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Abstract In this paper, a new evolutionary algorithm,

called immune clonal coevolutionary algorithm (ICCoA)

for dynamic multiobjective optimization (DMO) is pro-

posed. On the basis of the basic principles of artificial

immune system, the proposed algorithm adopts the

immune clonal selection to solve DMO problems. In

addition, the theory of coevolution is incorporated in IC-

CoA in global operation to preserve the diversity of Pareto-

fronts. Moreover, coevolutionary competitive and cooper-

ative operation is designed to enhance the uniformity and

the diversity of the solutions. In comparison with NSGA-II,

immune clonal algorithm for DMO and direction-based

method, the simulation results obtained on 5 difficult test

problems and on related performance metrics suggest that

ICCoA can achieve better distributed solutions and be very

effective in maintaining the uniformity of Pareto-fronts.

Keywords Dynamic multiobjective optimization �
Immune clonal selection � Coevolution

1 Introduction

There are many multiobjective optimization problems

existing in the real world and changing over time, which

are called dynamic multiobjective optimization (DMO)

problem (Jin and Branke 2005; Chen and Jiao 2010). Due

to the important role of DMO problem in practical appli-

cation, the study of algorithms for DMO problems is very

necessary. Nevertheless, the designed algorithms to solve

this kind of problems often have difficulties in tracking the

optimum continuously (Farina et al. 2004; Wang et al.

2010). Although there are a lot of algorithms concentrating

on dynamic simple-objective optimization (DSO) problems

(Deb et al. 2002; Zitzler and Thiele 2005; Nusawardhana

and Zak 2004) or static multiobjective optimization prob-

lems, there is few related research and promotion for DMO

problems (Ursem et al. 2002; Shang et al. 2005; Lung and

Dumitrescu 2010; Abido 2010). Farina et al. (2004) proposed

a set of DMO test problems and the correlative solution:

direction-based method (DBM). In 2005, an immune clonal

algorithm for DMO was presented by Shang et al. (2005),

which based on immune clonal mechanism. Goh and Tan

proposed a dynamic competitive-cooperation coevolution-

ary algorithm (dCOEA) for DMO (Goh and Tan 2007),

which focused on the competitive-cooperation strategy in

co-evolution. Cámara et al. (2009) proposed some new

measures for dynamic multi-objective problems, especially,

some new measures for Pareto-fronts unknown problems.

Huang et al. (2011) developed a dynamic multi-objective

optimization algorithm, which is inspired by membrane

computing. Helbig et al. (2013) investigated the effect of

various approaches to manage boundary constraint viola-

tions on the performance of the dynamic Vector Evaluated

Particle Swarm optimization algorithm. However, the

research and promotion of DMO problems is still on the

preliminary stage. Therefore, it is necessary to propose

effective algorithms for DMO problems.

Artificial immune system (AIS) is an adaptive system

enlightened by immunology, which can simulate the

immunological functions, principles and models to solve

complex problems (de Castro and Timmis 2002a; Gong

et al. 2006). With the development in recent years, its

algorithm is mainly concentrated on clonal selection
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algorithm (de Castro and Timmis 2002b; Liu et al. 2010),

negative selection algorithm (Forrest et al. 1994) and so

forth. AIS has the potential to solve new problems as it can

provide memory, unsupervised learning, self-organization

and other evolutionary learning mechanisms. In addition,

AIS can combine the advantages of machine reasoning and

neural network (Jiao and Wang 2000).

The unawareness of the coexistence of competition and

cooperation among different populations in most available

traditional evolutionary algorithms resulted in a new kind of

evolutionary algorithm, namely Coevolutionary Algorithm.

Coevolutionary Algorithm is based on coevolution, which

emphasizes that the evolution of some species is correlated

with the one of other species. Its advantage lies in taking the

coordinative relation among populations and the relation

between population and environment into account. For this

superiority, the study of coevolutionary algorithm has

become one of the key issues of current evolutionary

computation (Jiao et al. 2006; Goh and Tan 2009).

