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Abstract—Deep learning has obtained state-of-the-art results in
a variety of computer vision tasks and has also been used to solve
SAR image classification problems. Deep learning algorithms
typically require a large amount of training data to achieve high
accuracy. In contrast, the size of SAR image datasets is often
comparatively limited. Therefore, this paper proposes a novel
method, deep memory convolution neural networks (M-Net), to
alleviate the problem of overfitting caused by insufficient SAR
image samples. Based on the convolutional neural networks
(CNN), M-Net adds an information recorder to remember and
store samples’ spatial features, and then it uses spatial similarity
information of the recorded features to predict unknown sample
labels. M-Net’s use of this information recorder may cause
difficulties for convergence if conventional CNN training methods
were directly used to train M-Net. To overcome this problem, we
propose a transfer parameter technique to train M-Net in two
steps. The first step is to train a CNN, which has the same structure
as the part of CNN incorporated in M-Net, to obtain initial training
parameters. The second step applies the initialized parameters to
M-Net and then trains the entire M-Net. This two-step training
approach helps us to overcome the nonconvergence issue, and
also reduces training time. We evaluate M-Net using the public
benchmark MSTAR dataset, and achieve higher accuracy than
several other well-known SAR image classification algorithms.

Index Terms—Deep learning, memory convolutional neural
networks (M-Net), parameter transfer, synthetic aperture radar
(SAR) targets classification.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is not restricted by light
conditions, climate, and some other environmental factors.

It can produce high-resolution images in day and night and all-
weather operating conditions, and has some ability to penetrate
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obstacles in the earth’s surface. SAR images have many applica-
tions, including resource exploration, military reconnaissance,
surveillance, target acquisition, and other aspects. Nevertheless,
SAR images are very sensitive to the pose and configuration
parameters of targets. The SAR imaging process SAR tends to
generate speckle noise, which causes difficulties in SAR image
classification [1]–[3].

Over the past few decades, many algorithms have been pro-
posed to solve the SAR image classification problem. Here, we
discuss the SAR image classification literature in terms of con-
ventional approaches versus more recent approaches based on
deep learning.

Conventional approaches are many and diverse. Early work
used template-based methods [4], [5]. These algorithms achieve
satisfactory results when targets have consistent appearance,
but they fail when target appearance is highly variable. With the
emergence of machine learning approaches, many algorithms,
such as support vector machine (SVM) with Gaussian kernel
[6], AdaBoost [7], and many others, have also been applied
to the SAR image classification problem. These methods are
designed to construct a powerful classifier to distinguish be-
tween training samples from different classes. In contrast, other
approaches, such as sparse representation [8], [9], scattering
center models [10], [11], nonnegative matrix factorization [12],
Riemannian manifold [13], discriminant embedding [14], have
investigated the benefits of different feature representations
of image data. These algorithms focus on extracting highly
discriminatory features from the original data, to make the
whole classification process easier, and improve the classifica-
tion results. In addition, there are algorithms that are based on
mathematical model, for instance, hidden Markov model [15],
iterative graph thickening [16], conditional Gaussian method
[17], and others. In summary, these conventional methods
have many advantages and yield useful results, but also have
shortcomings. They must establish complicated classification
systems or elaborately designed “hand-crafted” feature extrac-
tors, requiring large effort from human experts. Hand-crafted
classifiers and feature extractors which work well on one dataset
may not generalize robustly to a different dataset. The entire ar-
chitecture may need to be redesigned when processing different
datasets.

An alternative approach to target classification is based
on deep learning algorithms, which have made remarkable
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achievements in solving many kinds of image classification
problems in recent years. The convolutional neural network
(CNN) is a very popular deep learning framework [18]. In 1990s,
Lecun et al. proposed a multilayer neural network called LeNet
establishing the modern structure of CNN [19]. Compared to
multilayer fully connected neural networks, local connections
and weights sharing in LeNet greatly reduce the number of pa-
rameters, making training easier and mitigating overfitting. In
2012, Krizhevsky et al. created a classic CNN model—AlexNet
[20] that made a great breakthrough in the ImageNet picture
classification task, reducing then the error rate from the state-
of-the-art 26.2% down to 15.3%. In later work, researchers also
invented other improved algorithms: ZFNet [21], VggNet [22],
GoogleNet [23], and ResNet [24].

With the growing prominence of deep learning, it has also
started being applied to solve SAR image classification prob-
lems. In contrast to the conventional algorithms mentioned
above, CNN is an “end-to-end” learning approach, which does
not need to separate the problem into feature extraction and
classification. Instead, it automatically extracts hierarchical fea-
tures of images from a large amount of data [25]. CNN can also
directly use original raw images as input, which omits complex
and cumbersome data preprocessing work to obtain useful fea-
tures. However, CNN’s can be prone to severe overfitting when
training datasets are relatively small.

The moving and stationary target acquisition and recogni-
tion (MSTAR) is an open military target dataset [26]. Many
researchers regard MSTAR as a benchmark for comparative per-
formance evaluation. Unfortunately, because of the scarcity and
concealment of military targets, as well as some unknown pa-
rameters of the SAR imaging mechanism [7], MSTAR dataset
has only about 200 training samples per class in a ten-target
classification challenge. This small amount of samples presents
an obstacle for applying deep learning algorithms to MSTAR
data. To overcome this problem, many variations of normal deep
learning algorithms have been proposed. Deng et al. proposed
an autoencoder with Euclidean distance (SAEED) [27] to ex-
tract linear separable features. Ma et al. [28] proposed a spatial
updated deep autoencoder and a representation-based classi-
fication method. Zhong et al. [29] proposed the large patch
convolutional neural network, replacing fully connected lay-
ers with global average pooling layers. Chen et al. proposed
all-convolutional networks [30] which remove full-connected
layers from a conventional CNN to reduce the number of pa-
rameters and strengthen general performance of the network.

