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a b s t r a c t

Feature selection can reduce the dimension of data and select the representative features. The available
researches have shown that the underlying geometric structures of both the data and the feature
manifolds are important for feature selection. However, few feature selection methods utilize the two
geometric structures simultaneously in subspace learning. To solve this issue, this paper proposes
a novel algorithm, called sparse and low-redundant subspace learning-based dual-graph regularized
robust feature selection (SLSDR). Based on the framework of subspace learning-based graph regularized
feature selection, SLSDR extends it by introducing the data graph. Specifically, both data graph and
feature graph are introduced into subspace learning, so SLSDR preserves the geometric structures of
the data and feature manifolds, simultaneously. Consequently, the features which best preserve the
manifold structures are selected. Additionally, the inner product regularization term, which guarantees
the sparsity of rows and considers the correlations between features, is imposed on the feature
selection matrix to select the representative and low-redundant features. Meanwhile, the l2,1-norm
is imposed on the residual matrix of subspace learning to ensure the robustness to outlier samples.
Experimental results on twelve benchmark datasets show that the proposed SLSDR is superior to the
six state-of-the-art algorithms from the literature.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development of information technology, high-
dimensional data have emerged in the fields of computer vision,
pattern recognition and machine learning [1,2]. How to deal with
high-dimensional data has become a challenging problem [3].
High-dimensional data often contain noise and redundant fea-
tures [4,5], and only a small number of features are informative
and representative [6]. Noise and redundant features decrease
the effectiveness of learning algorithms and increase the time
complexity of data processing, so it is necessary to use dimen-
sionality reduction techniques to remove noise and redundant
features. Feature extraction and feature selection are two com-
monly used dimensionality reduction techniques [7,8]. Feature
extraction needs to find a projection to map the original high-
dimensional data to a low-dimensional subspace [9,10], and fea-
ture selection is to select an optimal feature subset to obtain
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a compact data representation [11,12]. In feature selection, the
representative features are selected, so the dimension of the
features is significantly reduced, making data processing more
efficient [13]. Additionally, since noise and redundant features
are removed, the accuracy of clustering and classification tasks
is improved. Compared with feature extraction, feature selection
keeps the original representation of the features, so the semantic
information of the original features can be preserved [14,15].
Benefiting from the advantages of feature selection, many feature
selection algorithms have been proposed recently.

Based on whether the supervised information is used or not,
feature selection methods can be divided into three categories:
supervised, semi-supervised and unsupervised [16,17]. Super-
vised feature selection methods select features based on the
correlations between training samples and class labels [18,19].
In semi-supervised feature selection methods, a small number
of labeled training samples are required, and the unlabeled and
labeled training samples are combined together to improve the
performance of feature selection algorithms [20–22]. However,
the large-scale data obtained in the practical applications is unla-
beled, and marking the unlabeled data can bring high time cost.
Unsupervised feature selection methods require no label infor-
mation of samples and only make use of the intrinsic structure
of data to select features [23,24]. Therefore, it is particularly im-
portant to develop some efficient unsupervised feature selection
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algorithms. Unsupervised feature selection algorithms include
filter, wrapper and embedded methods [25–27]. The filter meth-
ods do not depend on any learning algorithm and only use the
intrinsic properties of data to select the important features [25].
The wrapped methods use a specific learning algorithm to se-
lect the feature subset that makes the learning algorithm per-
form best [28]. For the embedded methods, feature selection is
completed in the learning process of the corresponding learning
algorithm [29]. Among the three kinds of methods, the filter
methods have the advantages of high calculation speed and great
scalability. The wrapped methods can make the learning algo-
rithm achieve the best performance, but these methods have high
computational cost. The embedded methods make full use of the
advantages of the filter and wrapped methods, trying to select
a better feature subset while maintaining low computational
cost. The embedded methods have many advantages and have
attracted more and more attention of researchers [30].

Subspace learning can reduce the dimension of data effec-
tively and obtain the low-dimensional representation of high-
dimensional space. Benefiting from the application of matrix de-
composition strategy, subspace learning has been applied from
feature extraction to feature selection. In [31], Wang et al. pro-
posed subspace learning for unsupervised feature selection via
matrix factorization (MFFS). This algorithm applies the matrix de-
composition strategy to subspace learning, thus the unsupervised
feature selection problem is treated as a matrix decomposition
problem. Then, Wang et al. [32] proposed unsupervised feature
selection via maximum projection and minimum redundancy
(MPMR). MPMR presents the estimation degree of the selected
feature subset by all the features, and the minimized redundancy
regularization term is used to ensure the low redundancy of the
selected features. In [33], subspace learning-based graph regu-
larized feature selection (SGFS) was proposed. SGFS constructs
the feature graph to preserve the geometric structure informa-
tion of the feature manifold. The above three algorithms achieve
good feature selection results, but these algorithms still have
some shortcomings. For MFFS and MPMR, they ignore the local
geometric information of the data manifold and the feature man-
ifold. Although SGFS considers the local geometric information
of the feature manifold, it neglects the structure information of
the data manifold. In contrast, the proposed SLSDR takes the
local geometric information of both the data manifold and the
feature manifold into account, which significantly improves the
performance of feature selection.

Researches show that the manifold structure of data can im-
prove the learning efficiency of algorithms [34,35]. And many
manifold learning algorithms have been proposed to preserve
the intrinsic structure of data, such as Local Linear Embedding
(LLE) [36], Laplacian Eigenmap (LE) [37] and Locality Preserving
Projections (LPP) [38]. All these learning algorithms preserve
the manifold information of the high-dimensional space into
the low-dimensional embedding. In order to make use of man-
ifold information, many feature selection methods preserving the
intrinsic geometric structure of data have been proposed. For
Laplacian Score (LapScor) [28], the local geometric information
contained in data is used to calculate the score for each feature
separately. For spectral feature selection (SPEC) [39], it is based
on spectral graph theory and establishes a unified framework
for feature selection. Yang et al. [13] proposed l2,1-norm regu-
larized discriminative feature selection for unsupervised learning
(UDFS). For this algorithm, the local discriminant model is used
to guide the feature selection, and the local geometric struc-
ture of the data manifold is also considered. For multi-clustering
feature selection (MCFS) [18], it uses spectral analysis and the
l1-norm to select features, and the features that retain the multi-
clustering structure are selected. For joint embedding learning

and sparse regression (JELSR) [34], it adopts a one-step strategy,
which combines embedding learning and sparse regression to
perform feature selection. Non-negative spectral learning and
sparse regression-based dual-graph regularized feature selection
is proposed in [4]. This algorithm is based on the framework of
JELSR and constructs graphs on the data manifold and the feature
manifold simultaneously for feature selection, so a better feature
selection effect is achieved.

The manifold structure information has also been widely used
in classification problems. Ye et al. [40] proposed weighted twin
support vector machines with local information (WLTSVM) and
its application. WLTSVM makes full use of the potential simi-
larity information between samples to achieve higher classifi-
cation accuracy. Xu et al. [41] proposed a KNN-based weighted
rough v-twin support vector machine (Weighted rough v-TSVM).
The Weighted rough v-TSVM not only considers different penal-
ties for negative samples, but also takes into account the local
structure information of positive samples, which enhances the
effectiveness of the proposed algorithm. The k-nearest neighbor
based structural twin support vector machine algorithm (KNN-
STSVM) was proposed in [42]. KNN-STSVM makes full use of the
KNN method and imposes different weights on different samples
within the class to make full use of the structural information
contained in data, thus improving the classification accuracy of
the algorithm.

