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a b s t r a c t

Complex networks are widely applied in every aspect of human society, and community
detection is a research hotspot in complex networks. Many algorithms use modularity
as the objective function, which can simplify the algorithm. In this paper, a community
detection method based on modularity and an improved genetic algorithm (MIGA) is
put forward. MIGA takes the modularity Q as the objective function, which can simplify
the algorithm, and uses prior information (the number of community structures), which
makes the algorithmmore targeted and improves the stability and accuracy of community
detection. Meanwhile, MIGA takes the simulated annealing method as the local search
method, which can improve the ability of local search by adjusting the parameters.
Compared with the state-of-art algorithms, simulation results on computer-generated and
four real-world networks reflect the effectiveness of MIGA.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

With the development of computer technology, complex networks are widely applied in all walks of life. Community
detection is one of the hot topics in the study of complex networks, and the notes of different properties and different types
constitute the structure called community in the network. Communities are groups of nodes having dense intra-connections
and sparse inter-connections, which is one of the characteristics of complex network [1]. Community detection is important
for understanding network structures and analyzing network characteristics. Community structure analysis is widely used
in biology, physics, computer graphics and sociology.

In order to accurately analyze the community structure in networks, many excellent community detection methods
have been put forward. Pothen, Simon and Liou proposed the spectral bisection method, which is a method based on
hierarchical clustering to detect community structure in networks [2]. Newman and Girvan proposed the GN algorithm,
which is a kind of split method [3]. Newman put forward the modularity Q [4] and proposed a fast algorithm based on the
GN algorithm, which is a kind of condensing algorithm. Newman also proposed a spectrum algorithm based on the concept
of the modularity matrix [5]. Leicht and Newman extended the spectrum algorithm based on the modularity matrix to
the directed network [6]. Rosvall and Bergstrom proposed a community detection method based on information theory.
It is a method which takes the modularity of the network as a lossy compression of the network structure, and then the
problem of community detection is converted into a foundation problem in information theory [7]. Raghavan, Albert, and
Kumara put forward the LPA algorithm [8]. Palla, Dereny and Farkas proposed a group penetration algorithm, which is
the first algorithm that can detect overlapping communities [9]. On that basis, Kumpula, Kivea and Kaski proposed the
SCP algorithm [10] and Duch and Arenas put forward the EO algorithm [11]. Via an improved spectral method, Xie et al.
proposed the detection of community structure in a network, which proved to be successful in clustering nodes [12]. For
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huge real-world networks, Wu et al. proposed an efficient overlapping community detection method, which is better than
other algorithms both in the quality of results and in computational performance [13]. Zhang et al. proposed a fuzzy analysis
of community detection in complex networks, which can quickly produce the desired results [14]. Faqeeh et al. proposed a
community detectionmethod based on the ‘‘clumpiness’’matrix,which gives accurate results formany computer-generated
and real-world networks [15]. Pan et al. proposed a detecting community structure via node similarity, which is rather
efficient in discovering the community structure in complex networks [16].

In recent years, researchers have gradually tended to use artificial intelligence technology to improve the accuracy of
community detection. One of the fastest development methods in recent years is to optimize themodularity to find an ideal
community structure [17,18]. One of the most widely used methods is the genetic algorithm (GA).

TheGA is a famous adaptive heuristic search algorithm inspired by the evolutionary ideas of natural selection and genetics
and pioneered by Holland at the University of Michigan [19]. The GA is designed to simulate processes in natural system
necessary for evolution and to follow the principles first laid down by Charles Darwin of survival of the fittest. When a GA is
used to solve a problem, first, a population of chromosomes or individuals should be maintained where each chromosome
represents a potential solution to the problem. Second, each chromosome is evaluated to give some measure of its fitness.
And then some chromosomes undergo stochastic transformations by means of genetic operators (crossover and mutation)
to form new chromosomes called offspring, where crossover creates new chromosomes by combining parts from two
chromosomes andmutation creates new chromosomes bymaking changes in a single chromosome. Then, a new population
is formed by selecting themore fit chromosomes from the parent population and the offspring population. Further iterations
are carried out until the stopping criterion is satisfied [20].

