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a b s t r a c t 

Non-negative matrix factorization (NMF) can map high-dimensional data into a low-dimensional data 

space. Feature selection can eliminate the redundant and irrelevant features from the alternative fea- 

tures. In this paper, we propose a feature selection based dual-graph sparse non-negative matrix fac- 

torization (DSNMF) which can find an appropriate low dimensional representation of data by NMF and 

then select more discriminative features to further reduce the dimension of the low dimensional space 

by feature selection rather than reduce the dimension by only NMF or feature selection in many previ- 

ous methods. DSNMF combines dual-graph model with non-negative matrix factorization, which can not 

only simultaneously preserve the geometric structures in both the data space and the feature space, but 

also make the two non-negative matrix factors update iteratively and interactively. In addition, DSNMF 

exerts L 2,1 - norm constraint on the non-negative matrix factor of the feature space to make full use of 

the sparse self-representation information. What’s more, we propose a new local discriminative feature 

selection clustering called feature selection based dual-graph sparse non-negative matrix factorization for 

local discriminative clustering (DSNMF-LDC) whose clustering effects are better. We give the objective 

function, the iterative updating rules and the convergence proof. Our empirical study shows that DSNMF- 

LDC is robust and excellent in comparison to 9 feature selection algorithms and 7 clustering algorithms 

in clustering accuracy (ACC) and normalized mutual information (NMI). 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

With the rapid development of information technology and

omputer, the size of the collected data in many fields has

ncreased. The massive high-dimensional data have put forward

evere challenge to the traditional machine learning and the statis-

ical analysis [1] . Feature selection aims to eliminate the redundant

nd irrelevant features, identify and preserve the discriminative

eatures from the high-dimensional data [2–5] . It can reduce the

eature dimensions, simplify the calculation model and improve

he model accuracy, running efficiency and learning performance

6] . The discriminative features got from feature selection can

e used in clustering to improve the quality of clustering. How

o explore the inherent rules and the essential structure in the

igh-dimensional data, to efficiently obtain the useful features and

epresent them in low dimensions have become hot issues in the

achine learning, pattern recognition, data mining and statistical

nalysis. It has wide applications in people’s life, such as text
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lassification [7] , medical diagnosis [8,9] , video event detection

10] , intrusion detection [11] and some other fields. 

Many studies about feature selection algorithms have shown

hat the data information generally distributes in the nonlinear

ow-dimensional submanifold of the high-dimensional space, so

he researchers put forward a lot of manifold learning methods

o discover the potential geometric structure [12–17] . The main

dea of Laplacian score (LapScore) [12] and spectral feature selec-

ion (SPEC) [13] is to evaluate each feature according to the lo-

al preserving strategy and remove the poor features. However,

hey do not use learning mechanism. Multi-cluster feature selec-

ion (MCFS) [14] and minimum redundancy spectral feature selec-

ion (MRSF) [15] combine the embedded learning with the sparse

onstraints, and their difference lies in the different sparse con-

traints. MCFS uses L 1 - norm constraint and MRSF uses advanced

 2,1 - norm constraint. However, MCFS and MRSF both belong to

he step-by-step feature selection, which cannot take the effect

f the manifold information on the following feature selection

nto account. Joint embedding learning and sparse regression fea-

ure selection (JELSR) [16] combines the embedded learning with

pectral regression, which can effectively preserve the discrimina-

ive features. Locality and similarity preserving embedding feature

https://doi.org/10.1016/j.neucom.2018.02.044
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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selection (LSPE) [17] combines the embedded learning with feature

selection, which can preserve the discriminative features and exca-

vate the geometric information of the data space. The aforemen-

tioned methods can only preserve the local manifold information

of the data space and cannot make full use of the local manifold

information of the feature space, which cannot completely exca-

vate the potential information. In Ref. [18] , Chang et al. have pro-

posed a convex sparse principal component analysis (CSPCA) al-

gorithm which adopts the recent advances of sparsity and robust

PCA into a joint framework to leverage the mutual benefit. CSPCA

is the first convex sparse and robust PCA algorithm, which can al-

ways ensure the algorithm achieves the global optimum. In Ref.

[1] , an advanced self-representation based dual-graph regularized

feature selection clustering (DFSC) has been proposed to solve this

problem. DFSC utilizes the dual-graph (the data graph and the fea-

ture graph) model which considers the manifold information both

of the data space and the feature space to make full use of the

geometric structure of the data. DFSC obviously outperforms the

previous algorithms at the clustering effects. However, from the

updating rules in DFSC, we can see the self-representation coeffi-

cients matrices in feature space and data space can only update by

themselves rather than affect each other for the self-representation

model, which cannot give full play to the dual-graph model. 

Clustering is divided into several categories according to the

preset clustering number, so as to make the similarities of el-

ements in the same class as large as possible, and make the

similarities of elements in the different classes as small as pos-

sible [19–21] . To evaluate the performance of feature selection

algorithms, we often need to cluster according to the selected

features. There are some common clustering algorithms, such as

K-means, NMF [22,23] , dual regularized co-clustering (DRCC) [24] ,

concept factorization (CF) [25] , locally consistent concept factoriza-

tion (LCCF) [26] and dual-graph regularized concept factorization

clustering (GCF) [27] . K-means is one of the commonest clustering

algorithms, which is simple and easy to understand, but its perfor-

mance will significantly decrease in dealing with high-dimensional

problems. To solve this problem, linear discriminant analysis (LDA)

has been combined with K-means, which can effectively use the

discriminative information and achieve good results in data clus-

tering. The purpose of NMF [22,23] is to decompose the input data

into two low-dimensional matrices of the data space and the fea-

ture space. Inspired by NMF, DRCC [24] does tri-factorization on

the input data. In addition, DRCC adopts the dual-graph model to

effectively utilize the potential information. CF [25] is an extension

of NMF and applies the idea of the kernel method [26] , which can

be used in the datasets containing negative values. Based on CF,

Cai et al. have proposed LCCF [27] which can preserve the geomet-

rical manifold structures. Ye and Jin have proposed GCF [28] which

adds dual-graph model into LCCF. GCF can preserve the geomet-

rical manifold information both of the data graph and the feature

graph. However, the aforementioned clustering algorithms do not

apply the feature selection in advance when dealing with high-

dimensional data, so there are some redundant and irrelevant fea-

tures in the original features. 

To solve the problem in the aforementioned feature selection

algorithms [12–17] , we propose a feature selection based dual-

graph sparse non-negative matrix factorization (DSNMF). Dual-

graph model is added in DSNMF, which can preserve the local ge-

ometric information of both the data space and the feature space,

and fully excavate the potential data information. To solve the

problem in the recently proposed DFSC [1] , DSNMF adopts non-

negative matrix factorization rather than self-representation matri-

ces. Therefore, it can make the two non-negative matrix factors of

the data space and the feature space update iteratively and inter-

actively, which can give full play to the dual-graph model. 
n  
Considering that the previous clustering algorithms [22–28] are

ack of discrimination, we combine K-means with LDA [29–31] and

ropose a feature selection based dual-graph sparse non-negative

atrix factorization for local discriminative clustering (DSNMF-

DC). DSNMF-LDC not only has the advantages of the dual-graph

odel in the co-clustering algorithms, but also utilizes the feature

election which can remove some redundant and irrelevant fea-

ures in the original features and select the discriminative features.

herefore, DSNMF-LDC can not only be robust to the noises, but

lso reduce the dimension of the data, save computing and storage

esources. What’s more, we utilize the local discriminative feature

election clustering after feature selection, which can greatly im-

rove the clustering effectiveness and robustness. 

Our main contributions are the following four aspects: 

• We integrate NMF into feature selection rather than reduce the

dimension by only NMF or feature selection, which can reduce

the dimension of data as much as possible and efficiently deal

with high-dimensional data. 

• We combine the non-negative matrix factorization with the

dual-graph (the data graph and the feature graph) model for

feature selection, which can reduce the dimension of data as

much as possible. The two non-negative matrix factors of the

data space and the feature space can update iteratively and in-

teractively, which can give full play to the dual-graph model. 