Many evolutionary-based feature selection methods have been
proposed recently. Das et al. [43] proposed an ensemble feature
selection method using a bi-objective genetic algorithm. In this
algorithm, several data subsets are generated by stratified sam-
pling and the genetic algorithm based feature selectors are used
to produce non-dominated feature subsets. Then the dominance
based method yields the final feature subset. Zhang et al. [44]
proposed a multi-objective particle swarm optimization (MOPSO)
approach for cost-based feature selection. And the feature subsets
to be used are considered as the generated Pareto front. Then the
probability-based encoding technology, the crowding distance,
and the external archive are used to improve the searching ability
of the algorithm. The method of feature selection of unreliable
data using an improved multi-objective PSO algorithm was pro-
posed in [45]. And the reinforced memory and hybrid mutation
strategies are used to improve the performance of the algorithm.

Recently, several safe feature screening rules were proposed
to remove the inactive features before learning tasks. In [46], Xu
et al. proposed E-ENDPP: a safe feature selection rule for speeding
up Elastic Net. By using this rule, the inactive features can be
identified and deleted before they are trained, so the problem
scale can be reduced to speed up the training process. Meanwhile,
E-ENDPP can achieve the same solution as the original model
because this rule is safe. Pan et al. [47] proposed a safe reinforced
feature screening strategy for lasso. Based on enhanced screening
rule via Dual Polytope Projection (EDPP) and feasible solutions,
the proposed algorithm can improve training efficiency of lasso
for large-scale datasets. The safe screening rules are also applied
to classification models. Pan et al. [48] proposed safe screening
rules for accelerating twin support vector machine classification.
In this model, the safe screening rule (SSR) and modified SSR
(MSSR) for twin support vector machine (TSVM) are proposed.
As a result, a large number of training samples are deleted and
the scale of the TSVM problem is reduced. For SLSDR, it makes
full use of the manifold information in dual graph and selects
the representative and low-redundant features by using the inner
product regularization term. Therefore, SLSDR can achieve a good
feature selection effect.

In this paper, a novel algorithm is proposed, called sparse
and low-redundant subspace learning-based dual-graph regular-
ized robust feature selection (SLSDR). SLSDR is based on the



R. Shang, K. Xu, F. Shang et al. / Knowledge-Based Systems 187 (2020) 104830 3

framework of subspace learning-based graph regularized feature
selection (SGFS). For SGFS, the nearest neighbor graph of the fea-
ture manifold is constructed, and the l2,1-norm is imposed on the
feature selection matrix S to guide feature selection. On the basis
of SGFS, SLSDR introduces the data graph for the data manifold
and uses the local geometric information of the data manifold and
the feature manifold simultaneously to guide the subspace learn-
ing. The linear transformation matrix Z and the low-dimensional
embedding matrix Y directly guide the learning of the feature
selection matrix S and the coefficient matrix V , respectively.
So the features which best preserve the manifold structures can
be selected. Moreover, the dual graph used in SLSDR can be
easily transplanted to other feature selection algorithms, which
can effectively improve the performance of the algorithms. Addi-
tionally, for the proposed SLSDR, the inner product regularization
term is used to replace the l2,1-norm that imposed on the feature
selection matrix S . The l2,1-norm guarantees the sparsity of
rows of S to select the representative features, but ignores the
correlations between features. So the high-redundant features are
selected, which decreases the performance of the feature selec-
tion algorithms. The inner product regularization term consists
of l1-norm and l2-norm, ensures the sparsity of the rows of the
feature selection matrix S and considers the correlations between
features, so the representative and low-redundant features are
selected to obtain a better feature selection result. Meanwhile,
the outlier samples are often included in the real world datasets,
which seriously affect the effectiveness of the algorithms. So
the l2,1-norm is imposed on the residual matrix of subspace
learning to ensure the robustness to outlier samples. Then, an
alternating iterative optimization mechanism is used to optimize
the objective function. The evaluation values of different features
are calculated according to the feature selection matrix S , then
the most representative features are selected. Finally, the pro-
posed SLSDR is compared with six other algorithms on twelve
benchmark datasets, and the experimental results show that the
proposed SLSDR has better performance.

The novelties and contributions are highlighted as follows:
(1) Based on the existing feature graph, the data graph is

introduced into the framework of subspace learning. As a result,
the local geometric information of both the data manifold and
the feature manifold can be preserved. So the features which best
preserve the manifold structure can be selected.

(2) The inner product regularization term is used to constrain
the feature selection matrix S . Since the inner product term
ensures the sparsity of rows of S and considers the correlations
between features, the proposed SLSDR can select the represen-
tative and low-redundant features to get a compact and clear
representation of the original data.

(3) The l2,1-norm is imposed on the residual matrix of sub-
space learning. As the Frobenius norm is sensitive to outlier
samples, l2,1-norm is used to guarantee the robustness of SLSDR
to outlier samples.

The remainder of this paper is organized as follows. In Sec-
tion 2, the proposed SLSDR, the iterative update rules, compu-
tational complexity analysis and convergence analysis are pre-
sented. In Section 3, the experimental results of SLSDR and other
algorithms are provided. Then Section 4 gives the summary of the
whole paper.

2. The proposed method

This section presents the framework of the proposed SLSDR
algorithm. SLSDR can be divided into three main parts: sparse
and low-redundant subspace learning, manifold structure preser-
vation and feature evaluation. Then the iterative update formulas,
computational complexity analysis and convergence analysis of
SLSDR are provided.

2.1. Related notations

Some related notations to be used in this paper are first
introduced. Here, scalars, vectors and matrices are denoted as
lowercase letters, bold lowercase letters and bold uppercase let-
ters, respectively. X = [x1,x2, . . . ,xn] ∈ ℜm×n denotes a data
matrix, where m is the number of features of each sample and
n is the total number of samples of the data matrix. xi ∈ ℜm is
the ith sample of X and is located in the ith column. For a square
matrix A , Tr(A ) represents the trace of A . The fp-norm of vector
x ∈ ℜm is defined as:

∥x∥p =

⎛⎝ m∑
j=1

⏐⏐xj⏐⏐p
⎞⎠ 1

p

(1)

where xj is the jth element of the vector x. For a matrix X ∈ ℜm×n,
its lr -norm and lr,t-norm are defined as follows:

∥X∥r =

⎛⎝ m∑
i=1

n∑
j=1

⏐⏐X ij
⏐⏐r⎞⎠ 1

r

(2)

∥X∥r,t =

⎛⎜⎝ m∑
i=1

⎛⎝ n∑
j=1

⏐⏐X ij
⏐⏐r⎞⎠ t

r
⎞⎟⎠

1
t

(3)

When p = 2, the f2-norm of a vector can be obtained. In
this paper, the f2-norm of row vectors of the feature selection
matrix S is used to evaluate the importance of different features.
When r = 1 or r = 2, t = 1, the l1-norm, l2-norm and l2,1-
norm of matrices, which are commonly used in this paper, can be
obtained. And the combination of l1-norm and l2-norm imposed
on the feature selection matrix S composes the inner product
regularization term. The l2,1-norm used to constrain the residual
matrix of subspace learning guarantees the robustness of SLSDR
to outlier samples [49–51]. The l2-norm of a matrix is also called
the Frobenius norm.