Humans demonstrate remarkable capabilities to accurately
classify an image they have never seen, after learning from
only a few training images. In contrast, CNN needs to learn
from thousands of ground-truthed training images, i.e., CNN is
inefficient in the utilization of training data. Some researchers
have experimented with introducing a “memory module” [31]
in deep neural networks to reduce the networks’ dependence
on rich training data while still generating useful results. We,
therefore, suggest that a memory module approach might be
useful for the SAR target image classification task, in which
only a small amount of training data is typically available. This
paper proposes improvements on the basis of classical CNN and

memory modules and designs a new deep memory convolutional
neural network (M-Net). Additionally, a novel training method
is proposed to train M-Net, inspired by transfer learning [32]
and layer-wise greedy training methods [33].

Our objectives in designing M-Net are to extract more in-
formation from a small amount of training data, namely the
spatial similarity information, and try to extract the underly-
ing statistics of each class. There is an information recorder
built into M-Net similar to the memory module aforementioned.
The information recorder can discover distinctive and intrinsic
connections between training samples, by analyzing the spatial
similarity information of features. M-Net first converts raw im-
age data to features using its front-end CNN component. Next,
the extracted features are delivered into M-Net’s information
recorder to query their true label. The spatial cosine similarity,
between the input feature and each record stored in the informa-
tion recorder, is independently calculated in the query process.
Larger spatial cosine similarity represents a greater likelihood
that the input feature and the corresponding record belong to
same class, and the record which generates the largest similarity
with the incoming feature will be copied. Eventually, M-Net
outputs the copied record’s value as a query result.

The real-world distortions and variations in the appearance of,
e.g., a target vehicle can significantly influence the accuracy of
classification. Hence, robust generalization is a highly desirable
capability for a SAR classification algorithm. M-Net’s novel
structure is conducive for efficiently extracting general features,
enabling improved robustness. However, this special structure
means that, if M-Net were trained in a conventional way, early
stages of training might become unstable (divergent), and con-
vergence would be slow. To achieve fast network training, and
convergence on the globally optimal set of trainable parameters,
we propose a novel two-step training method. The first step is to
train a conventional CNN with the same convolution structure as
M-Net. In the second step, the trained parameters from the first
step are imported into M-Net which then undergoes further train-
ing, i.e., the parameters are pretrained in a conventional CNN,
to create initial values of parameters for fine-tuning training
inside M-Net. This two-step training approach, by transferring
parameters, makes M-Net’s training faster and more efficient.

The remaining part of this paper is arranged as follows.
Section II introduces the structure and training methods
of M-Net. Section III describes experiments on benchmark
datasets. Section IV summarizes our contributions and provides
concluding remarks.

II. METHODOLOGY

A. Structure of M-Net

The structure of M-Net is composed of three parts: ba-
sic CNN, mapping matrix, and information recorder, which is
shown in Fig. 1.

The overall process, from input of SAR images to output
of classifications, can be divided into three stages. In the first
stage, the CNN part automatically extracts feature vectors from
high-dimensional image data. The dimension of raw image
data is greatly reduced, and the most useful information for
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Fig. 1. Whole framework of M-Net. Nu is the length of feature vectors, and Nt is the length of the information recorder keys.

TABLE I
STRUCTURE AND PARAMETERS CONFIGURATION OF THE CNN COMPONENT

Table I: Conv. (feature maps number) at (filter size)/(activation function)”
represents a convolutional layer. “Po. (stride size) at (pooling size)” rep-
resents the max pooling layer. “x× y× z” represents the three dimensions
of the feature.

classification is extracted. In the second stage, extracted feature
vectors and a trainable mapping matrix are multiplied to ob-
tain transformed feature vectors. In the final stage, transformed
feature vectors enter the information recorder. Then, the sys-
tem queries the records in the information recorder to find the
records which have the smallest cosine distance with the input
vectors. The following sections provide further details of each
stage of M-Net.

B. M-Net’s CNN Component

The CNN component comprises nine layers, as well as an
input layer and an output layer. It includes five convolutional
layers, three pooling layers, and one dropout layer. Its first five
convolutional layers are all followed by a nonlinear activation
function as a ReLU layer. The structure and configuration pa-
rameters of each layer in the CNN are shown in Table I.

In the input layer, a SAR image with random size is divided
into 70 × 70 slices. On the one hand, the clipped slices with size
of 70 × 70 are big enough to cover the identified target zones.
On the other hand, the use of smaller input size is conducive
to eliminate redundant parameters and decrease the depth of
networks. In this way, the risk of overfitting is reduced and the
speed of training and testing operations is increased. In cases
where the target areas size is greater than 70 × 70, we can
compress the target area to a 70 × 70 slice.