• We exert L 2,1 - norm constraint on the non-negative matrix

factor of the feature space, which reflects the sparse self-

representation information and the importance of selected fea-

tures. What’s more, it ensures the sparsity of the non-negative

matrix factor of the feature space, which can simplify the

calculation. 

• We utilize the local discriminative feature selection clustering

after feature selection, which can greatly improve the clustering

effectiveness and robustness. 

The rest of this paper is organized as follows: in Section 2 ,

e introduce our feature selection based dual-graph sparse non-

egative matrix factorization for local discriminative clustering

DSNMF-LDC) in detail. Extensive experiments and corresponding

nalyses are done in Section 3 . In Section 4 , we provide some con-

lusions and suggestions for the future work. 

. Feature selection based dual-graph sparse non-negative 

atrix factorization for local discriminative clustering 

DSNMF-LDC) 

.1. Feature selection based dual-graph sparse non-negative matrix 

actorization (DSNMF) 

.1.1. Objective function 

An advanced DFSC has been proposed in [1] , which exerts

he self-representation matrices of the data space and the feature

pace. However, it can only update by themselves and cannot af-

ect each other, so that it cannot give full play to the dual-graph

odel. In order to solve this problem, we propose a feature se-

ection based dual-graph sparse non-negative matrix factorization

DSNMF). 

Non-negative matrix factorization can obtain the potential data

nformation by decomposing the data matrix into non-negative

atrix factors, which is a very effective method of the matrix ap-

roximation. We have a dataset X = [ x 1 , x 2 , . . . , x n ] ∈ � 

m ×n , where

 i = [ x i 1 , x i 2 , . . . , x im 

] T ∈ � 

m is the i th vector, m is the number of

he feature dimensions, n is the number of the simples. The pur-

ose of non-negative matrix factorization is to decompose the data

atrix into two non-negative matrix factors P = [ P 1 , P 2 , . . . , P m 

] T ∈
 

m ×c and S = [ S 1 , S 2 , . . . , S n ] 
T ∈ � 

n ×c , where c is the clustering

umber, P is the non-negative matrix factor of the feature space
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nd S is the non-negative matrix factor of the data space. Each el-

ment in the non-negative matrix can be calculated as follows: 

 i j = 

k ∑ 

a =1 

P ia S 
T 
a j + f i j (1) 

here f ij is the residual error term of each element after the non-

egative matrix factorization. The formula ( 1 ) can be expanded

nto a matrix form: 

 = P S T + F (2)

here F is the residual error matrix. We aim to minimize the

esidual error matrix F : 

in || X − P S T || 2 F (3) 

here ||.|| F is the Frobenius norm (F-norm) of the matrix. We can

et the Euclidean distance of the two matrices by calculating the

quare of the F-norm. 

The recent study [24,32,33] have shown that the data infor-

ation distributes in the nonlinear low-dimensional submanifold

f the high-dimensional space, namely the data manifold, and the

eature information distributes also in a low-dimensional subman-

fold, namely the feature manifold. Therefore, we construct a dual-

raph model (the data graph and the feature graph) to effectively

imulate the geometric structure of the data manifold and the fea-

ure manifold, which can preserve the local geometric information

f the data as completely as possible. There are n points in the

raph and each point represents a sample data. For each point x i ,

e find its k nearest neighbors and establish edges among them,

n which we construct edge weights to represent the similarities

etween x i and its k nearest neighbors. Thus, the weight matrix W

s also called similarity matrix. There are many methods to con-

truct edge weights, such as some common methods in [22] : heat

ernel weighting, binary (0–1) weighting and dot-product weight-

ng. We can choose the most appropriate similarity matrix accord-

ng to the specific situation, which can improve the learning accu-

acy. For example, we usually choose the heat kernel weighting to

easure the similarities among the points in the image data. 

We define that the similarity matrix of the feature graph is W 

P .

ased on the non-negative matrix factor P of the feature space, the

ow-dimensional representation smoothness of the feature space is

easured as follows [24] : 

1 

2 

m ∑ 

i =1 

m ∑ 

j=1 

∥∥P i − P j 

∥∥2 

W 

P 
i j 

= 

m ∑ 

i =1 

P i P i 
T D 

P 
ii −

m ∑ 

i =1 

m ∑ 

j=1 

P i P i 
T W 

P 
i j 

= T r ( P 

T D 

P P ) − T r ( P 

T W 

P P ) 

= T r ( P 

T L P P ) (4) 

From the above formula, we can know that the Laplacian ma-

rix of the feature graph is L P = D 

P − W 

P , where D 

P is a diagonal

atrix and [ D 

P ] ii = 

∑ 

j [ W 

P ] i j . Therefore, the diagonal elements of

he diagonal matrix D 

P are the sum of the row elements of the

atrix W 

P . 

Similarly, we define that the similarity matrix of the data graph

s W 

S . Based on the non-negative matrix factor S of the data space,

he representation smoothness of the data space is measured as

ollows [24] : 

1 

2 

n ∑ 

i =1 

n ∑ 

j=1 

∥∥S i − S j 
∥∥2 

W 

S 
i j 

= 

n ∑ 

i =1 

S i S i 
T D 

S 
ii −

n ∑ 

i =1 

n ∑ 

j=1 

S i S i 
T W 

S 
i j 
= T r ( S T D 

S S ) − T r ( S T W 

S S ) 

= T r ( S T L S S ) (5) 

Considering the non-negative matrix factorization and the dual-

raph model, and the L 2,1 - norm constraint on the non-negative ma-

rix factor P of the feature space to ensure that the row sparsity of

he matrix P , we propose a novel feature selection, namely feature

election based dual-graph sparse non-negative matrix factoriza-

ion (DSNMF). || P i || 2 contains the self-representation information

f the i th feature, which reflects its importance in all the features.

e can take it as an important criterion of the feature selection

nd add it into the following objective function: 

 ( S , P ) = 

∥∥X − P S T 
∥∥2 

F 
+ αT r 

(
S T L S S 

)
+ βT r 

(
P 

T L P P 

)
+ θ‖ 

P ‖ 2 , 1 

s.t. S ≥ 0 , P ≥ 0 (6) 

here α, β are the non-negative regular parameters. The regular

arameters α, β can balance the weight of the first reconstruction

rror term and the next several terms. When β = θ = 0, the formula

 6 ) will degenerate as Cai et al. proposed graph regularized non-

egative matrix factorization (GNMF) in [22] . When α = β = θ = 0,

he formula ( 6 ) will degenerate as the traditional non-negative ma-

rix factorization (NMF). 

Based on the final non-negative matrix factor P of the fea-

ure space, we select the former q features according to the value

f || P i || 2 that is feature selection based dual-graph sparse non-

egative matrix factorization (DSNMF). 

.1.2. Iterative updating rules 

The iterative updating method is commonly used to solve

he non-convex problem. The iterative updating method fixes the

ewest value of a variable and solves the convex optimization

roblem of another variable at each iteration, in which we can ob-

ain the stable solution or the local optimal solution of the non-

onvex problem. 