As a consequence, from the point of view of coevolution

and inspired by the concept of immunodominance and the

theory of immune clonal selection, in this paper, we

address the DMO problems and propose a new algorithm

ICCoA for DMO, in which the relation between competi-

tion and cooperation is considered to improve the unifor-

mity and the diversity among different populations. On the

basis of immune clonal algorithm for DMO (ICADMO)

suggested by Shang et al. (2005), which is able to search

the set of Pareto-optimal solution in the dynamic envi-

ronment. ICCoA has improved the performance of the set

by adopting the U-measure approach (Leung and Wang

2003; Wang and Dang 2008) as competitive operator and

designing corresponding cooperative operator. On five test

problems proposed by Farina et al. (2004), ICCoA has been

compared with the famous genetic algorithm NSGA-II

(Deb et al. 2002), direction-based method (DBM) (Farina

et al. 2004) and ICADMO (Shang et al. 2005). The simu-

lation results, which suggest that ICCoA has better per-

formance, encourage the new algorithm to more complex

and real-world DMO problems.

In the remainder of the paper, the paper is organized as

follows. In Sect. 2, key concepts of DMO problem are

introduced. Thereafter, the framework of the new algo-

rithm ICCoA, is proposed in details in Sect. 3. Section 4

presents the test problems and the comparative results of

ICCoA and the other three algorithms. The last section

offers a brief conclusion and the future work.

2 Dynamic multiobjective optimization problem

In the real world, a number of world optimization problems

involve optimization of several conflicting objectives and

these optimization problems are called multiobjective

optimization (MO) problems (Shang et al. 2012). The

general model of an MO problem with M (M [ 1) objec-

tives is shown as follow:

min y ¼ fðxÞ ¼ ðf1ðxÞ; f2ðxÞ; � � � ; fMðxÞÞT

s:t: gðxÞ� 0; h xð Þ ¼ 0

(
ð1Þ

where f1(x), f2(x), …, and fM(x) are M objective functions

that always cannot reach the minimal values simulta-

neously. g(x) is the inequality constraint and h(x) is the

equality constraint. In order to make a clear notion of

optimality in this scenario, three definitions based on

Eq. (1) are given (Deb et al. 2002).

Definition 1 Pareto-dominance

Based on Eq. (1), given two points in the decision space

x; x� 2 X, x* is said to dominate (Pareto-optimal) another

solution x (denoted x� � x) iff it satisfies the following

conditions:

8i 2 1; � � � ;Mf g : f i x�ð Þ� f i xð Þð Þ
^ 9k 2 1; � � � ;Mf g : f k x�ð Þ\f k xð Þð Þ ð2Þ

where ‘‘^’’ stands for ‘‘and’’, that is the conditions on both

sides of the symbol ‘‘^’’ have to be satisfied. And ‘‘v’’

represents ‘‘or’’, that is any one of the two conditions on

both sides of the symbol ‘‘v’’ can be satisfied.

Definition 2 Pareto-optimal and Pareto-optimal set

A solution x� 2 X is said to be Pareto-optimal (non-

dominated) iff

:9 x 2 X : x � x� ð3Þ

The set Ps of all the Pareto-optimal solutions is called

Pareto-optimal set.

Definition 3 Pareto-optimal front

The set PF of all objective function values correspond-

ing to the solutions in PS:

PF = f f ðxÞ¼ ðf1ðxÞ; f2ðxÞ; � � � ; fMðxÞÞT jx 2 PSg ð4Þ

Based on the above definitions, a multi-objective opti-

mization problem can be seen as looking for the Pareto-

optimal solutions or approaching the Pareto-optimal front.

So the solutions found by a good algorithm should

approach the Pareto-optimal set (POS) and have a good

diversity.