The GA has been widely studied and applied in many fields in the engineering world. Goldberg studied GAs in search,
optimization andmachine learning [20]. Koza proposed Genetic Programming, and has published two books [21]. McKinney
proposed groundwater management models and obtained the solutions by using a GA [22]. Schwefel proposed Evolution
Strategies for Evolution and Optimum Seeking [23]. Reeves used a GA to solve flowshop sequencing [24]. Yang used a GA to
select such subsets and to achieve multicriteria optimization with the features [25]. Jones et al. used a genetic algorithm for
flexible docking [26]. Deb et al. successfully applied a GA tomultiobjective optimization problems [27]. Stoico et al. designed
a genetic algorithm for the 1D electron gas [28]. Wu et al. modeled interaction networks in genetic algorithms and analyzed
the scale-free properties of information flux networks [29]. In recent years, many researchers have proposed algorithms
[30,31] based on the GA for community detection. The existing algorithms based on the GA for community detection have
some advantages such as parallel search and some drawbacks such as slow convergence and low accuracy. Theory and
experiments have shown that a GA can find the local optimal solution and can hardly find the global optimal solution.

Gong et al. have proposed amemetic algorithm (MA) for community detection in networks based on theGA [32]. InMAs, a
meme is defined as the learning process capable of performing local refinements for an individual.MAs are nameddifferently
such as genetic local searchers and Lamarckian genetic algorithms. AnMA for community detection [32] has been proposed
to optimize themodularity density. Themodularity density includes a tunable parameter. The algorithmuses a hill-climbing
strategy for the local searchprocedure. From the optimizationpoint of view, theMAhas greatly improved thedetection effect
of the GA and has improved the accuracy rate of community detection. However, the modularity density D brings in a pa-
rameter λ [33]. Only by adjusting λ can one find relatively ideal detection results [32]. Meanwhile, the hill-climbing strategy
is a simple greed research algorithm, which selects the optimal solution as the current solution from the adjoining solution
space of the current solution each time. The algorithm will end when a local optimal solution is found. The hill-climbing
strategy can be easily realized. Its main disadvantage is low efficiency, local optimum and not always searching the global
optimum. The simulated annealing method can move around with a probability, namely the method will accept a worse
solution than the current one with a probability. The algorithmwill perhaps jump away from the local optimum and get the
global optimum after moving several times. So this paper takes the simulated annealing method as the local searchmethod.

In order to improve the precision ratio for community detection and the ability of handling community detection
problems, this paper proposes a community detection method based on the modularity and an improved genetic algorithm
(MIGA). First, the calculation of the modularity Q is fast and simple, which can well guide the performance of the results for
community detection. So MIGA takes the modularity Q as the objective function which can simplify the algorithm. Second,
MIGA uses prior information (the number of community structures) in the initialization, which makes the algorithm more
targeted and improves the stability and accuracy of community detection. On the one hand, the number of community
structures is known formost real-world networks. The algorithm can immediately use prior information. On the other hand,
for some networks whose classes are unknown, we can get the general classes of the network by using the traditional GA or
the other state-of-art algorithms. Then, we select the numbers around the number of obtained general classes. Last, because
the simulated annealing method has the advantages of good local searching ability of the network and lower computational
complexity, MIGA takes the simulated annealing method as the local search method which can improve the ability of local
search by adjusting the parameters. MIGA detects some classic networks, such as computer-generated networks, Zachary’s
karate club [34], the dolphin social network [35], American college football [3] and books about US politics [5,36]. Simulation
results show that MIGA can greatly improve the stability of the detection results and the accuracy of the final results.