2.2. Sparse and low-redundant subspace learning

2.2.1. Subspace learning
In [31], Wang et al. proposed MFFS from the viewpoint of

subspace distance. MFFS uses the subspace spanned by the se-
lected feature subset to characterize the space spanned by all the
features, and the feature selection is completed in this process.
The feature selection problem can be expressed as follows:

arg min
S,V

X T
− X T SV

2
2

s.t. S ≥ 0,V ≥ 0, ST S=I l
(4)

where X ∈ ℜm×n is the original data matrix, and V ∈ ℜl×m

is the coefficient matrix for reconstruction. I l ∈ ℜl×l is an
identity matrix, and l represents the number of selected features.
S ∈ ℜm×l is the feature selection matrix and only contains 0–1
elements. If I represents the index set of the selected features,
the definition of S is given as follows:

S i,j =

{
1, the jth element of I is i,
0, otherwise (5)

There are l elements in I , indicating that the total number of
the selected features is l.
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2.2.2. Sparse subspace learning
However, the definition of S is too strict to meet the require-

ments. It is difficult to select the most representative features
by using only the non-negative constraints and the orthogonal
constraint, so the performance of feature selection is reduced.
To solve this problem, a sparse subspace learning framework is
proposed in [33], as follows:

arg min
S,V

X T
− X T SV

2
2 + β ∥S∥2,1

s.t. S ≥ 0,V ≥ 0, ST S=I l
(6)

where β is a balance parameter, and β > 0. Compared with MFFS,
the l2,1-norm is additionally imposed on S in this framework, so
S is much closer to the matrix defined in Eq. (5) in the learning
process. Meanwhile, the l2,1-norm guarantees the sparsity of the
rows of the matrix S , so the representative features can be
selected.

2.2.3. Sparse and low-redundant subspace learning
Since the l2,1-norm ignores the correlations between features,

there are some problems when using this norm to deal with the
informative but high-redundant features. When the l2,1-norm is
used, high-redundant features are selected, reducing the effec-
tiveness of feature selection. In [6], Han et al. proposed a new
regularization term, which consists of the sum of the absolute
values of the inner product of different feature weight vectors.
And in this paper, it is called the inner product regularization
term. This regularization term has the form of a combination of
l1-norm and l2-norm of the feature selection matrix S . By using
this novel regularization term, the sparsity of rows of the matrix
S can be guaranteed, so the representative features are selected.
Additionally, the correlations between features are considered, so
the low-redundant features can be selected, which improves the
effectiveness of feature selection [6]. Therefore, the inner product
regularization term is used to replace the l2,1-norm imposed on
the matrix S . The inner product regularization term can be
written as follows:

Ω(S) =
m∑
i=1

m∑
j=1,j̸=i

⏐⏐⟨si, sj⟩⏐⏐
=

m∑
i=1

m∑
j=1

⏐⏐⟨si, sj⟩⏐⏐− m∑
i=1

|⟨si, si⟩|

=
(SST


1 − trace

(
SST ))

=
(SST


1 − ∥S∥

2
2

)
(7)

where si represents the ith row of the matrix S . If Ω(S) is kept
small enough during the optimization process of the proposed
SLSDR, the invalid and redundant features can be removed. Ω(S)
is then applied to the framework of subspace learning, and the
obtained sparse and low-redundant subspace learning framework
is as follows:

arg min
S,V

X T
− X T SV

2
2 + βΩ (S)

s.t. S ≥ 0,V ≥ 0, ST S=I l
(8)

By substituting Eq. (7) into Eq. (8), Eq. (8) can be rewritten as
follows:

arg min
S,V

X T
− X T SV

2
2 + β

(SST

1 − ∥S∥

2
2

)
s.t. S ≥ 0,V ≥ 0, ST S=I l

(9)

2.3. Manifold structure preserving

The data distributed in high-dimensional space often contains
important local information, and making full use of the potential

local information can improve the learning efficiency of the algo-
rithms [33]. By using spectral graph theory, the high-dimensional
data can be embedded into the low-dimensional subspace, during
which the local structure information can be preserved [4]. Based
on the advantages of spectral graph theory, it can be applied to
feature selection. Recent studies have shown that local structure
information is included in both the feature manifold and the
data manifold [52,53], thus the potential local information of
the feature and data manifolds can be preserved to improve the
performance of feature selection.

First, a k-nearest neighbor graph G0=(V0, E0) is constructed to
model the geometric structure of the feature manifold efficiently,
where V0 is the vertex set {X1,:, X2,:, . . . , Xm,:}, and E0 denotes
the weights of the edges connecting different vertices. For each
vertex, it denotes a feature of the data matrix. In this paper, the
Gaussian function is adopted as the measurement of the weights
and its expression is as follows:

[
W V ]

ij =

⎧⎪⎨⎪⎩
exp

(
−

X i,: − X j,:
2
2 /σ

2
)
, ifX i,: ∈ N

(
X j,:

)
or X j,: ∈ N

(
X i,:

)
0, otherwise

(10)

where i, j = 1,2, . . . , m, and Xi,: is located in the ith row of
the data matrix and represents the ith feature. N(Xi,:) denotes
the k-nearest neighbor set of the feature Xi,:, and σ denotes the
Gaussian scale parameter. [W V ]ij measures the similarity of the
features Xi,: and Xj,:, and the larger the value of [W V ]ij, the higher
the similarity between the ith and jth features. Thus, W V is
regarded as the similarity matrix. The graph Laplacian matrix of
the feature manifold is L V= D V - W V , where D V is a diagonal
matrix and [D V ]ii = Σj[W V ]ij.

After that, a k-nearest neighbor graph G1=(V1, E1) is con-
structed for the data manifold, where V1 denotes the vertex set
{X:,1, X:,2, . . . , X:,n}, and each vertex represents a sample of the
data matrix. The Gaussian function of the data manifold is defined
as follows:

[
W S]

ij =

⎧⎪⎨⎪⎩
exp

(
−

X :,i − X :,j
2
2 /σ

2
)
, ifX :,i ∈ N

(
X :,j

)
or X :,j ∈ N

(
X :,i

)
0, otherwise

(11)

where i, j = 1, 2, . . . , n, and X:,i is located in the ith column of
the data matrix and represents the ith sample. N(X:,i) denotes the
k-nearest neighbor set of the sample X:,i. W S is the similarity
matrix of the data manifold. The graph Laplacian matrix of the
data manifold is defined as L S= D S - W S , where D S is a diagonal
matrix and [D S ]ii = Σj[W S ]ij.

Using Eqs. (10) and (11), the similarity matrix as well as the
Laplacian matrix of the feature manifold and the data mani-
fold can be obtained, respectively. DenoteY= [y1, y2, . . . , ym] ∈
ℜ

l×m as the low-dimensional embedding matrix of the feature
manifold. To preserve the local structure information of high-
dimensional features, the objective function to be solved is as
follows:

arg min
Y

1
2

m∑
i=1

m∑
j=1

y i − y j

2
2

[
W V ]

ij = Tr
(
YLVY T ) (12)

It can be seen from Eq. (10) that if the similarity between
the features Xi,: and Xj,: is high, W V

ij can take a large value. In
order to minimize the Eq. (12), the vectors yi and yj should also
have high similarity. So the local geometric structure informa-
tion of the high-dimensional features can be preserved into the
low-dimensional embedding matrix Y .