The objective function in the formula ( 6 ) is a non-convex prob-

em on the non-negative matrix factors P and S , so the iterative

pdating rules are used to solve this problem. We fix the non-

egative matrix factor P when solving the non-negative matrix fac-

or S of the data space and fix the non-negative matrix factor S

hen solving the non-negative matrix factor P of the feature space.

e rewrite the formula ( 6 ) as: 

 ( S , P ) = 

∥∥X − P S T 
∥∥2 

F 
+ αT r 

(
S T L S S 

)
+ βT r 

(
P 

T L P P 

)
+ θ‖ 

P ‖ 2 , 1 

= T r 
(
X 

T X − 2 X 

T P S T + S P 

T P S T 
)

+ αT r 
(
S T L S S 

)
+ βT r 

(
P 

T L P P 

)
+ θ‖ 

P ‖ 2 , 1 

= T r 
(
X 

T X 

)
− 2 T r 

(
X 

T P S T 
)

+ T r 
(
S P 

T P S T 
)

+ αT r 
(
S T L S S 

)
+ βT r 

(
P 

T L P P 

)
+ θ‖ 

P ‖ 2 , 1 

s.t. S ≥ 0 , P ≥ 0 (7) 

Let � ij and �kj be the corresponding Lagrange multipliers for

he constraint on S ij ≥ 0 and P kj ≥ 0, respectively. Then we have the

agrange function of the formula ( 7 ) as follows: 

 ( S , P ) = T r 
(
X 

T X 

)
− 2 T r 

(
X 

T P S T 
)

+ T r 
(
S P 

T P S T 
)

+ αT r 
(
S T L S S 

)
+ βT r 

(
P 

T L P P 

)
+ θT r 

(
P 

T VP 

)
+ T r 

(
�S T 

)
+ T r 

(
�P 

T 
)

(8) 

here the i th diagonal element V ii of the diagonal matrix

 ∈ � 

m × m can be calculated as follows: 

 ii = 

1 

2 ‖ 

P i ‖ 2 

(9) 
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In order to avoid overflow, we add a small enough constant ε in

the definition of the matrix V , so the formula ( 9 ) can be rewritten

as follows: 

 ii = 

1 

2 max ( ‖ 

P i ‖ 2 , ε ) 
(10)

When updating the variable P , the partial derivative of L ( S , P )

with respect to P is: 

∂L ( S , P ) 

∂P 

= −2 XS + 2 P S T S + 2 βL P P + 2 θVP + � (11)

Considering the KKT conditions �kj P kj = 0, we have: [
−2 XS + 2 P S T S + 2 βL P P + 2 θVP 

]
i j 

P i j = 0 (12)

Since L P = D 

P – W 

P and the elements of D 

P and W 

P are non-

negative, the formula ( 12 ) can be rewritten as follows: [
−2 XS + 2 P S T S + 2 βD 

P P − 2 βW 

P P + 2 θVP 

]
i j 

P i j = 0 (13)

So that we can get the following updating formula of the vari-

able P : 

P i j ← P i j 

[
XS + βW 

P P 

]
i j 

[ P S T S + βD 

P P + θVP ] i j 

(14)

Similarly, when updating the variable S , the partial derivative of

L ( S , P ) with respect to S is: 

∂L ( S , P ) 

∂S 
= −2 X 

T P + 2 S P 

T P + 2 αL S S + � (15)

Considering the KKT conditions � ij S ij = 0, we have: [
−2 X 

T P + 2 S P 

T P + 2 αL S S 
]

i j 
S i j = 0 (16)

Since L S = D 

S – W 

S and the elements of D 

S and W 

S are non-

negative, the formula ( 16 ) can be written as follows: [
−2 X 

T P + 2 S P 

T P + 2 αD 

S S − 2 αW 

S S 
]

i j 
S i j = 0 (17)

So that we can get the following updating formula of the vari-

able S : 

S i j ← S i j 

[
X 

T P + αW 

S S 
]

i j 

[ S P 

T P + αD 

S S ] i j 

(18)

2.2. Local discriminative feature selection clustering 

Clustering is divided into several categories according to the

pre-set clustering number, so as to make the similarities of ele-

ments in the same class as large as possible, and make the sim-

ilarities of elements in the different classes as small as possible

[ 19 –21 ]. In DSNMF, we select the former q features of the dataset

X according to the value of || P i || 2 in a descending order, so that

we can obtain the matrix X f = [ x 1 , x 2 , . . . , x n ] ∈ � 

q ×n after the fea-

ture selection. Then, we cluster the dataset X f . The dataset X f is

divided into c clusters { C i } c i =1 
, so as to obtain a mark matrix M =

[ m 1 , m 2 , ..., m n ] 
T ∈ { 0 , 1 } n ×c . The j th element of m i is m ij which is

1 if x i ∈ C j and 0 otherwise. We use the indirect method like it in

[35] to solve the mark matrix instead of the direct method. 

We firstly define a cluster assignment matrix Z as follows: 

Z = [ z 1 , z 2 , ..., z n ] 
T = M 

(
M 

T M 

)−1 / 2 
(19)

where z i is the cluster assignment vector for the data vector x i .

Since M 

T M is a diagonal matrix, we can easily conclude as follows:

Z 

T Z = 

(
M 

T M 

)−1 / 2 
M 

T M 

(
M 

T M 

)−1 / 2 = I n (20)

We define the between-cluster scatter matrix S b , the within-

cluster scatter matrix S w 

and the total scatter matrix S t like [31] as

follows: 

S b = 

˜ X f Z Z 

T ˜ X 

T 
f (21)
 w 

= 

˜ X f ̃
 X 

T 
f − ˜ X f Z Z 

T ˜ X 

T 
f (22)

 t = S b + S w 

= 

˜ X f ̃
 X 

T 
f (23)

here ˜ X f = X f H n . We define a centering matrix H n = I n −
1 
n 1 n 1 n 

T ∈ � 

n ×n , where I n is the n -dimensional unit matrix and all

lements of the column vector 1 n is 1. In order to better cluster

hat makes the distance between the data in different clusters as

ar as possible and the data in same cluster as close as possible, we

tilize the Fisher criterion and obtain the best cluster assignment

atrix Z best by maximizing the following objective function: 

 best = arg max 
Z 

T r 
[
( S t + μI ) 

−1 S b 
]

= arg max 
Z 

T r 

[ (
˜ X f ̃

 X 

T 
f + μI 

)−1 
˜ X f Z Z 

T ˜ X 

T 
f 

] 
= arg max 

Z 

T r 

[ 
Z 

T ˜ X 

T 
f 

(
˜ X f ̃

 X 

T 
f + μI 

)−1 
˜ X f Z 

] 
s.t. μ > 0 (24)

Since Z 

T Z = I n in the formula ( 20 ), we can obtain the best clus-

er assignment matrix Z best by minimizing the following objective

unction: 

 best = arg min 

Z 

T r 

[ 
Z 

T Z − Z 

T ˜ X 

T 
f 

(
˜ X f ̃

 X 

T 
f + μI 

)−1 
˜ X f Z 

] 
s.t. μ > 0 (25)

Since the local manifold information of the data is similar to be

inear [36] , we adopt a local clique N k ( x i ) comprising the k nearest

eighbors of a data point x i , which contains the data point x i it-

elf and its ( k −1) nearest neighbors. Therefore, we establish such a

ocal linear discriminative model to evaluate the clustering results.

We define a matrix X i = [ x i 1 , x i 2 , ..., x i k ] which consists of all

ata points in the local clique N k ( x i ) and define the correspond-

ng index set as D i = { i 1 , i 2 , ..., i k } . Similarly, according to the local

inear discriminative model, we define Z i = [ z i 1 , z i 2 , ..., z i k ] 
T ∈ � 

k ×c 

hich is derived from the assignment matrix cluster Z as follows:

 i = A 

T 
i Z (26)

here A i is a selection matrix, ( A i ) xy is 1 if x = D i { y } and 0

therwise. 

As the formula ( 24 ), we utilize the Fisher criterion and

btain the best cluster

ssignment matrix ( Z i ) best of the local linear discriminative

odel by maximizing the following objective function: 

( Z i ) best = arg max 
Z i 

T r 

[ 
Z 

T 

i 
˜ X 

T 
i 

(
˜ X i ̃

 X 

T 
i + μI 

)−1 
˜ X i Z i 

] 
s.t. μ > 0 (27)

here ˜ X i = X i H k . 