The main function of the convolutional layer is to filter the
input data and acquire feature maps. Discrete convolution op-
erations will be done in the convolutional layer and multilayer

convolution operations are beneficial to get more deep features.
If the lth (l = 1, 2, . . . , L, where L is the number of layers)
layer is a convolutional layer, the discrete convolution operation
is defined as

Y
(l)
j (a,b) =

I∑

i=1

kw∑

s=0

kh∑

t=0

W
(l)
ij (s, t)X(l)

i (a − s, b − t) + B
(l)
j

(1)
where X

(l)
i is the input data of the ith node (i =

1, 2, . . . , I, where I is the total number of input images) in the
lth layer with size of W

(l)
X × H

(l)
X and Y

(l)
j is the output data of

the jth (j = 1, 2, . . . , J, where J is the total number of output
feature maps) node of the lth layer with size of W

(l)
Y × H

(l)
Y .

The output nodes in the previous layer are connected to the
input nodes in the next layer. W

(l)
ij is the convolutional kernel

with size of kw × kh. Kernels with size of 3 × 3 or 5 × 5 are
recommended because they can play a more effective role in
feature extraction [21]–[23]. B

(l)
j is the bias of the lth layer and

both W
(l)
ij and B

(l)
j are trainable. Every convolution operation

in the convolutional layer is without padding operation, and has
strides with size of 1. Therefore, the relationship between the
input size and the output size of the lth convolutional layer is
defined as

W
(l)
Y =

(
W

(l)
X − kw

)
+ 1

H
(l)
Y =

(
H

(l)
X − kh

)
+ 1. (2)

Convolutional kernels with three different kinds of size are
used in convolutional layers. The size of convolutional kernels in
five convolutional layers is 7 × 7, 5 × 5, 5 × 5, 3 × 3, and 3 ×
3 and the numbers of convolutional kernels are 16, 32, 64,
128, and 10, respectively, i.e., low-level features in image are
relatively few but high-level features are more. In a sophisticated
network, the convolutional kernel size decreases gradually layer
by layer, while the number of kernels increases, which can help
us to extract more complete features from images [34].

It is known that only linear operations can be performed in
convolutional layers, so it is necessary to introduce activation
functions for nonlinear transformation after convolutional lay-
ers. The commonly used activation functions include the tanh
function and sigmoid function, which can output an activated
value between 0 and 1. Although these functions are useful for
nonlinear transformation, their gradients tend to zero when they
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saturate. This can lead to the “vanishing gradient problem” and
even lead to a training failure. Applying ReLU [20], [21] as
the activation function can avoid this problem. The ReLU func-
tion controls its gradient in a defined range rather than arbitrary
range. The gradient equals 0 (if x < 0) and gradient equals 1
(x > 0). Another benefit of ReLU is that it can accelerate the
learning rate and the convergence process. If the lth layer is the
active layer, the operation is shown as

Y
(l)
j = f(X(l)

i ) = max(0, X
(l)
i ) (3)

where f(x) represents the ReLU activation function. The third,
fifth, and seventh layers of the network are pooling layer also
called as subsampling layer. The pooling layer can also be re-
garded as a nonlinear change. It outputs the max value point in
the given local range. Two kinds of common pooling methods
are average pooling and max pooling. The performance of max
pooling is generally better than the average pooling [35]. The
main function of max pooling is to rapidly reduce features’ di-
mension, and overcome the influence of small target variations,
such as shifting and scaling. If the lth layer is a max pooling
layer, the operation is defined as

Yi (x, y) = max
u ,v∈{0 , . . . ,p z }

Xi (x • s + u, y • s + v) (4)

where pz is the max pooling size and s is the max pooling stride.
Both s and pz are set to 2. With this configuration, the size of
input data will be half after going through max pooling layer.
Based on previous experience, max pooling size is generally
2 × 2 or 3 × 3 and stride is 2. Overly large max pooling size
and stride can result in information loss.

The ninth layer is a dropout layer [36]. Dropout is a simple and
cost-effective technology to prevent overfitting. Before training
a network in each round, dropout randomly selects some units
and inactivates them. These inactivated units are not trained
and updated during this round but their weights are retained.
Dropout technology can be seen as a kind of ensemble method,
which is equivalent to the combination of many weak neural
networks. It has been proven that dropout can improve neural
networks’ generalization ability and many researchers currently
believe it is a necessary choice. In M-Net, the dropout layer is
inserted before a convolutional layer. If the lth layer is a dropout
layer, the calculation formula is as follows:

ri ∼ Bernoulli(p)

X̃
(l)
i = ri • X

(l)
i

Y
(l)
j (a, b) =

I∑

i=1

kw∑

s=0

kh∑

t=0

W
(l)
ij (s, t)X̃(l)

i (a − s, b − t) + B
(l)
j

(5)

where ri is an independent Bernoulli variable, which equals
1 in probability of p and equals 0 in probability of 1-p. We
set p to a usual 0.5. The input data of the ith node in the lth
layer X(l) i multiply with ri to get an amended value X̃

(l)
i , and

X̃
(l)
i replace X

(l)
i as the input of next convolutional layer. After

several convolution and pooling operations, an input data X
(l)
i

with size of W
(l)
X × H

(l)
X are finally converted to a feature map

TABLE II
STRUCTURE OF INFORMATION RECORDER

Y
(L)
j which is composed by matrix with size of Nu × 1 × 1

(Nu ∈ N+). As there is no fully connected layer in M-Net’s
structure, Nu is determined by the kernels number in the last
convolutional layer. For convenient computing, the shape of
Y

(L)
j is transformed from Nu × 1 × 1 to Nu and the transformed

Y
(L)
j is assigned to a vector variable Pu which is the feature

vector aforementioned.

