.0831 0.0000 0.0382 0.0000 0.0000

Dolphin
gNMI_max 0.3121 0.6647 0.7343 1.0000 1.0000
gNMI_avg 0.2662 0.6647 0.7328 0.9889 0.9963
gNMI_std 0.0458 0.0000 0.0017 0.0339 0.0203

Polbook
gNMI_max 0.1562 0.4015 0.3552 0.3587 0.5000
gNMI_avg 0.1375 0.4015 0.3530 0.3497 0.4895
gNMI_std 0.0183 0.0000 0.0004 0.0076 0.0072

Football
gNMI_max 0.7947 0.7729 0.7583 0.8203 0.8458
gNMI_avg 0.6899 0.7729 0.7534 0.8126 0.8329
gNMI_std 0.1064 0.0000 0.0047 0.0052 0.0114

Yeast-D2
gNMI_max 0.1580 0.1209 0.2067 0.5401 0.5401
gNMI_avg 0.1398 0.1209 0.2024 0.3137 0.3565
gNMI_std 0.0164 0.0000 0.0036 0.1375 0.1283

Y2H
gNMI_max 0.0249 0.0734 0.0792 0.0881 0.0930
gNMI_avg 0.0234 0.0734 0.0767 0.0851 0.0922
gNMI_std 0.0013 0.0000 0.0025 0.0026 0.0006

Table 4 shows that the proposed algorithm can achieve the
best results of Qov among the seventeen networks. It can be seen
that when the size of the network is small, the difference in the
detection results of Qov between the proposed algorithm and the
comparison algorithms is slight. But as the networks’ size in-
creases, the proposed algorithm obtains the greater results of Qov
in nine networks: Email, ego-Facebook, SFI, Netscience, Celegans-
metabolic, Yeast-D2, Gene-fusion, Powergrid, and Lastfm-asia,
and at least 1% better than the best results in the comparison al-
gorithms. Therefore, from the Qov metric, the proposed algorithm
is more competitive.

The above experiments on real networks show that the pro-
posed algorithm can achieve the best detection results under
the two metrics of gNMI and Qov . On some small networks, the
optimal value of Qov is limited by the size of the networks, which
eads to no effective improvement in the best results of the
roposed algorithm compared to the comparison algorithms. But
ith the increasing of network size, the proposed algorithm can
ffectively enhance the value of Qov in nine networks. Therefore,
he proposed algorithm can achieve more apparent advantages
nd good stability.

. Conclusion and future work

This paper proposes an evolutionary multiobjective overlap-
ing community detection algorithm based on similarity matrix
nd node correction. The proposed algorithm can solve the prob-
em of the high sensitivity of the community centers’ initialization
n overlapping community detection algorithms based on fuzzy
lustering and correct the misclassified nodes. To solve the above
roblems, the proposed algorithm proposes the concept of simi-
arity community based on the diffusion kernel similarity to fully
se the relationship of the connected edges between nodes to find
he central nodes. And different correction strategies based on
he similarity communities are designed for the noncentral nodes
nd the overlapping nodes misclassified in the detection process.
n this paper, four excellent overlapping community detection
lgorithms in recent years are used as comparisons on three
ifferent sizes of synthetic networks. In terms of the gNMI metric,
he proposed algorithm can achieve significant advantages in
ost cases and certain stability in the LFR1 network. In terms of

he Qov metric, the proposed algorithm achieves a good advantage
n terms of metric values and stability. In addition, all algorithms
artition the seventeen real networks and use gNMI and Qov
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Table 4
The values of Qov detected by the five algorithms on seventeen real networks.

Metric NMF NISE LSC EMOFM-DK Proposed

Qov_max 0.2567 0.2479 0.2411 0.2567 0.2567
Qov_avg 0.2488 0.2479 0.2411 0.2567 0.2567ENZYMES_g163
Qov_std 0.0015 0.0000 0.0000 0.0000 0.0000

Qov_max 0.1314 0.1532 0.2317 0.2348 0.2348
Qov_avg 0.0727 0.1532 0.2317 0.2341 0.2348Karate
Qov_std 0.0538 0.0000 0.0000 0.0003 0.0000

Qov_max 0.2565 0.2271 0.2538 0.2730 0.2750
Qov_avg 0.2404 0.2271 0.2487 0.2723 0.2743Dolphin
Qov_std 0.0137 0.0000 0.0045 0.0004 0.0003