In the data manifold, the locality preserving projections (LPP)
method is used [38]. Specifically, a linear transformation matrix
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Z ∈ ℜm×l is defined to map the high-dimensional data to its
low-dimensional representation. To preserve the local structure
information of the data manifold, the objective function is as
follows:

arg min
Z

1
2

n∑
i=1

n∑
j=1

ZTX :,i − ZTX :,j
2
2

[
W S]

ij =

Tr
(
ZTXLSX TZ

) (13)

Similar to the analysis of local structure preservation in feature
manifold, the local structure information of the high-dimensional
data can be preserved via the matrix Z .

2.4. The framework of SLSDR

In order to make full use of the local geometric information of
both the data manifold and the feature manifold to guide feature
selection, the matrices Y and Z are unified with the matrices V
and S , respectively. Then Eqs. (9), (12) and (13) are combined
together and the obtained expression is as follows:

arg min
S,V

X T
− X T SV

2
2 + α1Tr

(
VLVV T )

+ α2Tr
(
STXLSX T S

)
+βΩ (S)

s.t. S ≥ 0,V ≥ 0, ST S=I l
(14)

where Ω (S) is the inner product regularization term. To ensure
the robustness to outlier samples, the Frobenius norm imposed
on the residual matrix of subspace learning is replaced by the
l2,1-norm. For ease to adjust parameters, we set α1 = α2 = α,
and the objective function of the proposed SLSDR is as follows:

arg min
S,V

X T
− X T SV


2,1 + α

(
Tr

(
VLVV T )

+ Tr
(
STXLSX T S

))
+β

(SST

1 − ∥S∥

2
2

)
+

λ
2

ST S − I l
2
2

s.t. S ≥ 0,V ≥ 0

(15)

where α > 0, β > 0, and λ > 0 are the balance parameters.

2.5. Feature selection

After optimizing the objective function of the proposed SLSDR,
the matrix S can be obtained, where S = [s1; s2; . . . ; sm], and
si is the ith row of S . Then ∥si∥2 can be used as the evaluation
value of the ith feature, and the larger the value of ∥si∥2, the
more important the ith feature. The evaluation values of all the
features are sorted in the descending order, and the features
corresponding to the first l evaluation values are selected. Finally,
a new data matrix Xnew ∈ ℜ

l×n is obtained and the feature
selection is completed.

2.6. Connection with SGFS

It can be seen from Eq. (15) that when removing the graph
regularization term of the data manifold, using the l2,1-norm con-
strains the matrix S instead of the inner product regularization
term, and replacing the l2,1-norm imposed on the residual matrix
of subspace learning by the Frobenius norm, SLSDR degenerates
into SGFS. The objective function of SGFS is as follows:

arg min
S,V

X T
− X T SV

2
2 + αTr

(
VLV T )

+ β ∥S∥2,1

+
λ
2

ST S − I l
2
2

s.t. S ≥ 0,V ≥ 0

(16)

2.7. Update rules for SLSDR

Now the update rules are provided to optimize the objective
function in Eq. (15). Since the function is non-convex for the ma-
trices S and V , it is difficult to find a globally optimal solution. To
improve computational efficiency, an alternating iterative update
method [54,55] is used to optimize this problem. Two Lagrange
multipliers ψij and φij are introduced to constrain S ij ≥ 0 and
V ij ≥ 0, respectively. The form of Lagrange function of the
formula (15) is as follows:

L (S,V ) =
X T
− X T SV


2,1 + α

(
Tr

(
VLVV T )

+ Tr
(
STXLSX T S

))
+β

(SST

1 − ∥S∥

2
2

)
+

λ
2

ST S − I l
2
2

+ Tr
(
ψST )

+ Tr
(
φV T ) (17)

A diagonal matrix U ∈ ℜn×n is first introduced, and its ith
element is defined as follows:

U ii =
1
∥ei∥2

(18)

where E = X T
− X T SV , and ei is the ith row of the matrix E . To

avoid overflow, a small constant ε is introduced into Eq. (18), and
the obtained formula is as follows:

U ii =
1

max (∥ei∥2 , ε)
(19)

According to the definition of U , the term
X T
− X T SV


2,1can

be rewritten as Tr
((

X T
− X T SV

)T U (
X T
− X T SV

))
, so the for-

mula (17) can obtain the following form:

L (S,V ) = Tr
((

X T
− X T SV

)T U (
X T
− X T SV

))
+α

(
Tr

(
VLVV T )

+ Tr
(
STXLSX T S

))
+ β

(SST

1 − ∥S∥

2
2

)
+
λ

2

ST S − I l
2
2 + Tr

(
ψST )

+ Tr
(
φV T ) (20)

First, in order to update S , V and U are fixed. By taking the
partial derivative of formula (20) with respect to S , the obtained
formula is as follows:
∂L
∂S
= 2

(
XUX T SVV T

− XUX TV T )
+ 2αX

(
DS
−W S)X T S

+ 2β (1m×mS − S)+ 2λ
(
SST S − S

)
+ ψ

(21)

where 1m×m is an m×m matrix with all the elements being 1. By
using the Karush–Kuhn–Tucker (KKT) conditions [56,57]
ψijS ij = 0, the following formula can be obtained:[(

XUX T SVV T
− XUX TV T )

+ αX
(
DS
−W S)X T S

+β (1m×mS − S)+ λ
(
SST S − S

)]
ij S ij = 0 (22)

Therefore, the iterative update rule for S is as follows:

S ij ← S ij

[
XUX TV T

+
(
αXW SX T

+ (β + λ) Im
)
S
]
ij[

XUX T SVV T
+

(
αXDSX T

+ β1m×m + λSST ) S]ij (23)

Then, to update V , S and U are fixed. By taking the partial
derivative of the formula (20) with respect to V , the obtained
formula is as follows:
∂L
∂V
= 2

(
STXUX T SV − STXUX T )

+ 2αV
(
DV
−W V )

+ φ (24)

By using the Karush–Kuhn–Tucker (KKT) conditions φijV ij = 0,
the following formula can be obtained:[
STXUX T SV − STXUX T

+ αV
(
DV
−W V )]

ij V ij = 0 (25)
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Table 1
The procedure of SLSDR.
Input: Data matrix X ∈ ℜm×n; neighbor size k; balance parameters α, β , λ;
maximum number of iterations NIter; Gaussian scale parameter σ ; number
of selected features l.
Output: Index set of the selected features Index; new data matrix
Xnew ∈ ℜ

l×n .

1. Construct the k-nearest neighbor graphs G0=(V0 , E0) and G1=(V1 , E1) for
the feature manifold and the data manifold, respectively.

2. Compute the similarity matrices W V and W S , the graph Laplacian
matrix LV and LS .

3. Initialize U , S , V .
4. Update U , S , V according to the iteration update rules in Eqs. (19), (23)

and (26) until the maximum number of iterations NIter is reached.
5. Calculate the evaluation value of the ith feature based on ||si||2 , sort the

evaluation values of all features in descending order and select the
features corresponding to the first l evaluation values. Then obtain the
index set of the selected features Index and a new data
matrix Xnew ∈ ℜ

l×n .

Then, the obtained iterative update rule for V is as follows:

V ij ← V ij

[
STXUX T

+ αVW V ]
ij[

STXUX T SV + αVDV ]
ij

(26)

Based on the above analyses, the optimization process of the
proposed SLSDR algorithm is shown in Table 1.