As the formula ( 25 ), we can also obtain the best cluster as-

ignment matrix ( Z i ) best of the local linear discriminative model by

inimizing the following objective function: 

( Z i ) best = arg min 

Z i 

T r 

[ 
Z 

T 

i H k Z i − Z 

T 

i 
˜ X 

T 
i 

(
˜ X i ̃

 X 

T 
i + μI 

)−1 
˜ X i Z i 

] 
s.t. μ > 0 (28)

Since 
∼
X 

i 
H k = 

∼
X 

i 
, we have 

Z 

T 

i 
˜ X 

T 
i 

(
˜ X i ̃

 X 

T 
i + μI m 

)−1 
˜ X i Z i 

= Z 

T 

i H 

T 
k 

˜ X 

T 
i 

(
˜ X i ̃

 X 

T 
i + μI 

)−1 
˜ X i H k Z i 

= Z 

T 

i H k ̃
 X 

T 
i 

(
˜ X i ̃

 X 

T 
i + μI 

)−1 
˜ X i 
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2

×
(

˜ X 

T 
i 

˜ X i + μI 
)(

˜ X 

T 
i 

˜ X i + μI 
)−1 

H k Z i 

= Z 

T 

i H k ̃
 X 

T 
i 

(
˜ X i ̃

 X 

T 
i + μI 

)−1 (
˜ X i ̃

 X 

T 
i + μI 

)
× ˜ X i 

(
˜ X 

T 
i 

˜ X i + μI 
)−1 

H k Z i 

= Z 

T 

i H k ̃
 X 

T 
i 

˜ X i 

(
˜ X 

T 
i 

˜ X i + μI 
)−1 

H k Z i 

= Z 

T 

i H k 

(
˜ X 

T 
i 

˜ X i + μI − μI 
)(

˜ X 

T 
i 

˜ X i + μI 
)−1 

H k Z i 

= Z 

T 

i 

[ 
H k − μH k 

(
˜ X 

T 
i 

˜ X i + μI 
)−1 

H k 

] 
Z i (29) 

Therefore, the formula ( 28 ) can be converted to: 

( Z i ) best = arg min 

Z i 

T r 

[ 
Z 

T 

i H k Z i − Z 

T 

i 
˜ X 

T 
i 

(
˜ X i ̃

 X 

T 
i + μI 

)−1 
˜ X i Z i 

] 
= arg min 

Z i 

T r { Z 

T 

i H k Z i − Z 

T 

i 

[ 
H k − μH k 

(
˜ X 

T 
i 

˜ X i + μI 
)−1 

H k 

] 
Z i } 

= arg min 

Z i 

T r 

[ 
Z 

T 

i H k 

(
˜ X 

T 
i 

˜ X i + μI 
)−1 

H k Z i 

] 
s.t. μ > 0 (30) 

We can rewrite the formula ( 30 ) as follows: 

( Z i ) best = arg min 

Z i 

T r 
[
Z 

T 

i L i Z i 

]
(31) 

here 

 i = H k 

(
˜ X 

T 
i 

˜ X i + μI 
)−1 

H k (32) 

In order to get the global best cluster assignment matrix Z best ,

e need to globally integrate each best cluster assignment matrix

 Z i ) best of the local linear discriminative model. We can take the

ormula ( 26 ) into the formula ( 31 ) and get the following formula: 

 best = 

n ∑ 

i =1 

( Z i ) best = 

n ∑ 

i =1 

arg min 

Z i 

T r 
[
Z 

T 

i L i Z i 

]

= arg min 

Z i 

n ∑ 

i =1 

T r 
[
Z 

T 

i A i L i A 

T 

i Z i 

]

= arg min 

Z i 

T r 

[ 

Z 

T 

( 

n ∑ 

i =1 

A i L i A 

T 

i 

) 

Z 

T 

] 

(33) 

We define: 

 = 

n ∑ 

i =1 

A i L i A 

T 

i (34) 

Then, we can rewrite the formula ( 33 ) as follows: 

 best = arg min 

Z i 

T r 
[
Z 

T L Z 

T 
]

s.t. Z 

T Z = I n , Z = M 

(
M 

T M 

)−1 / 2 
(35) 

The objective function in the formula ( 35 ) is a NP hard problem

ecause of the constraint on Z = M ( M 

T M ) −1 / 2 . Following [37] , we

an firstly ignore this constraint, so the formula ( 35 ) can be con-

erted to the following formula: 

 best = arg min 

Z i 

T r 
[
Z 

T L Z 

T 
]

s.t. Z 

T Z = I n (36) 

We relax Z to the continuous-valued domain, so that eigenvalue

ecomposition method can be used to solve the objective function

s follows: 

 u i = λi u i (37) 

here λ1 ≤λ2 ≤ …… ≤λn are the eigenvalues of the matrix L and

 1 , u 2 ,…, u n are the corresponding eigenvectors. We should re-

ove the trivial solution λ = 0 and u = 1 n , and then we get the
1 1 
ptimal solution that consists of the former c eigenvalues accord-

ng to the eigenvalues as follows: 

 best = [ u 1 , u 2 , ..., u c ] (38) 

We discretize Z best using spectral rotation [34] . However, since

ny rotation matrix is orthogonal matrix and 

∼
Z best = Z best R is the

olution of the formula ( 36 ), so the solution of the objective func-

ion is not unique. Therefore, we define a mapping function to

olve the optimal binary valued cluster assignment matrix M best 

ather than the best cluster assignment matrix Z best : 

 best = f −1 ( Z best ) = Diag 
(
Z best Z best 

T 
)−1 / 2 

Z best (39) 

here Diag( Z best Z best 
T ) is a diagonal matrix that consists of the di-

gonal elements of Z best Z best 
T . According to the evidence available

n [35] : f −1 ( Z best R ) = M best R , and M best R is the optimal solution of

he formula ( 35 ). We can obtain the binary valued cluster assign-

ent matrix M and the rotation matrix R at the same time by con-

inuous iterative optimization as follows: 

arg min 

M , R 

|| M − M best R | | 2 

s.t. M 1 c = 1 n , R 

T R = I (40) 

.3. Procedure of DSNMF-LDC 

The single graph model in some existing algorithms [ 12 –17 ]

an only preserve the local manifold structure of the data space.

he self-representation matrices in DFSC can only update by them-

elves and cannot affect each other. In view of these existing

roblems, we propose a feature selection based dual-graph sparse

on-negative matrix factorization for local discriminative clustering

DSNMF-LDC) which mainly consists of the feature selection based

ual-graph sparse non-negative matrix factorization (DSNMF) and

ocal discriminative feature selection clustering. The procedure of

SNMF-LDC is shown in Table 1 . 

.4. Convergence analysis 

We analyze the convergence of our algorithm and prove the ob-

ective function in the formula ( 6 ) decreases monotonically using

he iterative updating rules ( 14 ) and ( 18 ) when giving X ∈ � 

m × n 

nd any initial non-negative matrix factors P ∈ � 

m × c and S ∈ � 

n × c . 

We firstly analyze the convergence of the formula ( 18 ). 

efinition 1. If the following conditions are satisfied: 

 

(
x, x ′ 

)
≥ N ( x ) and M ( x, x ) = N ( x ) (41) 

M ( x, x ’) is an auxiliary function for N ( x ). 

Assuming that for the ( t + 1)th generation of the updating for-

ula is as follows: 

 

t+1 = arg min 

x 
M(x, x t ) (42) 

It can clearly prove N ( x t + 1 ) ≤ M ( x t + 1 , x t ) ≤ M ( x t ,x t ) = N ( x t + 1 ). 

emma 1. 

 

(
S i j , S 

t 
i j 

)
= N i j 

(
S t i j 

)
+ N 

′ 
i j 

(
S t i j 

)(
S i j − S t i j 

)
+ 

[
S P 

T P + αD 

S S 
]

i j 

S t 
i j 

(
S i j − S t i j 

)2 
(43) 

s the auxiliary function for N ij , where N(S ) = ‖ X − P S T ‖ 2 
F 

+
T r( S T L S S ) . 

roof. . Since N 

′ 
i j 
(S ) = [ −2 X 

T P + 2 S P 

T P + 2 αL S S ] i j and N 

′′ 
i j 
(S ) =

 [ P 

T P ] i j + 2 αL S 
ii 
, we can get the Taylor expansion of N ij ( S ij ): 
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Table 1 

Procedure of DSNMF-LDC. 