C. Mapping Matrix

In order to keep the size of the information recorder fixed
at a suitable value, we use a mapping matrix to connect the
CNN and the information recorder. When the dimension of
the feature vector Pu changes, we can adjust the size of the
mapping matrix to leave the structure of the information recorder
unchanged. When the dimension of the feature vector is very
large, this approach can also help us to reduce the dimension.
The mapping matrix can be regarded as a fully connected layer.
The only difference is that the fully connected layer is trained
in both of our two learning steps, while the mapping matrix is
only trained in the second step. In our network, the length of the
feature vector is the same as that of the information recorder’s
values. Therefore, one can discard the mapping matrix with only
a very small impact on the result.

The feature vector Pu is multiplied by the mapping matrix
Mp and get Qu = Mp ·Pu where Qu is a vector with size of
Nt . Mp is a 2-D matrix with size of Nu × Nt and can also be
updated by training.

D. Information Recorder

The information recorder is an improved version of the mem-
ory module described in [31], with several differences in struc-
ture. Our information recorder contains four parts: INDEX,
KEY, VALUE, and TIME. Each part has its own special function
and the architecture is shown in Table II.

In the information recorder, each line corresponds to a record.
Each record is composed of four sections. The first is an index
item represented by a positive integer z (z = 1, 2, . . . , m). It
can provide convenience for users in writing and searching
messages, and generates a unique identification for every
record. The second section is the key item represented by a
float vector kz (||kz || = 1) with size of Nt . The third section is
the value item represented by an integer vz . vz is the true class
label of kz , thus its reasonable value range is determined by the
number of classes in the data, e.g., if the dataset to be classified
has 10 categories, vz ∈ (0, 1, . . . , 9). The fourth section is a
time parameter represented by an integer tz . It stores the time
at which each record was last updated. Each time a round of
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updating parameters is completed, each corresponding time
parameter will be updated accordingly.

The querying operation is very simple in information
recorder. When the transformed feature Qu enters the infor-
mation recorder, Qu is normalized first by setting its two-norm
value to 1, that is, ||Qu || = 1. Next, we calculate the spatial sim-
ilarity between Qu and each record in the information recorder.
The spatial similarity is measured by cosine distance shown as

cos (θ)z =
Qu • kz

‖Qu‖ ‖kz‖ . (6)

Because ||Qu || = 1 and each record key ||kz || = 1, (6) is
transformed as

cos (θ)z = Qu • kz . (7)

With (7), we can multiply m records’ key (k1 , k2 , . . . , km )
in the information recorder with the feature vector Qu to get
a similarity array (cos (θ)1 , cos (θ)2 , · · · , cos (θ)m ). The max-
imum value of this array will be chosen and its index is written
as zmax

zmax = agrmax(cos (θ)1 , cos (θ)2 , · · · , cos (θ)m ) (8)

where argmax(x) function returns the index of the maximum
value record in the input array. After obtaining zmax, we query
the corresponding record’s value vzm a x , and vzm a x is output as
the final output label of the input feature Qu .

When training the network and updating the parameters, for a
given feature Qu , it is assumed that Qu corresponds to an origi-
nal sample pair (xq , yq ), where yq is the true label of image data
xq . We classify all records in the information recorder to two
collections. Records which have a different label as compared
with yq are incorporated into the set S−. All other records are
placed in a set S+ . According to whether S− or S+ is empty,
there are three cases.

In the first case, neither S− nor S+ is empty. From (7), (8),
we calculate the maximum positive similarity h+ between the
records in S+ and Qu , and the minimum negative similarity
h− between the records in S− and Qu . The loss function is
calculated in accordance with h+ and h−. The loss function here
is the hinge-loss function, shown as follows:

Ls(W ) = max(α − |h+ − h−| , 0). (9)

The usage of hinge loss is to maximize the distance of records
in S+ and S−. When the distance in h+ and h− is greater than
the threshold α, the loss becomes zero. If the distance is less
than the threshold α, it means the distance is not big enough,
and the loss will be negatively correlated with the distance. With
the loss function, the backpropagation algorithm can be used to
calculate the gradient.

Note that the dynamic parameter updating in the information
recorder is not implemented by error backpropagation. When
updating the information recorder parameters, the first thing is
to compare the value of h+ and h−.

If h+ > h−, the current feature Qu and the h+ corresponding
record will be integrated as a new key, and then the key will also

be normalized. The key kz+ will be updated

kz+ =
Qu + kz+∥∥Qu + kz+

∥∥ , vz+ = yq (10)

where z+ and z− are the indices of the corresponding records
h+ and h−. If h+ < h−, the oldest record in the information
recorder should be found and be replaced with the current feature
vector Qu . The oldest record’s value will be updated to the label
of Qu , namely yq

kzo
= Qu, vzo

= yq (11)

where zo is the oldest record’s index. For adding some ran-
domness to the system, a time range will be given. zo will be
randomly set in this given range, that is,

zo = arg(rand(max(tz ) − ts , max(tz ))) (12)

where ts is a small interval denoting for the width of the given
range. The function rand(x) returns a random integer based on in-
coming parameters. The function arg(x) returns the subscript of
a record. When a round of updating is finished, the nonupdated
record’s time value will automatically increment tz = tz + 1
and the updated record’s time value will be cleared to zero
tz = 0.

In the second case, S+ is empty but S− is not empty or both
of them are empty. We use (10) to update the parameters in the
information recorder.

In the last case, S− is empty and S+ is not empty. We use
(11) to update the parameters in the information recorder.