The structure of this paper is as follows. Section 2 expounds the content of community detection based on themodularity
and an improved genetic algorithm. Section 3 presents the simulation experiments and results analysis. Some classic
networks are detected byMIGA, theMA, and the GA, respectively, and experimental results are analyzed. Section 4 presents
the summary.
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2. Proposed method for community detection

For the problemproposed by the first section of community detection, the algorithm for community detection is proposed
based on the modularity and an improved genetic algorithm. In the literature [32], based on the GA, the MA takes the
modularity density D as the objective function. The MA uses the hill-climbing strategy for local searching. The strategy can
enhance the ability of local search and help the algorithm find a better chromosome. However, in the MA, in order to find
a better chromosome the objective function D must adjust λ, which leads to large amount of calculation, and along with
the community is randomly detected into several classes, which leads to the difference between the detection results and
practical results; with the MA it is difficult to find the optimal solution when the hill-climbing strategy handles large-scale
problems. In order to overcome these problems, on the basis of theMA,we propose a new algorithm calledMIGA. First,MIGA
takes themodularityQ as the objective function. Second,MIGAuses prior information: the number of community structures.
Finally, our algorithm takes the simulated annealing method as the local search method. Comparing MIGA with the MA and
theGA, by analyzing,MIGA ismore targeted and has lower computational complexity in both computer-generated networks
and real-world networks. On the whole, MIGA improves the stability and accuracy of community detection.

The following sections describe the representation and initialization, modularity Q [4], the genetic operator (the
crossover operator and the mutation operator) and the local search.

2.1. Representation and initialization

In the initialization, a chromosome is encoded as an integer string. A chromosome in the population can be expressed as
follows [32]:

rm = [r1m r2m · · · r
i
m · · · r

N
m]. (1)

Here, the vector rm represents the m-th chromosome in the population and r im represents which class the i-th node
belongs to. All the nodes in the chromosome are positive integers and N indicates the number of nodes. Here, it should be
noted that nodes which belong to the same class mean that they are in the same community; otherwise, the nodes are in
different communities.

After the encoding method is determined, the algorithm performs the population initialization, in which step MIGA uses
prior information: the number of community structures based on the given classes of the network. The class labels of nodes
in each chromosome are randomly designatedwithin the scope of the given classes. Thiswillmake the community detection
more accurate and improve the performance of the algorithm.

2.2. Modularity Q

In the literature [32], the modularity density D brings in a parameter λ, and only by adjusting λ can one find relatively
ideal detection results. In order to reduce the complexity and improve the precision of community detection, themodularity
Q is taken to replace D as the objective function in this paper. The modularity Q is defined as follows [4]:

Q = 1/2M

ij


aij −

kikj
2M


δ(i, j), (2)

where M represents the total number of the edges in the network. i and j are two nodes in the network. ki and kj are the
degree of the i-th node and the degree of the j-th node. aij is the element in the i-th row and the j-th column in the adjacent
matrix. δ(i, j) represents the relationship between the i-th node and the j-th node. If node i and node j are in the same
community, δ(i, j) = 1; otherwise, δ(i, j) = 0.

2.3. Genetic operators

Genetic operators are used to alter the genetic composition of chromosomes during representation. Crossover and
mutation are two common genetic operators [20]. Following are the details of the two genetic operators.

2.3.1. Crossover operator
Crossover operates on two chromosomes at one time and creates new chromosomes by combining parts from two

chromosomes. So the offspring generated by the crossover operator combine the features of both of the chromosomes [20].
Traditionally, the process of the crossover operator generally includes three steps: (1) it selects two chromosomes, (2) takes
them together, and (3) outputs two new chromosomes. A crossover point is selected in a chromosome, and then the two
chromosomes’ elements after that selection point are exchanged. The traditional GA based algorithms include different
crossover operators such as the one-way crossover, two-way crossover, flat crossover, blend crossover, and so on. In the
proposed algorithm, the crossover operator takes the two-way crossing introduced in Ref. [32]. The two-way crossing is
based on one-way crossing over introduced in Ref. [37]. Two-way crossing can increase the diversity of chromosomes and
expand the optimal space. More details of two-way crossing are as follows.
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Table 1
Two-way crossing.

v Xa Xb Xc Xd Xa Xb v

1 ④ → 2 → ④ 4 4 2 1
2 3 6 6 ⑥ ← 3 ← ⑥ 2
③ → ④ → 6 → ④ ⑥ ← 4 ← ⑥ ← ③

4 5 4 4 5 5 4 4
5 2 6 6 ⑥ ← 2 ← ⑥ 5
6 ④ → 2 → ④ 4 4 2 6

Table 2
Mutation operation.

v X X′

1 2 2
2 1 1
3 → ② → ①

4 2 2
5 1 1
6 1 1

Fig. 1. Illustration of local search.