Input: the dataset X = [ x 1 , x 2 , . . . , x n ] 
T ∈ � m ×n , the clustering number c , the maximum iteration number Niter , the regular parameters α, β , λ, the number of selected 

features q . 

Output: the non-negative matrix factor of the feature space P , the non-negative matrix factor of the data space S , the clustering label . 

1. Initialize matrix P , S , V . 

2. Update the matrices P and S according to the iterative updating rules ( 14 ) and ( 18 ). Update the matrix V according to the formula ( 10 ) and the matrix P of the 

moment until the convergence conditions are satisfied. 

3. Select the former q features according to the value of || P i || 2 in a descending order and obtain the matrix X f = [ x 1 , x 2 , ..., x n ] ∈ � q ×n after the feature selection. 

4. Construct the local clique of each data point. 

5. Compute L i according to the formula ( 32 ) and solve the Laplacian matrix L in the formula ( 34 ) by the global integration. 

6. Solve the eigenvectors using the eigenvalue decomposition method in ( 37 ) and get the optimal solution Z best = [ u 1 , u 2 , ..., u c ] . In addition, we should pay 

attention to remove trivial solution λ1 = 0 and u 1 = 1 n . 

7. Discretize the optimal solution Z best by the spectral rotation and then solve the optimal binary valued cluster assignment matrix M best using the formula ( 39 ). 

8. Finally, obtain the binary valued cluster assignment matrix M by continuous iterative optimization. 
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i  

i  

c  

o  

t  

N  

c  

f  

a  

o

3

 

c  

d  

p  

D  

T  
N 

(
S i j 

)
= N i j 

(
S t i j 

)
+ N 

′ 
i j 

(
S t i j 

)(
S i j − S t i j 

)
+ 

{ [
P 

T P 

]
j j 

+ αL S ii 

} (
S i j − S t i j 

)2 
(44)

Since 

⎧ ⎪ ⎨ 

⎪ ⎩ 

[ S P 

T P ] i j = 

k ∑ 

r=1 

S t 
ir 

[ P 

T P ] r j ≥ S t 
i j 

[ P 

T P ] j j 

α[ D 

S S ] i j = α
n ∑ 

r=1 

D 

S 
ir 

S t 
r j 

≥ αD 

S 
ii 
S t 

i j 
≥ α(D 

S 
ii 

− W 

S 
ii 
) S t 

i j 
= αL S 

ii 
S t 

i j

we have 
[ S P T P + αD S S ] i j 

S 
(t) 
i j 

≥ [ P 

T P ] j j + αL S 
ii 
, so that M( S i j , S 

t 
i j 
) ≥ N( S i j ) . 

According to the simultaneous Eqs. (42) and ( 43 ), we know

M( S t+1 
i j 

, S t 
i j 
) is the local minimum of ( 43 ) and S t+1 

i j 
is the corre-

sponding local minimum point: 

S t+1 
i j 

= S t i j −
S t 

i j 
N 

′ 
i j 

(
S t 

i j 

)
2 [ S P 

T P + αD 

S S ] i j 

= S t i j 

[ X 

T P + αW 

S S ] i j 

[ S P 

T P + αD 

S S ] i j 

(45)

Since ( 43 ) is the auxiliary function for N ij , so N ij decreases

monotonically using the formula ( 18 ). 

We know Lemma 2 from [15] : 

Lemma 2. For any non-zero vector a ∈ � 

m , b ∈ � 

m , 

‖ 

a ‖ 2 −
‖ 

a ‖ 

2 
2 

2 ‖ 

b ‖ 2 

≤ ‖ 

b ‖ 2 −
‖ 

b ‖ 

2 
2 

2 ‖ 

b ‖ 2 

(46)

Proof. From Lemma 2 , we have: ∥∥P 

t+1 
i 

∥∥2 

2 

2 

∥∥P 

t 
i 

∥∥
2 

−
∥∥P 

t+1 
i 

∥∥
2 

≥
∥∥P 

t 
i 

∥∥2 

2 

2 

∥∥P 

t 
i 

∥∥
2 

−
∥∥P 

t 
i 

∥∥
2 

(47)

In the i th generation, we fix V as V 

t to solve S t + 1 and P 

t + 1 . We

have: 

−2 T r 

(
X 

T P 

t+1 
(
S t+1 

)T 
)

+ T r 

(
S t+1 

(
P 

t+1 
)T 

P 

t+1 
(
S t+1 

)T 
)

+ αT r 

((
S t+1 

)T 
L S S t+1 

)
+ βT r 

((
P 

t+1 
)T 

L P P 

t+1 
)

+ θT r 

((
P 

t+1 
)T 

V 

t P 

t+1 
)

≤ −2 T r 

(
X 

T P 

t 
(
S t 

)T 
)

+ T r 

(
S t 

(
P 

t 
)T 

P 

t 
(
S t 

)T 
)

+ αT r 

((
S t 

)T 
L S S t 

)
+ βT r 

((
P 

t 
)T 

L P P 

t 
)

+ θT r 

((
P 

t 
)T 

V 

t P 

t 
)

(48)

Since ‖ P ‖ 2 , 1 = 

m ∑ 

i =1 

‖ P i ‖ 2 , we can rewrite ( 48 ) as follows: 

−2 T r 

(
X 

T P 

t+1 
(
S t+1 

)T 
)

+ T r 

(
S t+1 

(
P 

t+1 
)T 

P 

t+1 
(
S t+1 

)T 
)

+ αT r 

((
S t+1 

)T 
L S S t+1 

)
+ βT r 

((
P 

t+1 
)T 

L P P 

t+1 
)

+ θ
∥∥P 

t+1 
∥∥

2 . 1 
+ θ
m ∑ 

i =1 

( ∥∥P 

t+1 
i 

∥∥2 

2 

2 

∥∥P 

t 
i 

∥∥
2 

−
∥∥P 

t+1 
i 

∥∥
2 

) 

≤ −2 T r 

(
X 

T P 

t 
(
S t 

)T 
)

+ T r 

(
S t 

(
P 

t 
)T 

P 

t 
(
S t 

)T 
)

+ αT r 

((
S t 

)T 
L S S t 

)

+ βT r 

((
P 

t 
)T 

L P P 

t 
)
+ θ

∥∥P 

t 
∥∥

2 . 1 
+ θ

m ∑ 

i =1 

( ∥∥P 

t 
i 

∥∥2 

2 

2 

∥∥P 

t 
i 

∥∥
2 

−
∥∥P 

t 
i 

∥∥
2 

) 

(49)

Combining ( 47 ) with ( 49 ), we can get the following in

quation: 

−2 T r 

(
X 

T P 

t+1 
(
S t+1 

)T 
)

+ T r 

(
S t+1 

(
P 

t+1 
)T 

P 

t+1 
(
S t+1 

)T 
)

+ αT r 

((
S t+1 

)T 
L S S t+1 

)
+ βT r 

((
P 

t+1 
)T 

L P P 

t+1 
)

+ θ
∥∥P 

t+1 
∥∥

2 . 1 

≤ −2 T r 

(
X 

T P 

t 
(
S t 

)T 
)

+ T r 

(
S t 

(
P 

t 
)T 

P 

t 
(
S t 

)T 
)

+ αT r 

((
S t 

)T 
L S S t 

)
+ βT r 

((
P 

t 
)T 

L P P 

t 
)

+ θ
∥∥P 

t 
∥∥

2 . 1 
(50)

In summary, based on the above convergence analysis, we can

now the formula ( 6 ) decreases monotonically using the iterative

pdating rules ( 14 ) and ( 18 ). 

.5. Computational complexity analysis 

In this section, we discuss the computational complexities of

he proposed algorithm. Through the computational complexity

nalysis, we can intuitively see the computational efficiency of it.

he common method to express the computational complexity is

sing big O notation [38] . 