E. Training Methods of M-Net

In the conventional CNN, a softmax classifier will be directly
connected after the last layer of the CNN as an output layer.
The output layer can produce classification result which will be
used to calculate network’s loss during training. After that the
loss will be backpropagated from the back layers to the front
layers. At the same time, the partial derivatives of each train-
able parameter will be computed and conserved. These partial
derivatives are used to get gradients and update the trainable
parameters. M-Net is quite different from CNN in structure and
training form. If we directly train M-Net just as training CNN, it
is likely that M-Net cannot converge or its convergence speed is
very slow. This paper presents a new transfer parameter method
to train M-Net. This method has two steps. The first step is to
train the conventional neural network with the same structure as
M-Net’s CNN. After the first step being completed, the weights
and biases of each layer are saved. In the second step, the saved
parameters are transferred to M-Net where they become the ini-
tial parameter values for the M-Net training. Next, the M-Net is
further trained with fine tuning to find the global optimum point
of hinge loss. This two-step training method can reduce the
training time and make the training more stable. The following
section explains some details of the training.

F. First Step of Training

First, a normal CNN is constructed which has the same struc-
ture as M-Net, without the mapping matrix and information
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recorder, but including a softmax classifier added after the CNN.
This structure is convenient for enabling direct transfer of pa-
rameters. Softmax is a multiclass classifier, which can output
the posterior probability of each class, and the sum of all the
probabilities is 1. If the lth layer is softmax, then

pi =
exp(X(l)

i )
∑r

j=1 exp(X(l)
j )

(13)

where r is the number of the classes. pi represents the probability
that a sample is assigned to class i (i = 0, 1, 2, . . . , r − 1),
while pi = P (y(j )= i|x(i) ;W ).

With the output of softmax classifier, the next step is to cal-
culate the loss function. A commonly used loss function is the
cross entropy loss function, which is good at reflecting the dif-
ference between real outputs and predicted outputs. It is often
better than mean square loss in practice. Supposing that there is
a fixed sample set {(x(1) , y(1)), . . . , (x(C ) , y(C ))}, which con-
tains C examples, network’s cross entropy loss function can be
shown as follows:

L(W ) = − 1
C

C∑

j=1

r∑

i=1

G
(j )
i • log(P (y(j ) = i|x(j ) ; W )) (14)

where G
(j )
i denotes whether the true label y(j ) of x(j ) equal to

i or not. If equal, G
(j )
i is set to 1 otherwise it will be 0. Because

pi=P (yj = i|xi ; W ), (14) can also be written as

L(W ) = − 1
C

C∑

j=1

r∑

i=1

G
(j )
i • log

(
p

(j )
i

)
. (15)

It is also possible to add a regularization item to the loss
[23] with the aim of reducing the magnitude of weights and
preventing overfitting.

When the loss is obtained, the backpropagation algorithm
[37], [38] can be used to transfer the cost information from
the network’s back to its front. With backpropagation, we can
measure the partial derivative of each training parameter with
respect to cross entropy loss.

Additionally, an optimization method is needed to update the
parameters for finding the minimum of a loss function. Com-
monly used optimization algorithms include stochastic gradi-
ent descent [39], momentum, and others. However, these al-
gorithms’ learning rates need to be manually adjusted and the
work often is quite cumbersome and depends on the experience
of researchers. To overcome these limitations, optimization al-
gorithms with adaptive learning rates have emerged, such as
Adagrad [40], Adam [41], etc. The Adam algorithm is used in
M-Net. Adam is less memory intensive and can adopt different
adaptive learning rates for different data. Adam also is good
at optimizing problems with large datasets or high-dimensional
data spaces. It is applicable to most nonconvex optimization
problems. The training process and the detailed parameter set-
tings are shown in Table III.

The initial parameter points can determine whether the train-
ing algorithm converges or not. Some initial points are very
unstable and make the algorithm encounter numerical problems
and even fail completely. When the parameters of the network

TABLE III
ADAM ALGORITHM

are learning and converging, the initialization values can de-
termine the speed and the cost of convergence. In addition,
similar parameter values can have significantly different gen-
eralization errors. The initialization values can also affect the
generalization, and Glorot et al. [42] suggested to use a standard
initialization in convolutional layers as

W ∼ U
(
−

√
6

ni + no
,

√
6

ni + no

)
(16)

where ni is the input number and no is the output number in
each unit. W is a trainable weight of this unit and U means the
uniform distribution.

G. Second Training Step and Transfer Parameters

When the first step of training is completed, the trained param-
eters of all convolutional layers are maintained. In the second
training step, the entire M-Net will be trained (see Fig. 2).

The CNN in M-Net is initialized using the parameters learned
during the first step of the training (see Fig. 2) instead of a stan-
dard normal distribution as is commonly used in deep learning.
The mapping matrix is initialized by a Gaussian distribution
with 0 mean and a standard deviation of 0.01. The parameters
in M-Net’s CNN and mapping matrix are updated in the same
manner as the first step. For the information recorder, we empty
it as an initial state. The training process of the information
recorder does not rely on Adam and backpropagation. Its pa-
rameters are trained in the forward operation stage using its
own criterion as shown in (10)–(12). The second training step
also uses the Adam algorithm and backpropagation, except that
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Fig. 2. Overall workflow of the two-step training process. Left and right
sections denote the first and second training steps, respectively.

the loss function changes from the cross entropy loss (15) to
the hinge loss (9). The initial learning rate becomes 0.0001 to
accurately approximate the global optimum, but the other con-
figurations of Adam are not changed. Although the two-step
training method is more complicated than the direct training
method, it consumes less training epoch, is more efficient, and
also achieves good classification results.