Two chromosomes, called respectively Xa and Xb, are randomly selected, where Xa is the source chromosome and Xb
is the target chromosome. First, a vertex vi is picked randomly in Xa. Second, which class vi belongs to is determined in
chromosome Xa. Finally, all the vertices with this class of Xa are also assigned to the same class label in chromosome Xb.
Meanwhile, we take Xb as source chromosome and Xa as target chromosome, and then try to repeat the steps described
above. The above process is called a two-way crossover operator, which is shown in Table 1 [32].

2.3.2. Mutation operator
The mutation operator is the main operator in the GA; it produces spontaneously random changes in various

chromosomes [1]. So the mutation operator can increase the diversity of the population and speed up the convergence.
The mutation operator is to make the genic values in some certain genic positions of chromosomes inverse with a certain
probability. The GA based algorithms include different crossover operators such as boundary mutation, plain mutation,
nonuniform mutation, directional mutation, Gaussian mutation, and so on [20].

In the proposed algorithm, the process of the mutation operator is as follows: a vertex is picked randomly and the class
label is assigned randomly. This mutation operation can reduce the search space and simplify the mutation process, which
is shown in Table 2. As shown in Table 2, taking a two-class network as an example, a chromosome X is selected first; then a
vertex in the chromosome is picked randomly. Take vertex 3 as an example. The class label of vertex 3 is 2 before mutating.
Then, after the mutation operation, the class label of vertex 3 becomes one of the other class labels (here the class label is
1). This can promote the diversity of chromosomes, and there is more chance to find a Q with larger value.

2.4. Local search procedure

Both the hill-climbing strategy and the simulated annealingmethod are local searchmethods. In this paper, the simulated
annealing method is used instead of the hill-climbing strategy [20]. The reasons are stated as follows.

The hill-climbing strategy can be easily realized. Its main disadvantage is low efficiency, local optimum and not always
searching the global optimum [32]. As shown in Fig. 1, assuming point 1 is the current optimal solution, the hill-climbing
strategy will stop when the local optimal solution point 2 is searched. The main reason for this is that the strategy could not
find a better solution no matter where it moved at small amplitude in point 2.

However, the simulated annealing method which comes from the solid annealing principle can move around with a
probability, namely the method will accept a worse solution than the current one with a probability. The algorithm will
perhaps jump away from the local optimum and get the global optimum after moving several times [38]. As one can see
in Fig. 1, the simulated annealing method will move to point 3 with a probability when it finds point 2 as the local optimal
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Table 3
Local search procedure.

Algorithm: Local search procedure

Step 1: Input T , k, l, chromosome g1, g2; i := 1;
Step 2: Chromosomes G1,G2← Crossover operation(g1, g2);
Step 3: Q (G1),Q (G2)← Objective function Q of G1 and G2; p = Q (G1)− Q (G2);
Step 4:
r = rand(1, 1); If p > 0 or exp(−p)/T > r , return to step 5; otherwise: i := i+ 1, return to step 2;
Step 5: i := i+ 1; Update the chromosomes, that is let g1 = G1;
Step 6: If i < l, return to step 2; otherwise, go to step 7;
Step 7: T = k∗T , If T < 0, output results; otherwise, return to step 2.

Fig. 2. The flow chart of MIGA.

solution. Maybe it arrives at point 4 after moving several times, which will jump away from point 2 of the local optimal
solution. Themethodwill finally find point 5 of the global optimumwith a probability. So we adapt the simulated annealing
method as the local search method.

The simulated annealing method comes from the solid annealing principle in metallurgy [38]. This technique involves
heating the solid, making sure that the temperature in the solid is high enough, and then controlling the cooling of the
material to increase the size of its crystals and reduce the number of defects. When the solid is heated, the atoms become
unstuck from their initial positions, which is a local minimum of the internal energy. When the temperature decreases
slowly, the atoms become ordered and will get more chances of finding configurations with lower internal energy than the
initial one. Inspired by the above process, the simulated annealing algorithm can find a better chromosome [38].