Different from the standard NMF algorithm, a dual-graph model

s adopted in DSNMF, which can make full use of the geometric

nformation of the data space and the feature space to further ex-

avate the potential information of the data, but the calculation

f DSNMF is relatively complex. Assuming that the objective func-

ion converges after t iterations, the overall computational cost for

MF is O ( tmnc ) [22] . Compared with NMF, the extra computational

omplexity of our algorithm is to construct the data graph and the

eature graph. The computational cost for the data graph is O ( mn 2 )

nd the computational cost for the feature graph is O ( m 

2 n ), so the

verall computational cost for DSNMF is O ( tmnc + mn 2 + m 

2 n ). 

. Experiments and analysis 

In this section, we show the clustering experiments and the

omparison of the clustering effects in different algorithms on 6

atasets. Our experiments mainly consist of two parts: the first

art is the comparative experiments and analysis in our DSNMF,

SNMF-LDC and other 9 feature selection algorithms on 6 datasets.

he second part is the comparative experiments and analysis in
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Table 2 

Test datasets. 

Dataset Dimensionality Size Class 

Umist 644 575 20 

Isolet 617 1560 26 

ORL 1024 400 40 

Sonar 60 208 2 

BC 30 569 2 

Dbworld_bodies 4702 64 2 
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Fig. 1. Clustering ACC on the dataset COIL20. 
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ur DSNMF-LDC and other 7 clustering algorithms on the dataset

OIL20 [39] . 

.1. Comparison with other feature selection algorithms 

We carry out the comparative experiments on 6 datasets in our

SNMF, DSNMF-LDC and other 9 feature selection algorithms that

re all features selected algorithms and other 7 feature selection

lgorithms mentioned in the introduction part: LapScore [12] , SPEC

13] , MCFS [14] , MRSF [15] , JELSR [16] , LSPE [17] , CSPCA [18] and

FSC [1] . 

.1.1. Datasets 

We compare the clustering results in aforementioned 10 feature

election algorithms on the following 6 datasets. The test datasets

sed are similar to those in [1] , which is shown in Table 2 . 

.1.2. Evaluation metrics 

In the experiment, we take the datasets categories as the clus-

ers. Usually, the clustering effects are represented by comparing

he clustering labels with the ground truth labels. Two evaluation

etrics are used to measure the clustering effects, that are clus-

ering accuracy (ACC) [22,38] and normalized mutual information

NMI) [22,40,41] . 

.1.3. Parameter settings 

We compare our DSNMF and DSNMF-LDC with other 9 feature

election algorithms on 6 datasets in Table 2 using clustering ACC

nd NMI. In DFSC, LSPE, LapScore, SPEC and MCFS, the neighbor

umber k is selected from {3, 5, 10, 15}, the bandwidth σ of heat

ernel weighting is selected from {1, 10 3 , 10 5 }. In DFSC, the regular

arameter α is selected from {0.01, 0.1, 0.5, 1.0, 5.0, 9.0, 13.0, 17.0},

is selected from {10, 100, 10 0 0}, λ is selected from {30 0, 80 0,

0 0 0, 40 0 0, 60 0 0, 80 0 0}. The parameter settings in DSNMF and

SNMF-LDC are similar to those in DFSC, the regular parameter α
s selected from {0.01, 0.1, 0.5, 1.0, 5.0, 9.0, 13.0, 17.0}, β and θ are

elected from {30 0, 80 0, 20 0 0, 40 0 0, 60 0 0, 80 0 0}, μ is selected

rom {10 −8 , 10 −6 , 10 −4 , 10 −2 , 10 °, 10 2 , 10 4 , 10 6 , 10 8 }. 

We adjust these parameters to maximize clustering ACC and

MI of the algorithms, so we may select different features on dif-

erent datasets. For the sake of fairness, the same clustering al-

orithm K-means is used after feature selection LapScore, SPEC,

CFS, MRSF, JELSR, LSPE, DFSC and DSNMF. We carry out the ex-

eriment 100 times, and calculate the means respectively. 

.1.4. Experimental results and analysis 

Tables 3 and 4 show clustering ACC and NMI in DSNMF,

SNMF-LDC and other 9 feature selection algorithms on 6 datasets,

ncluding the means (MEAN) and standard deviation (STD) of 100

imes tests. We bold mark the best result in each dataset. 

We can see in Table 3 that DSNMF can achieve almost all the

est results in clustering ACC except that it is inferior to JELSR and

SPE on the dataset Sonar. On all the datasets, DSNMF-LDC can

chieve the best clustering ACC, and it can reach more than 63%. 

We can see in Table 4 that DSNMF and DSNMF-LDC can achieve

lmost all the best results in clustering NMI except that they
re inferior to LSPE on the dataset Dbworld_bodies. DSNMF and

SNMF-LDC can achieve good clustering results and clustering NMI

an reach more than 67% except on the datasets Sonar and BC. 

Compared with the recently proposed DFSC, our DSNMF and

SNMF-LDC are superior to DFSC in clustering ACC and NMI on all

he datasets. Moreover, in view of STDs of clustering ACC and NMI,

hey are smaller in DSNMF-LDC than in DFSC on all the datasets, so

SNMF-LDC is relatively stable and robust. It is mainly due to the

on-negative matrix factorization in DSNMF, so that it can make

he two non-negative matrix factors of the data space and the

eature space update iteratively and interactively, which can give

ull play to the dual-graph model. In addition, the local discrimi-

ative feature selection clustering added after DSNMF can greatly

mprove the clustering effectiveness and robustness. 

.2. Comparison with other clustering algorithms 

We carry out the comparative experiments on the dataset

OIL20 in our DSNMF-LDC and other 7 clustering algorithms that

re K-means and other 6 clustering algorithms mentioned in the

ntroduction part: NMF [22,23] , DRCC [24] , CF [25] , LCCF [27] , GCF

28] and DFSC [1] . 

.2.1. Parameter settings 

In the clustering algorithms LCCF, DRCC, GCF, DFSC and DSNMF-

DC, we choose the binary (0–1) weighting to construct the neigh-

or graph and set the neighbor number k = 5. In LCCF, DRCC and

CF, we set λ= μ= 100. In DFSC, we set α = 100, λ= 10 8 , β is

elected from {10 −1 , 1, 10, 10 2 }. For a fair comparison, we set

= β = 100, θ = 10 8 in DSNMF-LDC. 

.2.2. Experimental results and analysis 

The dataset COIL20 contains 1440 images of 20 objects viewed

rom different angles and each image is scaled to 32 × 32 pixel

hich represented by a 1024-dimensional vector. We carry out the

omparative experiments on the dataset COIL20 in our DSNMF-

DC and other clustering algorithms including K-means, matrix fac-

orization clustering algorithms (NMF, CF, LCCF), co-clustering al-

orithms (DRCC, GCF) and feature selection clustering algorithm

DFSC). For each particular clustering number c , we carry out the

xperiment 20 times, and calculate the means, respectively. The

lustering ACC and NMI on COIL20 in different algorithms are

hown in Tables 5 and 6 , as well as shown in Figs. 1 and 2 . 

As we can see from Table 5 , overall the clustering ACC shows a

ownward trend in the increasing clustering number c . The cluster-

ng effects of K-means, NMF and CF are not ideal. LCCF is slightly
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Table 3 

Clustering ACC in DSNMF, DSNMF-LDC and other 9 feature selection algorithms on 6 datasets (MEAN ± STD%). 