Qov_max 0.2673 0.2163 0.2592 0.2704 0.2704
Qov_avg 0.2655 0.2163 0.2586 0.2702 0.2702Polbook
Qov_std 0.0014 0.0000 0.0004 0.0002 0.0001

Qov_max 0.3059 0.2466 0.2851 0.3066 0.3067
Qov_avg 0.3039 0.2466 0.2735 0.3063 0.3066Football
Qov_std 0.0016 0.0000 0.0114 0.0003 0.0000

Qov_max 0.2744 0.2267 0.2454 0.2735 0.2851
Qov_avg 0.2702 0.2267 0.2341 0.2728 0.2832Email
Qov_std 0.0035 0.0000 0.0107 0.0005 0.0009

Qov_max 0.4153 0.3995 0.4075 0.4012 0.4127
Qov_avg 0.4149 0.3995 0.4052 0.3988 0.4106ego-Facebook
Qov_std 0.0003 0.0000 0.0012 0.0027 0.0018

Qov_max 0.3764 0.3414 0.3646 0.3731 0.3837
Qov_avg 0.3764 0.3414 0.3617 0.3716 0.3821SFI
Qov_std 0.0000 0.0000 0.0028 0.0013 0.0015

Qov_max 0.2194 0.1398 0.1863 0.2259 0.2261
Qov_avg 0.2179 0.1398 0.1825 0.2258 0.2260Jazz
Qov_std 0.0012 0.0000 0.0036 0.0001 0.0001

Qov_max 0.4565 0.3649 0.3791 0.4632 0.4748
Qov_avg 0.4562 0.3649 0.3742 0.4624 0.4731Netscience
Qov_std 0.0002 0.0000 0.0043 0.0006 0.0013

Qov_max 0.2223 0.2372 0.2804 0.3255 0.3299
Qov_avg 0.2062 0.2372 0.2779 0.3227 0.3268Erdos
Qov_std 0.0158 0.0000 0.0021 0.0024 0.0026

Qov_max 0.1928 0.1833 0.1978 0.2105 0.2242
Qov_avg 0.1871 0.1833 0.1947 0.2101 0.2231Celegansmetabolic
Qov_std 0.0043 0.0000 0.0026 0.0002 0.0009

Qov_max 0.4175 0.3032 0.3389 0.4142 0.4263
Qov_avg 0.4172 0.3032 0.3346 0.4125 0.4232Yeast-D2
Qov_std 0.0002 0.0000 0.0028 0.0013 0.0025

Qov_max 0.0539 0.1125 0.1183 0.3576 0.3691
Qov_avg 0.0511 0.1125 0.1154 0.3559 0.3674Y2H
Qov_std 0.0024 0.0000 0.0026 0.0015 0.0013

Qov_max – – 0.3732 0.4123 0.4302
Qov_avg – – 0.3694 0.4089 0.4295Gene-fusion
Qov_std – – 0.0027 0.0036 0.0004

Qov_max 0.3857 0.2265 0.3067 0.4458 0.4581
Qov_avg 0.3845 0.2265 0.2958 0.4377 0.4526Powergrid
Qov_std 0.0006 0.0000 0.0009 0.0055 0.0052

Qov_max – 0.2073 0.2275 0.3853 0.3968
Qov_avg – 0.2073 0.2221 0.3836 0.3942Lastfm-asia
Qov_std – 0.0000 0.0032 0.0012 0.0034
s
i
a

metrics. EMOFM-DK can achieve good detection results of gNMI
and Qov on many networks. Meanwhile, the proposed algorithm
can achieve the best gNMI on six networks with real clusters.
And in Email, ego-Facebook, SFI, Netscience, Celegansmetabolic,
Yeast-D2, Gene-fusion, Powergrid, and Lastfm-asia networks, the
proposed algorithm’s division results of Qov achieve a significant
dvantage. The concept of similarity communities proposed in
his paper, it can find more accurate central nodes and thus
peed up the process of obtaining nonoverlapping communities
nder the evolutionary multiobjective algorithm. However, the
roblem of the long-running time of the evolutionary algorithm
till needs to be solved. In future work, parallel procedures can
e used to apply the proposed algorithm to more large-scale
10
networks. Future work also needs further improve the proposed
algorithm and find faster methods to obtain the nonoverlapping
and overlapping communities.
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