According to the idea of the combination of the GA and simulated annealingmethod [38–40], in this paper, the simulated
annealingmethod is taken as the local searchmethod after the genetic operation. This method can overcome the drawbacks
of poor local searching ability in a complicated network and help the algorithm find the real community structure. Themain
steps of simulated annealing operation are the following.: (1) Initialize some parameters including the initial temperature
T (large enough), the cycle number l in each T , the iteration number i = 1 and the constant k ranging from 0 to 1, and then
select two chromosomes g1 and g2 which have the two largest values of modularity Q . The definition and the calculation
of modularity Q are given in Section 2.2. (2) Two new chromosomes marked G1 and G2 are obtained through performing
the crossover operator with g1 and g2 and then the new chromosomes G1 and G2 are output. Meanwhile, calculate the
modularity Q of G1,G2, denoted by Q (G1) and Q (G2), and then get p = Q (G1)− Q (G2). (3) Generate a number r ∈ [0, 1]
randomly. When p > 0 or exp(−p)/T > r , output G1 and let g1 equal to G1; otherwise, i = i + 1; return to step (2). (4)
i = i+ 1; if i is less than l, return to step (2). Otherwise, perform the next step. (5) T = k∗T ; output the results when T < 0;
otherwise return to step (2). The step-by-step flow chart of the simulated annealing method is shown in Table 3.

2.5. The flow chart of MIGA

Based on the descriptions above, the step-by-step flow chart of MIGA is shown in Fig. 2.
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Fig. 3. Zachary’s karate club.

3. Simulation experiments and results analysis

3.1. Test problems

In this paper, five networks are used to evaluate the performance of the algorithms. They are a computer-generated
network and four real-world networks: Zachary’s karate club, the dolphin social network, American college football and
books about US politics.

3.1.1. Computer-generated network [41]
This network is a benchmark network put forward by Lancichinetti et al. 128 nodes are divided into four communities

and there are 32 nodes in each community. The network brings in amixing parameterµ, and by adjustingµ one can analyze
the performance of algorithm. More details are given in the literature [41].

3.1.2. Four real-world networks
(1) Zachary’s karate club [34].
Zachary’s karate club is one of most the widely used networks in community detection. The 34 members of the club

constitute the 34 nodes of the network. The relationships between members constitute the 78 edges of the network. The
network is shown in Fig. 3.

(2) Dolphin social network [35].
By the observation of dolphin behavior for seven years, Lusseau proposed the network. The connection of any two

dolphins represents that they have tighter connection. The dolphin social network consists of 62 dolphins as the nodes
and 159 connections as the edges in the network. The network can be detected as two communities, as shown in Fig. 4.

(3) American college football [18].
The networkwas proposed by Girvan andNewman. The nodes represent different football teams and the edges represent

thematches between two teams. The network consists of 115 nodes and 616 edges. The network consists of 12 communities,
which are 12 football teams. The network is shown in Fig. 5.

(4) Books about US politics [5,36].
This network consists of 105 books about US politics published in 2004, and sold by Amazon.com. Based on the

descriptions and reviews of the books posted on Amazon [38], Newman divided the network into three communities. The
network is shown in Fig. 6.

3.2. Performance measure

Normalizedmutual information (NMI) is taken as the performancemeasure. NMI reflects the similarity between the true
community structure and the detected community structure. NMI is used to estimate the performance of MIGA, the MA and
the GA. Given two parts A and B of a network, C is the confusion matrix. In C , Cij is the number of nodes of community i of
part A that are also in community j of part B [32]. NMI I(A, B) is defined as follows [42]:

I(A, B) =

−2
cA
i=1

cB
j=1

Cij log(CijN/Ci · C·j)

cA
i=1

Ci · log(Ci/N)+
cB
j=1

C·j log(C·j/N)

. (3)
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Fig. 4. Dolphin social network.

Fig. 5. American college football.

Here, cA(cB) is the number of classes in part A(B), Ci · (C·j) is the number of elements of C in row i (column j), and N is the
total number of nodes. If A = B, I(A, B) = 1; if A and B are totally different, I(A, B) = 0. The higher the value of NMI, the
more approximate to the true communities are the detected communities.
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Fig. 6. Books about US politics.