Algorithms Umist Isolet ORL Sonar BC Dbworld_bodies 

All features 44.23 ± 1.02 50.58 ± 0.85 50.00 ± 0.43 54.32 ± 1.20 72.27 ± 0.20 73.81 ± 0.00 

LapScore 37.30 ± 0.93 48.79 ± 0.56 44.50 ± 0.73 58.80 ± 1.14 70.17 ± 0.36 73.47 ± 1.16 

SPEC 42.56 ± 1.20 49.50 ± 0.63 49.88 ± 0.23 61.00 ± 1.26 74.00 ± 0.23 77.94 ± 1.85 

MCFS 46.55 ± 1.00 54.48 ± 0.84 49.40 ± 0.93 54.20 ± 0.84 71.00 ± 0.58 91.13 ± 1.04 

MRSF 48.38 ± 1.05 50.80 ± 0.69 49.78 ± 0.69 60.33 ± 1.40 72.79 ± 0.22 85.02 ± 1.59 

JELSR 48.90 ± 1.03 55.08 ± 0.45 50.02 ± 0.56 64.20 ± 0.94 74.20 ± 0.30 90.63 ± 0.00 

LSPE 49.26 ± 1.12 56.11 ± 0.63 50.25 ± 0.80 66.25 ± 1.67 75.86 ± 0.24 93.75 ± 0.00 

CSPCA 40.00 ± 0.95 55.85 ± 1.65 51.90 ± 2.21 58.37 ± 2.53 83.69 ± 1.91 77.29 ± 1.80 

DFSC 50.12 ± 2.79 60.14 ± 3.51 51.71 ± 2.61 58.57 ± 2.31 85.41 ± 0.00 91.75 ± 1.09 

DSNMF 53.39 ± 2.71 63.56 ± 2.22 57.63 ± 1.83 63.70 ± 0.34 85.41 ± 0.00 92.97 ± 1.10 

DSNMF-LDC 79.48 ± 0.25 63.97 ± 0.06 64.25 ± 0.71 72.60 ± 0.00 88.75 ± 0.00 93.75 ± 0.00 

Table 4 

Clustering NMI in DSNMF, DSNMF-LDC and other 9 feature selection algorithms on 6 datasets (MEAN ± STD%). 

Algorithms Umist Isolet ORL Sonar BC Dbworld_bodies 

All features 60.30 ± 1.45 73.02 ± 0.92 70.36 ± 1.17 0.88 ± 0.00 17.61 ± 0.00 24.00 ± 0.00 

LapScore 56.32 ± 1.52 66.80 ± 1.20 67.80 ± 1.76 1.68 ± 0.00 16.79 ± 0.00 23.82 ± 1.01 

SPEC 57.04 ± 1.24 66.90 ± 1.49 70.26 ± 1.65 5.97 ± 0.42 18.83 ± 0.00 25.20 ± 1.62 

MCFS 69.20 ± 1.31 70.43 ± 1.93 70.98 ± 1.78 1.87 ± 2.85 17.32 ± 0.00 67.88 ± 1.62 

MRSF 66.67 ± 1.43 68.35 ± 1.67 70.50 ± 1.81 2.96 ± 1.04 17.32 ± 0.00 56.79 ± 2.39 

JELSR 70.18 ± 1.64 70.50 ± 1.34 70.20 ± 1.72 6.24 ± 0.00 18.86 ± 0.00 54.89 ± 0.00 

LSPE 70.91 ± 1.50 71.01 ± 1.85 71.04 ± 1.11 7.24 ± 0.38 18.83 ± 0.00 68.09 ± 0.00 

CSPCA 63.26 ± 1.09 71.44 ± 0.46 71.85 ± 1.22 3.39 ± 1.52 38.39 ± 1.32 23.08 ± 2.18 

DFSC 65.85 ± 1.76 73.98 ± 1.33 73.27 ± 1.25 2.22 ± 1.03 42.23 ± 0.00 58.93 ± 3.67 

DSNMF 70.02 ± 0.82 77.11 ± 0.35 75.73 ± 0.97 8.48 ± 0.00 42.23 ± 0.00 65.63 ± 3.49 

DSNMF-LDC 90.39 ± 0.57 78.03 ± 0.03 77.71 ± 0.20 15.01 ± 0.00 47.39 ± 0.00 67.09 ± 0.00 

Table 5 

Clustering ACC on the datasets COIL20. 

c 2 3 4 5 6 7 8 9 10 AVG STD 

K-means 92.71 79.35 73.19 71.67 67.78 68.34 66.13 66.23 64.60 72.22 8.93 

NMF 89.84 77.80 73.01 70.36 65.20 64.64 65.16 64.87 65.37 70.69 8.53 

DRCC 91.04 83.42 80.36 75.15 77.74 70.13 71.67 67.42 68.97 76.21 7.74 

CF 89.72 79.34 73.04 71.33 75.21 63.85 64.64 62.86 62.15 71.34 9.20 

LCCF 90.74 84.22 78.14 74.46 79.59 70.08 71.64 67.87 65.71 75.82 8.14 

GCF 92.48 85.36 82.69 79.23 82.90 73.62 75.51 70.02 68.44 78.91 7.78 

DFSC 10 0.0 0 92.01 90.10 80.27 84.84 81.94 80.44 79.19 72.32 84.56 8.26 

DSNMF-LDC 10 0.0 0 97.84 94.79 93.15 87.35 91.80 93.17 89.97 88.52 92.95 4.16 

Table 6 

Clustering NMI on the datasets COIL20. 

c 2 3 4 5 6 7 8 9 10 AVG STD 

K-means 79.64 66.11 67.56 68.95 71.51 72.17 71.32 72.39 70.57 71.13 3.85 

NMF 71.25 63.42 67.87 66.07 68.34 70.14 70.40 71.65 71.89 69.00 2.85 

DRCC 77.29 74.57 75.14 72.26 72.86 73.42 73.89 70.38 69.40 73.25 2.40 

CF 71.13 63.21 66.38 67.67 65.33 66.67 67.28 66.40 66.27 66.70 2.10 

LCCF 74.51 68.69 70.63 72.22 68.81 70.57 70.67 69.86 68.69 70.52 1.90 

GCF 80.40 76.35 77.43 78.56 74.89 75.31 76.45 72.71 70.63 75.86 2.95 

DFSC 10 0.0 0 90.97 93.97 82.77 86.09 83.28 84.91 74.17 76.43 85.84 8.17 

DSNMF-LDC 10 0.0 0 94.25 94.78 89.68 86.45 89.07 92.46 91.27 90.14 92.01 3.96 
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better than them in most of the clustering number c . DRCC and

GCF have the higher clustering ACC than aforementioned four al-

gorithms. DFSC has the higher clustering ACC than aforementioned

six algorithms. Our DSNMF-LDC is the most effective algorithm.

Comparing to the best algorithm other than our proposed DSNMF-

LDC algorithms, i.e., DFSC, DSNMF-LDC achieves 8.39 percent

improvement in accuracy. 

Similar to Table 5 of the clustering ACC, we can see from the

clustering NMI in the Table 6 , overall it shows a downward trend

in the increasing clustering number c . Comparing to the best algo-

rithm other than our proposed DSNMF-LDC algorithms, i.e., DFSC,

DSNMF-LDC achieves 6.17% improvement in normalized mutual in-

formation. The clustering effects of K-means, NMF and CF are not

ideal. LCCF is slightly better than them in most of the clustering
umber c , due to the local geometric information used in LCCF.

RCC and GCF have the higher clustering NMI than aforemen-

ioned four algorithms, because DRCC and GCF can make full use

f the local geometric structure and preserve the manifold infor-

ation in the data space and the feature space at the same time.

FSC has the higher clustering NMI than aforementioned six al-

orithms, because DFSC eliminates the redundant and irrelevant

eatures, and then selects the more discriminative and effective

eatures from the original features using feature selection. Our

SNMF-LDC is the most effective algorithm, because DSNMF-LDC

ynthesizes the advantages of the previous algorithms. DSNMF-

DC adopts the non-negative matrix factorization, so the two non-

egative matrix factors of the data space and the feature space can

pdate iteratively and interactively, which can give full play to the
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Fig. 2. Clustering NMI on the dataset COIL20. 
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Fig. 3. Clustering ACC with different α and β on BC. 

Fig. 4. Clustering NMI with different α and β on BC. 
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ual-graph model. In addition, DSNMF-LDC imposes the L 2,1 - norm

onstraint on the non-negative matrix factor P of the feature space,

hich can make full use of the sparse self-representation informa-

ion. Therefore, DSNMF-LDC can not only ensure the sparsity, but

lso select the more effective discriminative features to enhance

he robustness to noise. What’s more, the local discriminative fea-

ure selection clustering is added in DSNMF-LDC, so it is more dis-

riminative and has better clustering results than other algorithms.