However, in the real world, there exist many problems

which not only have many objectives but also change over

time in the environment, and this kind of problems are

called DMO problems (Farina et al. 2004). Without loss of

generality, in this paper, we consider the following DMO

problems:
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Definition 4 DMO minimization problem for M

objectives:

min f ¼ ff1ððx; tÞ; f2ððx; tÞ � � � ; fMðx; tÞg

s:t: gðx; tÞ� 0; hðx; tÞ ¼ 0

(
ð5Þ

where x = (x1, x2,…, xm)[Rm denotes the decision variable

vector, t[[t0, ts] is the time variable, g(x,t) and h(x,t) is the

constraint condition, X(t) = {x|g(x,t) B 0 and h(x,t) = 0}

stands for the feasible set at time t.

For a DMO problem, as the time progresses on, we want

to find the Pareto-optimal solutions x� 2 XðtÞ for some

time step t. That is, At some moment t, let x* [ X(t), if there

is no x [ X(t) such that fi(x,t) B fi(x
*,t) for every i[{1,2,…,

M}, and fk(x,t) \ fk(x
*,t) for some k[{1,2,…,M}, then x* is

defined as the Pareto-optimal solution or nondominated

solution in X(t). In addition, POS is the set of optimal

solutions in X(t). Pareto optimal front POF = {f(x)|x[
POS} is the mapping of POS in the objective space.

Therefore, in a traditional MO problem, the solutions just a

set of Pareto-optimal solutions that approximate the Pareto-

front; however in DMO problem, the objective functions

are related with time t, so the solutions are adjusted with

the real time t. Therefore, there are generally four possible

ways for a DMO problem to change with time (Farina et al.

2004):

Type 1 The POS changes, while the POF does not

change.

Type 2 The POF changes, while the POS does not

change.

Type 3 Both the POS and the POF change with time.

Type 4 Although the problem changes dynamically,

neither the POS nor the POF changes.

In a dynamic system or for a dynamic problem, when

the time changes, there are may be more types of above

four types can occur simultaneously, which is a more

complex situation. In this paper, we concentrate on the test

problems of type 1, type 2 and type 3. Type 4 means that in

the system it does not make any change in the POS or POF

(Farina et al. 2004), which can be solved by static multi-

objective optimization methods.

3 Immune clonal co-evolutionary algorithm for DMO

3.1 Immune clonal operation

3.1.1 Basic principles

In immune system, antigen is the substance which can

induce the organism to have immune response and spe-

cifically react with corresponding antibody (Coello Coello

and Cortes 2002; de Castro et al. 2010; Woolley and

Milanović 2011). In AIS, which imitates the function of

natural immune systems, the antigen denotes the problem

and its constraints (de Castro and Timmis 2002b), while

the antibody is the candidate solution to the problem. In

this system, an antigen is any substance that causes the

immune system to produce antibodies against it, and

when an antigen is detected, those antibodies that best

recognize an antigen will proliferate by cloning (Gong

et al. 2008; Shang et al. 2012;Yang et al. 2009). In this

paper, the antibody population is defined as P = {x1,

x2,…, xn}.

3.1.2 Immune clonal operators

Clonal operation is to proliferate the nondominated solu-

tions, while clonal selection operation is to choose the

more optimized offspring to form a new population (Shang

et al. 2012). With the concept of Pareto-optimum, ICAD-

MO (Shang et al. 2005) divides the antigen into dominated

solutions and nondominated solutions and also enlarges the

nondominated solutions with the immune clonal operators.

This procedure realizes the enlargement of the search space

and the competition among antibodies. Furthermore, this

operation makes the various mutation and reconfiguration

policy of some antigen possible and also maintains the

diversity of the population.