Fig. 7. NMI versus mixing parameter µ.

3.3. Simulation results and discussion

3.3.1. Computer-generated network
In the experimental part, we will analyze the performance of MIGA, the MA and the GA through adjusting the parameter

µ, as illustrated in Fig. 7.
Fig. 7 shows that the value of NMI obtained by MIGA is 1 when µ changes from 0 to 0.3, which means that the algorithm

can find the true community structure correctly. When µ equals 0.4, the value of NMI obtained by MIGA is larger than 0.8,
which indicates that the detected part is close to the true community structure. However, it is difficult for the MA to detect
the true community structure when µ is larger than 0.25. And when µ is greater than 0.15, the GA also cannot detect the
true community structure. This means that MIGA could discover smaller communities.
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Table 4
Parameter settings.

Parameter Value

The number of iterations Gmax 50
Population size Spop 450
Size of the mating pool Spool Spop/2
Tournament size Stour 2
Crossover probability Pc 0.8
Mutation probability Pm 0.2

Table 5
Parameter settings.

Parameter Value

Initial temperature T 800000
Constant k 0.99
Loop count l 10

Fig. 8. The selection process of k (from 0 to 1) in the simulated annealing operation.

Fig. 9. The selection process of T in the simulated annealing operation.

3.3.2. Real-world networks
This part gives the simulation results ofMIGA, theMA and the GA on real-world networks. From the experimental results,

the effectiveness of MIGA in community detection is analyzed. The parameters of MIGA are the same as those in Ref. [19],
which are shown in Table 4.

The settings of the basic parameters in the simulated annealing operation are shown in Table 5. In Table 5, l is the cycle
number in each T , and l has little effect on the results of community detection. Taking the dolphin social network as an
example, the selection process of the parameters k (from 0 to 1) and T are introduced, as shown in Figs. 8 and 9.

Given an initial temperature T which is large enough, first set T = 100 000 and take l = 10. Adjust k from 0 to 1, and
find the corresponding NMI, as shown in Fig. 8.

As can be seen from Fig. 8, when k approaches 0.6 or 1, the value of NMI is the maximum. So the value of k can either
approach 0.6 or approach 1. However, when k approaches 0.6, the temperature T will fall very quickly, which will lead to a
small number of iterations in the local search. Hence, set k = 0.99.
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Fig. 10. Values of NMI over the 30 runs on (a) Zachary’s karate club, (b) the dolphin social network, (c) American college football, (d) books about US
politics.

Table 6
The values of NMI at the 30-th run.

Network MIGA MA GA

Zachary’s karate club 1 0.699 0.687
Dolphin social network 0.814 0.589 0.532
American college football 0.916 0.910 0.819
Books about US politics 0.585 0.455 0.521

Set the parameters k = 0.99 and l = 10. As the local search method requires T large enough, T ranges from 5 thousand
to 1.2 million, as shown in Fig. 9. The maximum value of NMI is about 0.81 when T equals to 0.8 million. In summary, T is
set to 0.8 million.

The box plots of the values of NMI over the 30 runs on Zachary’s karate club, the dolphin social network, American college
football and books about US politics for MIGA, the MA and the GA are shown in Fig. 10.

Fig. 10(a) shows the box plot over 30 runs on Zachary’s karate club. It can be seen from the figure that the values of NMI
obtained by the algorithm MIGA are larger than 0.8; the values of NMI obtained by MIGA are greater than those by the MA
and the GA. This shows that the detected communities of MIGA are more approximate to the true communities compared
with the MA and the GA on Zachary’s karate club. Fig. 10(b) shows the box plot over 30 runs on the dolphin social network.
It can be seen from the figure that the values of the 25-th percentile, median and the 75-th percentile obtained by MIGA are
larger than those by theMA and the GA. This suggests that the detected communities of MIGA aremore approximate to true
communities than those of the MA and the GA on the dolphin social network. Fig. 10(c) shows the box plot over 30 runs on
the American college football network. It can be seen from the figure that the values of the 25-th percentile, median and the
75-th percentile obtained by MIGA are larger than those obtained by the MA. This means that the detected communities of
MIGA aremore approximate to true communities than those of theMA and the GA on the American college football network.
Fig. 10(d) shows the box plot over 30 runs on books about US politics. From this figure, it can be seen that the values of the
25-th percentile, median and the 75-th percentile obtained by MIGA are more approximate to the true communities than
those of the MA and the GA on books about US politics.