2.8. Computational complexity analysis

The computational complexity of SLSDR in Table 1 is ana-
lyzed. Where n represents the total number of data samples,
m represents the number of features included in each sample,
l is the number of selected features, and t is the number of
iterations. To construct the Laplacian matrices L V and L S in
the data manifold and the feature manifold, the computational
complexity is O

(
mn2
+ nm2

)
. Additionally, in each iteration, to

update the matrices U , S and V , the computational complexity is
O

(
(m+ l)

(
n2
+mn+ml

))
. So the total computational complex-

ity is O
(
t (m+ l)

(
n2
+mn+ml

))
. In practical applications, since

l<<m and l<<n, and there is m>n or m<n, thus the obtained overall
complexity of SLSDR is O (tnm (n+m)).

2.9. Convergence analysis

Next, the convergence analysis of the proposed SLSDR is pre-
sented. Similar to the methods in [4,33], we will prove that the
objective function in Eq. (15) is non-increasing under the update
rules (23) and (26) of the variables S and V .

Definition 1. If there is a function J(h, h′) that makes C(h) satisfy
the following conditions:

J(h, h′) ≥ C(h), J(h, h) = C(h) (27)

Then C is non-increasing under the following update formula:

h(t+1)
= arg min

h
J(h, h(t)) (28)

where J(h, h′) is an auxiliary function of C(h).

Proof. C(h(t+1)) ≤ J(h(t+1), h(t)) ≤ J(h(t), h(t)) = C(h(t)).
Since the monotonicity of the objective function (15) under

the update rule of the variable V needs to be proved, the terms re-
lating to the variable V in Eq. (15) are retained, and the following
function is obtained:

C (V ) = Tr
(
V T STXUX T SV − XUX T SV − V T STXUX T )

+αTr
(
VLVV T ) (29)

By taking the first-order and the second-order partial deriva-
tives of C(V ) with respect to V , the following formulas can be
obtained:

C ′ij =
[
∂C
∂V

]
ij
=

[
2STXUX T SV − 2STXUX T

+ 2αVLV ]
ij (30)

C ′′ij = 2
[
STXUX T S

]
ii + 2α

[
LV ]

jj (31)

Lemma 1. Giving the auxiliary functions of Cij, and the form is as
follows:

J
(
V ij,V

(t)
ij

)
= Cij

(
V (t)ij

)
+ C ′ij

(
V (t)ij

)(
V ij − V (t)ij

)
+

[
STXUXT SV (t)+αV (t)DV

]
ij

V (t)ij

(
V ij − V (t)ij

)2 (32)

Denoting the Taylor expansion of Cij(V ij) as follows:

Cij
(
V ij

)
= Cij

(
V (t)ij

)
+ C ′ij

(
V (t)ij

)(
V ij − V (t)ij

)
+

{[
STXUX T S

]
ii + α

[
LV ]

jj

}(
V ij − V (t)ij

)2 (33)

It can be seen from formulas (32) and (33) that J
(
V ij,V

(t)
ij

)
≥

Cij
(
V ij

)
is equivalent to:[

STXUX T SV (t) + αV (t)DV ]
ij

V (t)ij

≥
[
STXUX T S

]
ii + α

[
LV ]

jj (34)

It is obvious that the following formula holds:

[
STXUX T SV (t)

]
ij =

l∑
b=1

[
STXUX T S

]
ib V

(t)
bj

≥
[
STXUX T S

]
ii V

(t)
ij

(35)

And there is:

α
[
V (t)DV ]

ij = α

m∑
b=1

V (t)ib DV
bj ≥ αV

(t)
ij DV

jj

≥ αV (t)ij

[
DV
−W V ]

jj = αV
(t)
ij

[
LV ]

jj

(36)

So the inequality (34) holds, i.e. J
(
V ij,V

(t)
ij

)
≥ Cij

(
V ij

)
holds.

Obviously, the equation J
(
V ij,V ij

)
= Cij

(
V ij

)
also holds.

Then, we will prove that the update rule of variable V satisfies
the update formula (28) that makes Cij non-increasing.

By substitutingJ
(
V ij,V

(t)
ij

)
in Eq. (32) into Eq. (28), the follow-

ing formula can be obtained:

V (t+1)
ij = V (t)ij − V (t)ij

C ′ij
(
V (t)ij

)
2
[
STXUX T SV (t) + αV (t)DV ]

ij

(37)

Substituting Eq. (30) into Eq. (37) gives the following expres-
sion:

V (t+1)
ij = V (t)ij

[
STXUX T

+ αV (t)W V ]
ij[

STXUX T SV (t) + αV (t)DV ]
ij

(38)

It can be seen that Eq. (38) is the update rule of variable V , so
Cij is non-increasing under the update rule (26). The convergence
proof under the update rule of variable S is similar to that under
the update rule of variable V . And it is found that the objective
function is also non-increasing under the update rule (23). There-
fore, it can be concluded that the objective function in Eq. (15) is
non-increasing under the update rules (23) and (26).
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Table 2
The information of thirteen datasets.
Dataset Size Dim Classes Type

Ionosphere 351 34 2 Text image
JAFFE 213 676 10 Face image
YaleB 2414 1024 38 Face image
COIL20 1440 1024 20 Digital image
AR10P 130 2400 10 Face image
Umist 575 644 20 Face image
Isolet 1560 617 26 Letter image
Orl64 400 4096 40 Face image
ORL 400 1024 40 Face image
Lung_dis 73 325 7 Biological
PIE10P 210 2420 10 Face image
Yale64 165 4096 15 Face image
TOX_171 171 5748 4 Biological

3. Experiments

In this section, the experimental results of the proposed SLSDR
and six other comparison algorithms on twelve benchmark
datasets are presented. The k-means clustering algorithm [58,59]
is used to evaluate the performance of different feature selection
algorithms. The settings of the maximum number of iterations
and the k value are provided. Meanwhile, the experimental re-
sults are analyzed and the robustness test of SLSDR to outlier
samples is provided. Then, the effectiveness of the inner product
regularization term is verified and the parameter sensitivity of
SLSDR is analyzed.

3.1. Datasets

Thirteen datasets are used in the experiment, and they can be
divided into text image, biological data, face image and digital
image [33,60,61]. The detailed information of these datasets is
described in Table 2.

3.2. Comparison algorithm

To verify the effectiveness of the proposed SLSDR, SLSDR is
compared with the following six unsupervised feature selection
algorithms:

(1) Baseline: clustering all features directly without feature
selection.

(2) LapScor: Laplacian Score [28] uses local geometric infor-
mation of data to select features and calculates the score of each
feature separately.

(3) UDFS: unsupervised discriminant feature selection [13],
which combines local discriminant analysis with l2,1-norm reg-
ularization term to guide the process of feature selection.

(4) MFFS: matrix factorization feature selection [31], which
introduces matrix decomposition strategy into the framework of
subspace learning to complete feature selection.

(5) MCFS: multi-cluster data feature selection [18] uses l1-
norm and spectral analysis to select features.

(6) SGFS: subspace learning-based graph regularized feature
selection [33] introduces the feature graph and l2,1-norm into the
framework of subspace learning of matrix factorization to select
the representative feature subsets.