In order to show the clustering effectiveness of each clustering

lgorithm more vividly, we draw Figs. 1 and 2 according to Tables

 and 6 . 

As we can vividly see in Figs. 1 and 2 , the clustering ACC and

MI show a downward trend in the increasing clustering number

 . In addition, our DSNMF-LDC can achieve better clustering results

han other clustering algorithms in all clustering number c . 

.3. Parameter sensitivity analysis 

There are some parameters in our DSNMF-LDC, such as the heat

ernel bandwidth parameter σ , the neighbor number k , the num-

er of selected features q , the sparse self-representation parameter

, the regular parameters α, β and μ. 

In the first experiment, we analyze the sensitivity of the reg-

lar parameter α and β on three representative datasets i.e., BC,

solet and Dbworld_bodies, since they are very different in the

ata dimensionality. We fix other parameters, and then set α and

selected from {10 −3 , 10 −2 , 10 −1 , 10 °, 10 1 , 10 2 , 10 3 }. For each

arameter setting, we carry out the experiment 20 times, calcu-

ate the means respectively and plot the three-dimensional map

n Figs. 3–8 . 

From Figs. 3 and 4 , we can see that the clustering results of

SNMF-LDC on BC are not sensitive to the regular parameters α, β .

CC is always equal to 88.75% and NMI is always equal to 47.39% . 

From Figs. 5 and 6 , we can see that the clustering re-

ults of DSNMF-LDC are not sensitive to the regular parame-

ers α, β . ACC = 63.97% is the maximum when α = 10 0 0, β = 0.01.

CC = 62.76% is the minimum when α = 10, β = 100. NMI = 78.03%

s the maximum when α = 0.1, β = 100. NMI = 77.58% is the mini-

um when α = 0.001, β = 0.001 . 

From Figs. 7 and 8 , we can see that the clustering results of

SNMF-LDC on BC are not sensitive to the regular parameters α, β .

CC is always equal to 93.75% and NMI is always equal to 67.09%. 

Therefore, from these sensitivity experiments, we can make a

onclusion that the clustering results of DSNMF-LDC are not sen-

itive to the regular parameters α, β , and the algorithm has the

trong robustness to these two parameters. 
In the second experiment, we analyze the sensitivity of the reg-

lar parameter μ on the same three datasets. We fix other parame-

ers, and then set μ selected from {10 −8 , 10 −6 , 10 −4 , 10 −2 , 10 °, 10 2 ,

0 4 , 10 6 , 10 8 }. For each parameter setting, we carry out the exper-

ment 20 times, calculate the means respectively and plot them in

igs. 9–11 . 

From Figs. 9 and 10 , we can see that the clustering results of

SNMF-LDC on BC and Isolet are not sensitive to the regular pa-

ameters μ, but it is different in Fig. 11 . Therefore, we can con-

lude that the clustering results of DSNMF-LDC are with different

ensitivities on the different datasets to the regular parameters μ. 

.4. Effective analysis 

We use the dataset Ionosphere like DFSC the effectiveness of

SNMF. There are 351 samples with 34 features in the original

onosphere. We artificially generate 66 features with the random

inear combination of the original 34 features to form a dataset

ith 100 features where the first 34 features are the original fea-

ures. 

We calculate the non-negative matrix factor P of the data space

n the new generated dataset in our DSNMF, which is the coeffi-

ient matrix. We calculate || P i || 2 as different colors and 100 fea-

ures as the coordinates in Fig. 12 . 
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Fig. 5. Clustering ACC with different α and β on Isolet. 

Fig. 6. Clustering NMI with different α and β on Isolet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Clustering ACC with different α and β on Dbworld_bodies. 

Fig. 8. Clustering NMI with different α and β on Dbworld_bodies. 

Table 7 

Computational time of different methods on Dbworld_bodies with different num- 

bers of selected features. 

q SPEC MCFS JELSR DSFC CSPCA DSNMF 

100 0.067 1.248 128.226 503.470 2480.869 3.978 

300 0.069 2.995 138.258 511.110 2570.522 4.021 

500 0.072 6.068 158.184 518.755 5644.162 4.194 

Table 8 

Computational time of different methods on isolet with different numbers of 

selected features. 

q SPEC MCFS JELSR DSFC CSPCA DSNMF 

10 0.202 1.843 9.700 5.809 31.408 3.499 

30 0.232 2.023 9.839 5.675 31.812 3.366 

50 0.249 2.363 10.072 5.782 32.881 3.379 

r  

D  

i  

i  

t

From Fig. 12 , we can see that the coefficients of the first 34 fea-

tures are obviously larger than the coefficients of the 66 random

generated features. The experiments strongly illustrate the effec-

tiveness of our DSNMF in the feature selection. 

3.5. Computational time analysis 

We show the computational time experiments in feature se-

lection algorithms with different computational complexities, i.e.,

SPEC [13] , MCFS [14] , JELSR [16] , CSPCA [18] , DFSC [1] and DSNMF.

With a naive MATLAB R2016a implementation, the calculations are

made on an Intel(R) Core(TM) i5-2450 M CPU @ 2.5 GHz Windows

machine with a solid state disk (SSD) of 540 MB/s reading speed

and 520 MB/s writing speed. To show the influence on the data di-

mensionality and data size, we select two representative datasets,

i.e., Dbworld_bodies and Isolet, since they have the largest data

dimensionality and the largest data size among six datasets, re-

spectively. We select q = 100, q = 300 and q = 500 features of Db-

world_bodies and q = 10, q = 30 and q = 50 features of Isolet. For

the sake of fairness, we carry out each experiment 10 times, and

calculate the means of them in Tables 7 and 8 . 

From Tables 7 and 8 , we can see that SPEC costs the least time

in all the situations. For DSNMF, from the computational complex-

ity analysis, DSNMF uses a dual-graph model and the computa-

tional cost is relatively large, but from the experimental results, the
unning time of DSNMF is less than many algorithms i.e., JELSR and

SFC, mainly because DSNMF converges faster and the number of

terations is smaller. In addition, the running time of the algorithm

s affected by many factors, such as data dimensionality, data size,

he number of selected features, etc. 
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Fig. 9. ACC and NMI with different μ on BC. 

Fig. 10. ACC and NMI with different μ on Isolet. 

Fig. 11. ACC and NMI with different μ on Dbworld_bodies. 

Fig. 12. Effective metric || P i || 2 of different features. 
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. Conclusion 

A new feature selection clustering algorithm is proposed in

his paper, namely feature selection based dual-graph sparse non-

egative matrix factorization for local discriminative clustering

DSNMF-LDC). In recent years, it is found that the data information

istributes in the nonlinear low-dimensional submanifold of the

igh-dimensional space, namely the data manifold, and the data

eature information distributes also in a low-dimensional submani-

old, namely the feature manifold. Therefore, DSNMF preserves the

anifold information in the data space and the feature space at

he same time using the dual-graph model. DSNMF not only has

he advantages of the dual-graph model in the co-clustering algo-

ithms, but also utilizes the feature selection in advance. Therefore,

t can make the two non-negative matrix factors of the data space

nd the feature space update iteratively and interactively, which

an give full play to the dual-graph model. In addition, DSNMF-LDC

mposes the sparse constraint on the non-negative matrix factor P

f the data space, namely sparse self-representation information.

e select the former q features according to the value of || P i || 2 in

 descending order which can reduce the data dimensions, be ro-

ust to the noises and have better clustering results. What’s more,

SNMF-LDC adds the local discriminative feature selection cluster-

ng into DSNMF, which can significantly improve the clustering ef-

ectiveness and robustness. 

However, from the experiments and analysis, the feature selec-

ion DSNMF cannot achieve the best results on all the datasets,

uch as the dataset Dbworld_bodies. Therefore, the future work

ill be placed on the optimization of feature selection, such as the

omposition method and the similarity evaluation and so on. 
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