Table 6 shows the values of NMI at the 30-th run on the four real-world networks for MIGA, the MA and the GA. The total
number of detected communities at the 30-th run on the four real-world networks is shown in Table 7.

As can be seen from Tables 6 and 7, MIGA can effectively detect the community structure on Zachary’s karate club,
the dolphin social network, American college football and books about US politics. MIGA is able to detect 100% of the
community structure information on Zachary’s karate club. The number of detected communities by MIGA is equal to the
correct community structures.

Fig. 11 shows the detected results on Zachary’s karate club [23] of MIGA, the MA and the GA.
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Table 7
The total number of detected communities at the 30-th run.

Network MIGA MA GA

Zachary’s karate club 2 3 4
Dolphin social network 2 5 5
American college football 12 11 8
Books about US politics 3 7 5

Fig. 11. (a) The detected result of MIGA on Zachary’s karate club, (b) the detected result of the MA on Zachary’s karate club, (c) the detected result of the
GA on Zachary’s karate club.

Fig. 12. The values of NMI at the 30-th run on Zachary’s karate club.

It can be seen from Figs. 3 and 11 that the detected community structure of MIGA is the true community structure on
Zachary’s karate club. And the detected community structure information of the MA is different from the true one. This is
due to one of the two large communities being divided into two smaller ones. The GA put nodes in four communities, and
it cannot detect the true community structure.

Fig. 12 shows the values of NMI according to the generations ranging from 1 to 50 at the 30-th run on Zachary’s karate
club for MIGA, the MA and the GA. The value of NMI has reached 1 in the fifth generation. This can illustrate that MIGA can
detect the true community structure. However, without the number of the given classes and simulated annealing method,
the values of NMI obtained by theMA and the GA are approximately 0.7 after the fifth generation. So, for this network, MIGA
performs best.

Fig. 13 shows the detected results on the dolphin social network of MIGA, the MA and the GA. It can be seen from Figs. 4
and 13 that only the 31-th node and the 40-th node are misplaced. And the detected community structure of MIGA is close
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Fig. 13. (a) The detected result of MIGA on the dolphin social network, (b) the detected result of the MA on the dolphin social network, (c) the detected
result of the GA on the dolphin social network.

Fig. 14. The values of NMI at the 30-th run on the dolphin social network.

to the true community structure on the dolphin social network. The MA and the GA put nodes in five parts, which means
that the detected community structure is different from the true one.

Fig. 14 displays the values of NMI according to the generations ranging from 1 to 50 at the 30-th run on the dolphin social
network for MIGA, the MA and the GA.

It can be seen from Fig. 14 that the values of NMI obtained by MIGA are larger than those obtained by the MA and the GA
after the fifth generation. The value of NMI obtained by MIGA is 0.814 at the end of the generations, and the values of NMI
obtained byMA and GA are less than 0.6. This means that the detected community structure of MIGA is close to the true one
(the value of NMI is about 0.8).

Fig. 15 shows the detected results on the American college football network of MIGA, the MA and the GA. It can be seen
from Fig. 3 that the true community structure consists of 12 parts. Fig. 15(a)–(e) show the 9 parts, the 10 parts, the 11 parts,
the 12 parts and the 13 parts detected by MIGA on the American college football network, respectively. Fig. 15(f) is the
detected result of 11 parts detected by the MA on the American college football network and Fig. 15(g) gives the 7 parts
detected by the GA on the American college football network.

It can be seen from Fig. 15 that 11 parts are found by the MA. Between 9 and 13 are always found by MIGA. It can be
seen from Fig. 15(d) that 12 parts are detected by the proposed MIGA on the American college football network, which is
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Fig. 15. (a) The 9 parts detected result of MIGA on the American college football network, (b) the 10 parts detected result of MIGA on the American
college football network, (c) the 11 parts detected result of MIGA on the American college football network, (d) the 12 parts detected result of MIGA on the
American college football network, (e) the 13 parts detected result of MIGA on the American college football network, (f) the detected result of the MA on
the American college football network, (g) the detected result of the GA on the American college football network.