3.3. Evaluation metrics

Clustering Accuracy (ACC) [4,33] and Normalized Mutual In-
formation (NMI) [4,6] are two widely used metrics for evaluating
the performance of unsupervised feature selection algorithms.
And the greater the values of the two metrics, the better the
performance of the corresponding algorithm. Denoting ej and dj

as the clustering label and the ground truth label of the sample xi,
respectively. n is the total number of samples, then the formula
of Clustering Accuracy (ACC) is as follows:

ACC =
1
n

n∑
j=1

δ(dj,map(ej)) (39)

where map(.) is an optimal mapping function, in which Hungar-
ian [62] is used to match the obtained cluster labels with the real
labels of datasets. δ(a, b) is an indicator function that takes only
0–1 values, and δ(a, b) = 1, if a = b, otherwise δ(a, b) = 0.

Given two random variables P and R, the formula of Normal-
ized Mutual Information (NMI) is as follows:

NMI(P, R) =
I(P, R)
√
H(P)H(R)

(40)

where I(P , R) is the mutual information between P and R, and
H(P) and H(R) are the entropy values of P and R, respectively. To
apply this criterion to clustering tasks, P and R are considered as
the clustering labels and the real labels of samples in this paper,
respectively.

3.4. Experimental results and analysis

3.4.1. Experimental settings
First of all, the parameter settings of different algorithms are

given in this paper. For LapScor, MCFS, SGFS and SLSDR, the
parameter of nearest neighbors k is set to 5. The Gaussian scale
parameter σ is searched in the range of {10+1, 10+2, 10+3, 10+4,
10+5}. For SGFS and SLSDR, the balance parameters α and β are
adjusted in the range of {10−8, 10−7,. . . , 10+7, 10+8} and the range
of the parameter λ is set to {10+0, 10+1,. . . ,10+7, 10+8}. For MFFS,
UDFS, MCFS, SGFS and SLSDR, the maximum number of iterations
is set to 30. For all the datasets, the number of selected features l
is set to {20, 30, 40, 50, 60, 70, 80, 90, 100}. In clustering tasks, k-
means is sensitive to initial values, so this paper repeats k-means
clustering 20 times to get the average values for all algorithms.
Then, the balance parameters are adjusted so as to obtain the best
average values of ACC and NMI.

Since the maximum number of iterations directly affects the
convergence of SLSDR, and the k-nearest neighbor parameter has
an important influence on the performance of SLSDR, the settings
of the maximum number of iterations and the k-nearest neighbor
parameter are analyzed in this paper. And the corresponding
experiments are shown as follows.
(1) The setting of the maximum number of iterations

In this paper, the maximum number of iterations is set based
on the results of the convergence test, and the convergence
curves of SLSDR on twelve datasets are shown in Fig. 1. The
maximum number of iterations is set to 30 and the reasons are
analyzed as follows.

In Fig. 1, the horizontal axis and the vertical axis represent
the number of iterations and the value of the objective function
in each iteration, respectively. It can be seen from Fig. 1 that
the value of the objective function decreases as the number of
iterations increases. And on most datasets, the objective function
becomes relatively stable within 20 iterations. Meanwhile, the
objective function can converge within 30 iterations for all the
datasets. So conclusions can be drawn that within 30 iterations,
SLSDR can achieve good convergence performance. Therefore, the
maximum number of iterations is set to 30 for the proposed
SLSDR.
(2) The setting of k value

Since the k value has an important impact on experimental
results, the setting of k is discussed here. In this experiment, six
datasets of Lung_dis, Isolet, ORL, AR10P, ORL64 and COIL20 are
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Fig. 1. The convergence curves of the objective function on twelve datasets.

Fig. 2. Clustering accuracy of SLSDR on six datasets with different k values.

selected as the test datasets. Then other parameters are fixed and
the value of k is adjusted in the range {3, 4, 5, 6, 7, 8}. Figs. 2 and 3
show the curves of the clustering results of SLSDR with different
k values. The horizontal axis indicates the nearest neighbor pa-
rameter k, and the vertical axis indicates the clustering accuracy
(ACC) in Fig. 2 and the normalized mutual information (NMI) in
Fig. 3. The analyses are as follows.

As can be seen from the above experimental results, for the
dataset ORL64, the best ACC can be obtained when k takes 5
and the best NMI can be obtained when k takes 5 and 6. For
the datasets Lung_dis, Isolet, ORL, AR10P and COIL20, the best

ACC and NMI values can be obtained when k takes 5, and the

accuracy is reduced when k takes other values. Generally, in order

to preserve the local structure information, the k value should be

set relatively small. Meanwhile, it can be seen from the above

figures that when k is set to 5, not only can the best ACC and

NMI values be obtained for all the test datasets, but also the local

structure information is maintained. Therefore, the value of k is

set to 5 in this paper.
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Fig. 3. Normalized Mutual Information of SLSDR on six datasets with different k values.

3.4.2. The effectiveness evaluation of SLSDR
To verify the effectiveness of the proposed SLSDR, the Iono-

sphere dataset is utilized to test whether SLSDR can select the
most representative features or not. This dataset consists of 351
samples, and each sample contains 34 features. In this experi-
ment, 66 new features need to be generated artificially, and each
new feature is the linear combination of the 34 original features.
In this process, the linear combination coefficients are randomly
generated and they are normalized. All features are then put
together and a total of 100 features are obtained. Among them,
the first 34 features are the original features, and the rest are the
generated features, so each sample possesses 100 features now.
After solving the objective function in Eq. (15), the matrix S can
be obtained, and then ||si||2 is used as the evaluation value of
the ith feature. Then the evaluation values of all features can be
obtained. These evaluation values are used to generate a diagonal
matrix shown in Fig. 4.

It can be seen from Fig. 4 that compared with the 66 synthetic
features, the first 34 features can obtain larger evaluation values.
So the proposed SLSDR has great effectiveness and the most
representative features can be selected.

3.4.3. Experimental results and analysis
To compare the performance of seven different algorithms, the

ACC and NMI values for these algorithms on twelve datasets are
shown in Tables 3 and 4, respectively. The bold marked values are
the best results, and the underline marked values are the second
best results. And the analyses of these results are as follows.

It can be seen from Tables 3 and 4 that the proposed SLSDR
can obtain the best ACC and NMI values in most cases com-
pared with the other six comparison algorithms. Except the ORL
dataset, the proposed SLSDR is superior to the Baseline method,
which fully demonstrates that SLSDR has great advantages. On all
twelve datasets, SLSDR has better results than SGFS algorithm.
The reason is that SLSDR uses the local geometric structure in-
formation of both the data manifold and the feature manifold
to guide the process of feature selection. Additionally, by using
the inner product regularization term, SLSDR ensures the sparsity
of rows of S and considers the correlations between features, so
the representative and low-redundant features can be selected,
which further improves the performance of feature selection.

Figs. 5 and 6 show the curves of the clustering results of
seven different algorithms on twelve datasets. The horizontal axis
indicates the number of selected features l, and the vertical axis
indicates the clustering accuracy (ACC) and standard deviation

Fig. 4. The diagonal matrix of evaluation values of 100 features.

(STD) in Fig. 5 and the normalized mutual information (NMI) and
standard deviation (STD) in Fig. 6.

As can be seen from Fig. 5, the ACC values of SLSDR are
higher than those of the other five comparison algorithms on all
the datasets. And on the datasets YaleB, AR10P, Umist, Lung_dis,
TOX_171 and PIE10P, SLSDR can obtain better performance than
Baseline method, which fully demonstrates the advantages of
SLSDR. It can be seen from Fig. 6 that the NMI values of SLSDR
are higher than those of the other five comparison algorithms
on all datasets. Meanwhile, on the datasets YaleB, AR10P, Umist,
Lung_dis and PIE10P, SLSDR is superior to the Baseline method,
which proves the effectiveness of the proposed SLSDR.