III. SIMULATION RESULTS AND THE ANALYSIS

A. MSTAR Dataset

MSTAR is a project built by the US Defense Advanced Re-
search Projects Agency and the US Air Force Research Labo-
ratory. The image data were collected by the Sandia National
Laboratory’s X-band SAR target recognition system. All data is
in 1-foot resolution under spotlight mode and covers full aspect
(from 0° to 360°) [30]. The MSTAR dataset is often regarded
as a benchmark for comparing performance of various SAR im-
age classification algorithms. The current open data in MSTAR
consist of 10 categories, including armored personnel carriers
(four classes): BMP-2, BRDM-2, BTR-60, and BTR-70, tanks
(two classes): T-62, T-72, rocket (one class): ZS-234, truck (one
class): ZIL-131, and Bulldozer (one class): D7. Optical images
and SAR images for each class are shown in Fig. 3.

B. Comparative Methods

To objectively evaluate the performance of M-Net, its per-
formance on the MSTAR dataset is compared against several
supervised machine learning and deep learning algorithms, in-
cluding SVM, SAEED, and A-CovnNets.

C. Evaluation Metrics

We test the proposed algorithm on the ten-target classification
problem under the standard test conditions (SOC) and extended
operating condition (EOC) [16]. In the case of SOC, the train-
ing targets and test targets have the same class and serial type
number, and the variation in depression angles is small. In the
EOC experiment, the training data and test data have the same
class, but the difference of depression angle between them is
quite large. The variation of the depression angle has a huge im-
pact on the performance of SAR image classification algorithm.
A slight change of the depression angle may cause a serious

Fig. 3. Optical images and SAR images of 10 different types of military
targets: (a) BMP-2; (b) BTR-70; (c) T-72; (d) BTR-60; (e) 2S1; (f) BRDM2;
(g) D7; (h) T62; (i) ZIL131; and (j) ZSU234.

TABLE IV
TRAINING DATA AND TEST DATA USED IN THE SOC EXPERIMENT

decrease in accuracy. Therefore, the EOC experiment is useful
for testing the robustness of algorithms.

D. Parameter Settings

M-Net has two hyperparameters to be set, namely the thresh-
old α of the hinge-loss function and the capacity size m of the
information recorder, both of which may affect the performance
of the network. Too small α will make the distance between
different classes not big enough, while too large α will cause
the network to become unstable. Too large m will increase the
consumption of computing resources. Suitable values of α and
m are very important. In order to analyze the exact impact of
m and α on the network, an experiment is carried out on the
training data in Table IV. Because training data are inadequate,
data augmentation technology is used to generate more data,
and then the augmented data are split into training samples (1/3
of total data) and validation samples (2/3 of total data). In order
to obtain the optimal configuration, we use cross validation to
tune the parameters.

The final results are shown in Fig. 4, where
m = {500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500}
and α = {0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}. The
changes in m and α affect the overall accuracy. When m = 3000
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TABLE V
CONFUSION MATRIX OF SOC EXPERIMENT

Fig. 4. OA (overall accuracy) under the change of the capacity size of the
information recorder m and threshold α of hinge-loss function

and α = 0.2, the overall accuracy reaches the maximum of
98.8%.

E. Results and Analysis of the SOC Experiment

In the SOC experiment, the training targets are captured under
17° depression angle and the test targets are captured under 15°
depression angle. The training targets are more than the test
targets in each class. All data used in this experiment are shown
in Table IV.

There are ten categories of data, and each class only has ap-
proximately 200 images. This is a very small amount of training
data compared to, e.g., the MNIST dataset which has more than
5000 images per class. Therefore, data augmentation is nec-
essary. Data augmentation is a common method that produces
more samples from a small amount of original data by shifting,
rotating, and clipping images. This method is very effective in
the case of insufficient data and can significantly improve the
accuracy of classification. We standardize the raw SAR image
and obtain the 70 × 70 clips that contain the targets by random
clipping. After the data augmentation, the amount of training
data is enough to train a M-Net with highly generalized per-
formance. Furthermore, the original MSTAR data contain both
amplitude and phase information of the SAR image, but we only
use the amplitude information.

The number of training images is 2747 and the number of
test images is 2426. The confusion matrix of SOC experiment
is shown in Table V.

TABLE VI
TRAINING DATASET AND TEST DATASET OF EOC-1

TABLE VII
RESULTS OF EOC-1

From Table V, we can see that the overall test accuracy under
SOC reaches 99.71% and only seven test samples are misclassi-
fied. The accuracies of per class are all more than 99%. The four
classes BTR-70, T-72, T62, and ZSU234 achieve accuracy of
100%. These results suggest that M-Net can achieve very good
results on the SOC dataset.

F. Results and Analysis of EOC Experiment

The EOC dataset comprises a variety of data which is used
for three different experiments, denoted EOC-1, EOC-2, and
EOC-3.

In EOC-1, four kinds of data, 2S1, BRDM-2, T-72, and ZSU-
234, are tested. Since the MSTAR dataset is limited, only these
four classes of data could be used in this experiment. Therefore,
EOC-1 is a four-target classification problem. EOC-1 has greater
variability in depression angle between training data and test
data. The training data are captured under depression angle of
17°, while the test data are captured under depression angle
of 30°. Therefore, experimental results of EOC-1 reflect the
robustness of the algorithm to change of depression angle. The
training dataset and test dataset used in EOC-1 are shown in
Table VI.