The specific clonal proliferation operation is as follows:

P
0 ¼ RP

Cfx1; x2; � � � ; xng
¼ RP

Cðx1Þ [ RP
Cðx2Þ [ � � � [ RP

CðxnÞ
¼ fx1

1; x
2
1; � � � ; x

q1

1 g [ fx1
2; x

2
2; � � � ; x

q1

2 g [ � � � [ fx1
n; x

2
n; � � � ; xq1

n g
¼ fx1

1; x
2
1; � � � ; x

q1

1 ; x
1
2; x

2
2; � � � ; x

q1

2 ; � � � ; x1
n; x

2
n; � � � ; xq1

n g
¼ fx01; x

0

2; � � � ; x
0

q1�ng

ð6Þ

Rc
p denotes the clonal proliferation operator. With this

operation, we can enlarge the size of the population in

global operation and attain better optimal ability. q1 is the

clonal proportion, which means the antibody is stimulated

by the antigen and can realize the biological multiplication.

In ICCoA, q1 = 5.

The clonal selection operation is as follows:

P
00 ¼ RS

CðP
0 Þ

¼ RS
Cðfx

0

1; x
0

2; � � � ; x
0

q�
1
ngÞ

¼ fx01; x
0

2; � � � ; x
0

ng

ð7Þ

where Rc
S denotes the clonal selection operator.

In ICCoA, the antibodies such as x
0
1; x

0
2; � � � ; x

0
q1�n in an

antibody population P
0
are divided into dominated ones and

nondominated ones. For any antibody x
0
i 2 P

0
; i 2 1; 2;f
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� � � ; q1 � ng, x
0
i is called a non-dominated antibody in the

current iteration iff:

:9x0j 6¼ x
0

i 2 P
0
; j 6¼ i; j 2 1; 2; � � � ; q1 � nf g : x

0

j � x
0

i ð8Þ

Otherwise, x
0
i is called a dominated antibody.

Based on Eq. (8), the antibodies in P
0
are divided into two

parts: non-dominated antibodies population P
0

non with Nnon

antibodies and dominated antibodies population P
0

domwith

Ndom antibodies. Where Nnon ? Ndom = q1 * n. If Nnon [ n,

then select n antibodies from P
0

non according to the APU

strategy proposed by Shang et al. (2012). If Nnon \ n, then

select n - Nnon antibodies in P
0

non randomly to compose a

population denoted by P
0

n�Nnon
and P

00 ¼ P
0

non [ P
0

n�Nnon
,

where P
00

is consisted with P
0

non(with Nnon antibodies) and

P
0

n�Nnon
(with n - Nnon antibodies selected randomly from

P
0

non). Therefore, P
00
contains n (n = Nnon ? n - Nnon)

antibodies. With this operation, we can select the nondomi-

nated solutions as the next generation, which can preserve

the performance of the population.

3.2 Coevolutionary operation

3.2.1 Basic principles

Coevolution emphasizes the interactions among different

populations, which means that different individuals and

different species are all mutually benefitted and mutually

restricted, so we should not consider a single population.

With the consideration of this situation, coevolution exists

on the basis of the interdependent, mutual restrictive and

mutual coordinated relationship of various populations

(Jiao et al. 2006).

To avoid loss of diversity for only considering single

population, ICCoA makes use of the competitive and

cooperative relationship of multiple populations. Moreover,

ICCoA uses the difference value of U-measure, which can

measure the uniformity and spread for the optimal solu-

tions, for populations as criterion to improve the uniformity,

realize the co-existence of competition and cooperation and

preserve the diversity (Leung and Wang 2003; Wang and

Dang 2008).

3.2.2 Pareto neighborhood crossover operator

In the procedure of the algorithm, there may be better

solution near the local POS. In order to avoid loss of the

better solution, we use Pareto neighborhood crossover

operator in Jiao et al. (2006) to implement local search

operation on local Pareto-optimal solutions. The specific

operator is presented in Algorithm 1.

This operation generates a new antibody (y1, y2,…, ym),

which replaces the antibody xi = (xi1, xi2,.., xim) in the

current population P. This operator implements the

exploitation of the Pareto neighborhood for better solutions

and finds diversity solutions. Therefore, it can avoid loss of

the diversity.