3.4.4. Robustness test to outlier samples
To test the robustness of SLSDR to outlier samples, three test

datasets are utilized in this paper. Then, two kinds of outlier
samples are added into these datasets, so the corrupted datasets
that contain outlier samples are obtained. In this experiment,
YaleB, COIL20 and Umist are used as the test datasets, and the
‘‘umbrella’’ and ‘‘watch’’ outliers which are selected from Cal-
tech101 database [63] are used as two kinds of outlier samples.
Each corrupted dataset consists of a test dataset and a kind
of outlier samples, so a total of six corrupted datasets can be
obtained. The number of outlier samples is set to 10, 20 and 30
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Fig. 5. Clustering accuracy of seven algorithms on twelve datasets with different number of selected features.

Fig. 6. Normalized Mutual Information of seven algorithms on twelve datasets with different number of selected features.
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Table 3
Clustering accuracy of seven algorithms on twelve datasets (ACC±STD%).

Dataset Baseline LapScor UDFS MFFS MCFS SGFS SLSDR

YaleB 9.69 ± 0.49 8.69 ± 0.25 9.66 ± 0.25 15.88 ± 0.65 14.47 ± 0.79 16.75 ± 0.88 19.18 ± 0.75
AR10P 21.96 ± 2.92 33.92 ± 2.57 33.54 ± 2.05 41.08 ± 2.41 31.54 ± 2.51 44.62 ± 2.95 46.00 ± 4.29
Isolet 61.41 ± 2.38 55.83 ± 2.14 40.36 ± 1.56 57.08 ± 2.00 61.60 ± 3.60 65.22 ± 2.53 68.58 ± 2.39
Umist 43.61 ± 2.16 42.09 ± 1.94 44.64 ± 2.67 44.41 ± 3.67 47.35 ± 2.62 52.28 ± 2.76 54.07 ± 1.78
Orl64 53.17 ± 3.07 44.21 ± 1.59 45.18 ± 2.24 49.84 ± 1.97 42.66 ± 2.06 52.94 ± 2.40 54.62 ± 2.02
Lung_dis 74.25 ± 4.94 70.41 ± 7.34 71.99 ± 5.51 70.75 ± 4.87 73.15 ± 6.26 79.79 ± 4.85 81.85 ± 5.31
TOX_171 43.36 ± 1.90 41.35 ± 2.96 41.52 ± 1.80 37.84 ± 2.20 41.52 ± 2.60 44.09 ± 2.32 46.81 ± 0.55
ORL 51.96 ± 2.57 44.44 ± 1.88 45.95 ± 2.17 46.24 ± 2.11 48.58 ± 2.34 47.51 ± 1.63 50.8 ± 1.88

PIE10P 26.52 ± 1.28 29.19 ± 1.03 28.00 ± 2.08 42.10 ± 2.74 34.19 ± 1.79 44.64 ± 3.91 46.83 ± 2.84
COIL20 65.64 ± 3.94 60.41 ± 2.11 62.44 ± 2.57 66.35 ± 3.13 64.06 ± 2.36 65.18 ± 2.63 67.53 ± 3.89
JAFFE 79.98 ± 5.32 69.27 ± 5.19 67.82 ± 5.29 69.06 ± 7.37 74.86 ± 6.56 79.44 ± 4.46 81.85 ± 5.07
Yale64 45.82 ± 3.90 46.67 ± 2.15 36.73 ± 2.44 48.73 ± 3.01 43.85 ± 2.48 50.39 ± 3.31 52.33 ± 3.12

Table 4
Normalized mutual information of seven algorithms on twelve datasets (NMI±STD%).

Dataset Baseline LapScor UDFS MFFS MCFS SGFS SLSDR

YaleB 12.97 ± 0.58 13.24 ± 0.30 15.49 ± 0.29 26.77 ± 0.61 23.25 ± 0.68 28.57 ± 0.77 32.83 ± 0.59
AR10P 19.17 ± 2.77 35.08 ± 1.40 28.37 ± 1.57 43.46 ± 1.71 30.67 ± 3.07 47.75 ± 2.36 48.48 ± 1.47
Isolet 75.66 ± 1.00 69.45 ± 0.91 55.57 ± 1.18 70.19 ± 1.00 74.81 ± 1.28 76.18 ± 1.00 77.47 ± 0.59
Umist 64.47 ± 1.46 62.33 ± 1.91 60.63 ± 1.86 65.65 ± 2.04 67.07 ± 1.72 69.23 ± 1.29 70.03 ± 1.65
Orl64 73.36 ± 1.65 65.69 ± 1.00 67.93 ± 0.97 69.95 ± 1.27 64.58 ± 1.55 72.79 ± 1.38 73.56 ± 1.41
Lung_dis 69.97 ± 3.38 64.86 ± 5.71 68.52 ± 3.52 64.42 ± 3.42 67.22 ± 4.34 72.44 ± 3.94 75.87 ± 4.42
TOX_171 14.32 ± 1.55 9.90 ± 1.80 10.98 ± 1.03 9.26 ± 4.42 11.36 ± 3.13 12.47 ± 1.92 16.21 ± 0.57
ORL 72.36 ± 1.71 66.62 ± 1.33 69.25 ± 1.10 67.61 ± 1.63 68.86 ± 1.39 68.38 ± 1.22 71.08 ± 1.27

PIE10P 25.86 ± 2.80 25.58 ± 1.20 29.05 ± 2.47 47.87 ± 3.62 38.18 ± 1.78 52.45 ± 3.51 57.06 ± 3.19
COIL20 76.62 ± 1.92 69.67 ± 1.18 73.18 ± 1.27 75.64 ± 1.67 73.94 ± 1.29 74.79 ± 1.53 77.30 ± 2.15
JAFFE 84.07 ± 3.25 76.64 ± 3.83 70.82 ± 5.05 74.23 ± 5.44 80.76 ± 6.21 81.96 ± 2.37 84.17 ± 3.17
Yale64 52.01 ± 3.93 51.97 ± 1.90 43.61 ± 2.00 56.03 ± 2.12 49.38 ± 2.06 54.29 ± 2.11 59.00 ± 2.09

Table 5
Clustering accuracy of SLSDR and SGFS on six corrupted datasets with different numbers of outlier samples (ACC±STD%).
Number of outlier samples 10 20 30

Dataset Outlier samples SGFS SLSDR SGFS SLSDR SGFS SLSDR

YaleB umbrella 16.23 ± 0.72 19.61 ± 0.65 16.83 ± 0.82 19.41 ± 0.85 16.74 ± 0.67 17.45 ± 0.61
watch 17.73 ± 0.75 19.47 ± 0.53 16.68 ± 0.72 19.45 ± 0.79 16.02 ± 0.75 17.42 ± 0.80

COIL20 umbrella 63.88 ± 2.25 67.65 ± 3.34 64.68 ± 2.17 67.68 ± 3.04 66.37 ± 3.43 67.27 ± 2.57
watch 65.85 ± 2.21 68.79 ± 2.69 63.33 ± 2.93 67.36 ± 2.82 62.19 ± 2.82 67.68 ± 2.10

Umist umbrella 48.58 ± 1.89 53.05 ± 2.60 47.19 ± 2.08 51.84 ± 1.87 46.49 ± 2.82 52.87 ± 2.66
watch 47.63 ± 2.28 51.84 ± 3.64 46.37 ± 2.62 49.83 ± 2.29 48.56 ± 4.15 49.31 ± 2.49