The confusion matrix and overall accuracies obtained in the
EOC-1 experiment are shown in Table VII.

The accuracy of the EOC-1 experiment is somewhat worse
than that of the SOC experiment. The change of the depression
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TABLE VIII
TRAINING DATA OF EOC-2 AND EOC-3

TABLE IX
TEST DATA OF EOC-2

TABLE X
TEST DATA OF EOC-3

TABLE XI
RESULTS OF EOC-2

TABLE XII
RESULTS OF EOC-3

angle does have some influence on the result, as expected,
however the accuracy is still high.

In the EOC-2 and EOC-3 experiments, we test the network’s
ability to distinguish objects which have similar appearance
(e.g., BMP-2 and T-72). BMP-2 and T-72 are most similar in
outline and shape and they are difficult to distinguish. Many
algorithms confuse these two classes of target. Both EOC-2 and
EOC-3 experiment use the same training dataset including four

TABLE XIII
COMPARISON OF DIFFERENT ALGORITHMS

Fig. 5. Relationship between training sample number and SOC error rate.

Fig. 6. Two-dimensional PCA projection of the extracted feature vectors:
(a) Features extracted by CNN and (b) features extracted by M-Net. Different
colors denote different classes of target.

TABLE XIV
COMPUTATIONAL COMPLEXITY AND TIME CONSUMPTION

classes: BMP-2, BRDM-2, BTR-70, and T-72. Their depression
angles are all 17°, as shown in Table VIII.

The test dataset of the EOC-2 experiment is different from the
EOC-3 experiment. The test dataset of EOC-2 has five different
types of T-72, which are S7, A32, A62, A63, and A64 with
depression angles of 15° or 17°, as shown in Table IX.

The test dataset of EOC-3 has five different types of T-72
(812, A04, A05, A07, A10), and two different types of BMP-
2 (9566, c21). Their depression angles also are 15° or 17°, as
shown in Table X.

There was no cross between the test dataset and the training
dataset in both EOC-2 and EOC-3 experiments. The confusion
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TABLE XV
VARIANT CNNS WITH DIFFERENT STRUCTURES

The representation of convolutional and pooling layers is the same as those in Table I. “MM Nu × Nt ” represents a matrix with shape of N u × Nt . “IR M × K”
represents an information recorder of which capacity is M and key vector dimension is K.

matrix and the accuracy of EOC-2 on the test set are shown in
Table XI.

The confusion matrix and the accuracy of EOC-3 on its test
set are shown in Table XII.

The accuracies of EOC-2 and EOC-3, respectively, achieve
99.67% and 98.46%. The performance of M-Net is compared
with that of several other well-known algorithms and the results
of SOC, EOC-1, EOC-2, and EOC-3 experiments are shown in
Table XIII.

As can be seen from Table XIII, the performance of M-Net in
these experiments is better than that of the other algorithms’. In
general, M-Net outperforms the other algorithms in accuracy,
and also robustly handles variation in depression angle and dif-
ferent models of target vehicle. M-Net demonsrates strong abil-
ity to correctly distinguish between similar objects.

G. Variation in Performance With Different Numbers of
Training Samples

Many algorithms can achieve good results in a particular
dataset; however, when the amount of training data changes, the
performance of the algorithm will be significantly affected. This
can make satisfactory results difficult to obtain in practical appli-
cations where data may be limited. In order to analyze M-Net’s
sensitivity to variations in the quantity of training samples, we
have evaluated M-Net’s performance on the SOC experiment,
when trained with different amounts of data. M-Net is compared
against three other classifiers. The testing data used in this ex-
periment are the same as the testing data in Table IV and the
training data are randomly sampled from the training data in
Table IV. To ensure realistic results, this experiment does not
use data augmentation. The relationship between probability of
error rate and the number of training samples is described in
Fig. 5.

It can be seen from Fig. 5 that M-Net’s error rate curve is
always below then that of the three comparison algorithms,
and achieves greater accuracies faster as learning progresses.
The other curves perform significantly worse than M-Net when
the number of training samples is reduced. M-Net generates the

highest accuracy in every training sample number. When the
number of training samples becomes greater than 100, M-Net’s
curve becomes relatively flat and smooth. This shows that, after
the training data reach sufficient size, additional training data
have a little effect on performance.

H. Feature Extraction

In the SOC experiment, the total number of samples in the test
set is 2425. A feature vector of Nu dimensions is extracted from
each image by M-Net. In order to visualize the feature vectors,
principal component analysis (PCA) has been used to reduce
the dimensionality of the feature vector from Nu dimensions to
two dimensions [43] which can be depicted in a 2-D graph, as
shown in Fig. 6.

Compared with a conventional CNN, M-Net extracts features
for each class that are more widely separated from other classes.
This effect is caused by adding the information recorder and
using the hinge-loss function. The M-Net features are more
discriminative and lead to greater robustness.

I. Computational Complexity and Time Consumption Analysis

In this section, we analyze the computational complexity and
time consumption at different stages of normal CNN and M-Net.
To facilitate the calculation, we assume that the structure of con-
volutional layers in the two networks does not change with the
data. We assume that the amount of data is n, the height of every
sample in data is h, and the width is w (w = h = l). Both the
training and the testing computational complexity of the normal
CNN are O(nl2). While in forward operation of M-Net, compu-
tational complexities of convolutional layers, mapping matrix,
and the information recorder are O(nl2), O(nl2), and O(n),
respectively. Similarly, backward computational complexity
operation of M-Net is O(nl2). Therefore, both the training and
the testing computational complexity of the M-Net are O(nl2),
which is the same as for a normal CNN.