1228 R. Shang et al. / Physica A 392 (2013) 1215–1231

Fig. 16. The values of NMI at the 30-th run on the American college football network.

Table 8
The computation time.

Network MIGA (s) MA (s)

Computer-generated network 12.82 32.56
Zachary’s karate club 3.27 4.01
Dolphin social network 4.84 11.29
American college football 9.68 88.36
Books about US politics 7.69 37.71

same as the true community structure on the American college football network, and only a few nodes are misplaced. Seven
parts are found by the GA, which is different from the true one. For the American college football network, only MIGA can
obtain the right classes and put most of the nodes in the right places. So, the proposed MIGA has the ability to detect a large
number of communities.

More details are given in Fig. 16, which gives the values of NMI according to the generations ranging from 1 to 50 at the
30-th run on the American college football network for MIGA which are based on different prior information, the MA and
the GA.

It can be seen from Fig. 16 that the values of NMI obtained by MIGA have five different results. The results of 9 parts to
13 parts by MIGA are 0.88, 0.897, 0.904, 0.916 and 0.926, respectively. The NMI value of the MA is 0.91 at the end of the
generations. The value of NMI obtained by MIGA depends on the prior information (the number of community structures).
When the number of community structures is selected incorrectly, MIGA can only find 9, 10 or 11 parts, all of which are
different from the true community structure. The values of NMI obtained by MIGA are larger than that by the MA when
the right detected community structure is selected, such as MIGA-12 and MIGA-13. The correct prior information (the class
number of community structures) and the simulated annealing method make the proposed algorithmMIGA more targeted
and improve the stability and accuracy of community detection. SoMIGA also performswell on the American college football
network.

Fig. 17 displaces the detected results on books about US politics of MIGA, the MA and the GA. It can be seen from Figs. 4
and 17 that the results obtained by MIGA put the nodes in three parts, and only a few nodes are misplaced. The MA put
nodes in seven parts and the GA put nodes in five communities; these cannot detect the true community structure.

Fig. 18 shows the values of NMI according to the generations ranging from 1 to 50 at the 30-th run on books about US
politics for MIGA, the MA and the GA.

It can be seen from Fig. 18 that the accuracy of all three algorithms falls in community detection. The reason is that the
more complex the network, the less accurate MIGA becomes. But the value of NMI obtained by MIGA is better than those
obtained by the MA and the GA at the end of the generations, which goes to show that MIGA is able to detect more than half
of the true parts with the prior information and simulated annealing method; however, without the prior information and
simulated annealing method, the performance of the MA and GA algorithms become worse.

3.3.3. The computation time
The average computation time of MIGA and the MA over the 10 runs is shown in Table 8.
As can be seen fromTable 8,MIGAhas lower computational time in both the computer-generated network and real-world

networks.

4. Conclusion

In this paper, community detection based on the modularity and an improved genetic algorithm has been proposed. The
first step is to take modularity Q as the objective function. The second step is to use the prior information and the last step
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Fig. 17. (a) The detected result of MIGA on books about US politics, (b) the detected result of the MA on books about US politics, (c) the detected result of
the GA on books about US politics.

is to take the simulated annealing method as the local search method. Comparing MIGA with the MA and the GA, MIGA is
more targeted and has lower computational complexity in both a computer-generated network and real-world networks.
However, the performance of MIGA on the dolphin social network, the American college football network and books about
US politics still has room for improvement. Aiming at the above problem, our future work will improveMIGA’s performance
on the following two points: first, as multi-objective optimization problems can increase the search space and improve
the diversity of solutions, the single objective optimization problem will be converted into two objectives optimization
problem for community detection; second, the immune clonal operator will be used in the algorithm. The clonal operator
can find solutions with high quality and this can benefit the search for the best solutions, which would make algorithm
obtain high quality solutions and avoid falling into the local optimal solution of large-scale problems for community
detection.
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Fig. 18. The values of NMI at the 30-th run on books about US politics.
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