Table 6
Normalized mutual information of SLSDR and SGFS on six corrupted datasets with different numbers of outlier samples (NMI±STD%).
Number of outlier samples 10 20 30

Dataset Outlier samples SGFS SLSDR SGFS SLSDR SGFS SLSDR

YaleB umbrella 28.06 ± 0.63 33.38 ± 0.47 28.15 ± 0.72 32.91 ± 0.66 27.64 ± 0.63 29.76 ± 0.73
watch 29.87 ± 0.83 33.17 ± 0.51 27.57 ± 0.75 33.37 ± 0.73 26.39 ± 0.57 29.90 ± 0.69

COIL20 umbrella 74.11 ± 1.55 77.70 ± 1.94 74.49 ± 1.20 77.73 ± 1.71 75.91 ± 2.15 77.47 ± 2.04
watch 75.58 ± 1.32 77.82 ± 1.47 73.45 ± 1.43 77.12 ± 1.55 72.28 ± 1.91 77.40 ± 1.29

Umist umbrella 67.34 ± 1.17 68.99 ± 1.34 66.25 ± 1.68 68.87 ± 1.41 64.65 ± 1.29 70.06 ± 1.33
watch 65.94 ± 1.41 68.23 ± 1.65 64.91 ± 1.53 67.99 ± 1.32 66.04 ± 2.47 67.53 ± 1.19

and the ACC and NMI values of SLSDR and SGFS on six corrupted
datasets are shown in Tables 5 and 6, respectively.

It can be seen from Tables 5 and 6 that all the ACC and
NMI values of SLSDR are higher than those of SGFS, showing
the proposed SLSDR has great effectiveness. Additionally, the
performance of SLSDR is hardly affected by outlier samples, which
indicates that SLSDR is very robust to outlier samples.

3.4.5. Low redundancy test for the selected features
This experiment verifies that the inner product regulariza-

tion term can select the representative and low-redundant fea-
tures. Specifically, the page-blocks dataset from the UCI machine
learning repository [64] is used as the test dataset. This dataset
contains 5473 samples, each containing 10 features. Then, the
proposed SLSDR is applied to feature selection to select important
features. The correlations between these features can be obtained
to evaluate the performance of inner product regularization term.
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Fig. 7. The heat map of Pearson correlation coefficient matrix.

Fig. 8. The matrix S and the evaluation value ∥si∥2learned by the l2,1-norm.

Meanwhile, the l2,1-norm regularization term is used to replace
the inner product regularization term in SLSDR, and feature selec-
tion is also performed to evaluate the performance of l2,1-norm.
The Pearson correlation coefficients are used to measure the

Fig. 9. The matrix S and the evaluation value ∥si∥2learned by inner product.

correlations between different features in page-blocks dataset
and the heat map of correlation coefficient matrix are shown in
Fig. 7. The analyses and conclusions are given as follows.

The matrix S and the evaluation value ∥si∥2learned by l2,1-
norm and inner product regularization term are shown in Figs. 8
and 9, respectively. It can be seen from Figs. 8 and 9(a) that
the rows of matrix S are sparse, so the representative features
can be selected. The evaluation values of all features are then
calculated and arranged in descending order, and the features
corresponding to the first three evaluation values are selected. As
shown in Figs. 8 and 9(b), the features selected by l2,1-norm are
features 3, 8 and 9. It can be seen from Fig. 7 that the correlation
coefficients between features 3 and 8, 3 and 9 and 8 and 9 are
0.731, 0.782 and 0.957, respectively. And the average value of the
three correlation coefficients is 0.823. The features selected by the
inner product regularization term are features 3, 5 and 7, and the
obtained three correlation coefficients are 0.088, 0.026 and 0.121
with the average value 0.078. Therefore, the correlations between
the features selected by inner product regularization term are
significantly lower than those selected by the l2,1-norm.

From the above analysis, it can be concluded that the l2,1-
norm can select the representative but high-redundant features,
while the inner product regularization term can not only select
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Fig. 10. Clustering accuracy of SLSDR on twelve datasets using different α and β .

Fig. 11. Normalized Mutual Information of SLSDR on twelve datasets using different α and β .

the representative features, but also ensure the low redundancy
of them.

3.4.6. Parameter sensitivity analysis
For the proposed SLSDR, the parameters that need to be

adjusted include: the Gaussian scale parameter σ , the num-
ber of selected features l and the balance parameters α, β and

λ. In this experiment, the sensitivity of parameters α and β

is tested. The parameters α and β are searched in the range
of {10−3,10−2,10−1,10+0,10+1,10+2,10+3} and the ACC and NMI
values are obtained under the combination of each pair of pa-
rameters α and β . The three-dimensional histograms of ACC and
NMI values on twelve datasets are shown in Figs. 10 and 11,
respectively.
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It can be seen from Figs. 10 and 11 that when the parameters
α and β vary, the ACC and NMI values can keep relatively stable
in most cases, especially for Umist, JAFFE and Yale64, so SLSDR is
not sensitive to the parameters α and β .

The discussion of the experimental results can be summarized
as follows. By analyzing the setting of the maximum number of
iterations, it can be seen that SLSDR can achieve good conver-
gence performance within 30 iterations. By discussing the setting
of the k value, the experimental results show that when k is
set to 5, not only can SLSDR obtain the best accuracy, but also
the manifold structure information can be well preserved. It can
be seen from the effectiveness evaluation experiment that the
proposed SLSDR is effective and selects the most representative
features. Additionally, compared with other six comparison algo-
rithms, SLSDR obtains the best ACC and NMI values in most cases,
indicating SLSDR is competitive. And the clustering result curves
also show SLSDR has good performance. Then, it can be seen
from the robustness test that SLSDR keeps effective and is very
robust to outlier samples. From the low redundancy test, it can
be found that the inner product regularization term can select the
representative and low-redundant features. Meanwhile, SLSDR
is not sensitive to the parameters α and β and keeps great
performance. All the experimental results show SLSDR has great
effectiveness.

4. Conclusions

In this paper, a novel algorithm has been proposed, called
sparse and low-redundant subspace learning-based dual-graph
regularized robust feature selection (SLSDR). SLSDR is based on
the framework of subspace learning-based graph regularized fea-
ture selection. For the proposed SLSDR, the inner product reg-
ularization term is first used to constrain the feature selection
matrix S . Since the sparsity of rows of S is guaranteed and the
correlations between features are considered, the representative
and low-redundant features are selected. It can be seen from
the low redundancy experiment that the inner product regular-
ization term is effective. Meanwhile, the data graph and feature
graph are introduced into the framework of subspace learning
simultaneously, so the local geometric structures are well pre-
served for both data and feature manifolds. It can be seen from
the experiment results that SLSDR achieves the best accuracy in
most cases, which fully demonstrates the effectiveness of SLSDR.
Additionally, the l2,1-norm is imposed on the residual matrix
of subspace learning. And the experimental results show that
SLSDR is very robust to outlier samples. A series of experimental
results have shown that SLSDR has better performance than other
compared algorithms.

In further studies, the following two aspects of tasks are hoped
to be done. First, the adaptive graphs are hoped to be constructed
to replace the fixed k-nearest neighbor graphs to better preserve
the manifold structures information. Additionally, the alternating
iterative update mechanism is prone to fall into local optimum,
so the novel update mechanisms are hoped to be developed to
achieve better optimization results.
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