Empirically, we have measured the training and testing time
required for each batch (100 samples) using two different
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Fig. 7. (a) Clutter image. (b) Synthetic data with embedded targets. (c) Segmentation map after morphological operation. (d) Final results. The yellow boxes
indicate the position of targets and the digits indicate the categories of the targets (green digit: correct; red digit: wrong; 1: BRDM-2; 2: 2S1; 3: D7; 4: T62; 5:
ZIL131; 6: ZSU234; 7: BTR-60; 8: BMP2; 9: BTR-70; and 10: T-72). (e) and (f) Another clutter image and results.

networks. Results listed in Table XIV are obtained by
tensorflow-cpu 1.0.1 and an intel i7-6700 2.60 GHz CPU.

J. Neural Networks With Different Structures

In this study, we have designed nine different networks to find
the optimal network structure, as shown in Table XV.

In Table XV, C is an M-Net and A is an ordinary CNN. A
and C have the same structure of CNN. B is a new network
derived from configuration C without the mapping matrix. H
and I change the convolutional kernel on the basis of C. H
uses the structure of GoogleNet [23] to split one conventional
kernel with size of N × N into two conventional kernels with
size of 1 × N and N × 1 which can reduce the parameters of
conventional kernels. I network imitates the structure of VggNet
[21] to change the form of conventional kernels and split one
conventional kernel with size of 7 × 7 to three conventional
kernels with size of 3 × 3 and split one conventional kernel with
size of 5 × 5 into two conventional kernels with size of 3 × 3.
I can also reduce the parameters of convolutional layer. Both H
and I reduce free parameters by changing the shape and number
of convolutional kernels and the generalization performance is
improved.

Table XVI gives the comparison results with different
networks.

As can be seen in Table XVI, A’s accuracy is lower than the
C’s. Without mapping matrix, B’s accuracy has a little difference

TABLE XVI
COMPARISON OF DIFFERENT NETWORKS

with C’s. D, E, F, G, and C have similar structures, the only
difference is the dimension of extracted features, where 16, 32,
64, and 128 dimensional features are extracted, respectively. The
mapping matrix is used to map different dimensions of feature
to a suitable fixed dimension. If the feature’s dimension does not
need to be changed, the mapping matrix can be removed (e.g.,
C and B). As can be seen from the table above, in both SOC
and EOC, the accuracy of the D, E, and G networks is different
as compared with M-Net. Although F acquires an accuracy as
good as M-Net in SOC, its accuracy in EOC is lower than M-Net,
which suggests that it is more sensitive to a reduction in training
samples. Overall, M-Net performs best. The final results of H
and I in SOC, EOC-1, EOC-2, and EOC-3 are not as good as
M-Net.
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K. Target Recognition in Cluttered Scenes

The MSTAR clutter dataset collects many images of different
scenes, such as urban area, meadow, forest, etc., of which size are
about 1784× 1476, as shown in Fig. 7(a). These scene images do
not contain any targets. Through the method of image synthesis,
we have artificially embedded the target images (testing samples
in Table IV) into the scene images to generate the scene images
with targets surrounded by clutter [see Fig. 7(b)].

In this target recognition experiment, we designed two M-
Nets to detect and classify targets in the artificially generated
cluttered scene images. The first M-Net is used to detect the
image, which is a binary classification network. In the training,
it uses 2747 training samples (see Table IV) as its positive sam-
ples, and random slices of clutter images as its negative samples.
When testing, the trained M-Net and a sliding window are ap-
plied to detect target images in the synthetic scene, and generate
a segmentation map. Next, we use a morphological method to
reduce the noise in the segmentation map [see Fig. 7(c)]. Ac-
cording to the segmentation map, it is easy to find the location of
the targets in the test images and the target image segments can
be obtained. Finally, the target image segments are classified by
the second M-Net which has been trained on the SOC dataset.
The final result is shown in Fig. 7(d). All targets are correctly
classified.

IV. CONCLUSION

Convolution neural networks have demonstrated significant
advantages for image processing and feature extraction. In or-
der to alleviate the overfitting problems, encountered in con-
ventional convolution neural networks, this paper proposes a
new network named M-Net. M-Net is designed to extract more
information from less training data, and to improve generaliza-
tion performance when only a small amount of training data is
available. As can be seen from the 2-D PCA projection map, M-
Net extracts feature vectors that are better separated and more
discriminatory than those extracted by a conventional CNN. We
have tested M-Net on the SOC, EOC-1, EOC-2, EOC-3 exper-
iments of the MSTAR dataset and compared its performance
against several other classifiers including SVM, SAEED, and
A-CovNets. M-Net demonstrates better performance than the
other three algorithms in all four experiments and achieves an
SOC accuracy of 99.71% in a ten-target classification problem.
M-Net also demonstrates strong robustness to change in quan-
tity and parameters of training data. M-Net maintains a high
and stable accuracy when key parameters, such as loss function
threshold and capacity size of the information recorder, are var-
ied significantly. The two-step training and transfer parameter
training methods are another innovation of this paper, which
can make the training process of M-Net efficient and precise.
Future work will investigate ways of modifying the informa-
tion recorder to output a probabilistic rather than deterministic
values, yielding functionality similar to that of a softmax classi-
fier. In (12), we can investigate the benefits of selecting the top
k most similar samples and combining their predictions as an
ensemble or combination of experts.
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