3.2.3 Co-evolutionary competitive and cooperative

operation

In this paper, we use the U-measure proposed by Leung

and Wang (2003) as criterion, which stands for the uni-

formity and the spread of the Pareto optimal solution dis-

tribution of the population in the objective space. The less

the U-measure value is, the more uniform and broader the

distribution will be.

For a two objective problem, U-measure is stated as

follows:

dmean ¼
1

N þ 1

XN

i¼0

di;iþ1 ð9Þ
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Um ¼ dstd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼0

ðdi;iþ1 � dmeanÞ2
vuut ð10Þ

where di,i?1 is the distance of every pair of adjacent points

and dmean is the mean distance.

For an M objective problem, U-measure is stated as

follows:

dmean ¼
1

2MN

X
g2T

XM

r¼1

ðd2r�1 � d2rÞ ð11Þ

Um ¼ dstd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2MN � 1

X
g2T

X2M

r¼1

ðdr � dmeanÞ2
vuut ð12Þ

where dmean is the mean distance, T is a set of Pareto

solutions in the objective space, each point g[T, r [[1, M].

Um can measure the uniformity and spread for the points in

T. For a more detailed description, the interested reader is

referred to Wang and Dang (2008).

In ICCoA, when the absolute value of the differential

between the U-measure value for two populations is greater

than a threshold value h, the difference of the uniformity

for the populations is very large. Thus, we adopt the

competitive operation. Otherwise, it means that there is no

obvious difference between the populations and the coop-

erative operation will be implemented. The U-measure

value of P1 and P2 is Um1 and Um2 respectively. The spe-

cific operation is shown in Algorithm 2.

As shown in Algorithm 2, when the differential between

the U-measure value for two populations is greater than a

threshold value h, the algorithm implements coevolution-

ary competitive operation and the new population P3 is

determined by the parent with less U-measure value. For-

asmuch as the new population has better uniformity and
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spread, the quality of the solutions in the objective space is

improved. When the differential is less than h, the algo-

rithm will choose coevolutionary cooperative operation.

Under this circumstance, the new population P3 = {y1,

y2,…, yk} with a size of Nondom is chosen from half of the

offspring P1a: yi
1 = ri

2 ? U(-1, 1). (ri
2 - xi

1) (i = 1, 2,…,

k) and half of offspring P2b: yi
2 = ri

1 ? U(-1, 1). (ri
1 - xi

2)

(i = 1, 2,…, k). As P1 and P2 are evolved absolutely

independently, they can search in different areas in the

objective space respectively. Therefore, with the coopera-

tive operation the populations will exchange their infor-

mation to expend the search area of the algorithm. Hence,

making the most of the difference between different pop-

ulations can improve the uniformity.

3.3 Uniformity maintenance operation

One of the most important performance metrics is the

uniformity of the solutions in the objective space, there-

fore, in the DMO problems, we should make the distribu-

tion as uniform as possible. While according to Formula (7)

and Formula (8), the nondominated solutions will be

selected as the next generation, which will be denoted as

the nondominated antibodies. The number of the non-

dominated antibodies may be larger and larger after the

clonal proliferation operation and the speed of the algo-

rithm will be seriously influenced in the iterative process.

In order to avoid this possibility, we implement the

uniformity maintainance operator in Shang et al. (2012),

namely antibody population updating (APU) strategy,

which can maintain the uniformity of the population and

guarantee the algorithm’s convergent speed by deleting the

solution in the crowded space. The most crowded anti-

bodies in the POF will be deleted if the number of the

selected nondominated antibodies is larger than a given

number that we set before the iteration.

3.4 The proposed algorithm

Based on the algorithms above, the ICCoA for DMO can

be presented in Algorithm 3, which is designed to improve

both the uniformity and the diversity of the solutions in the

objective space. ICCoA is different from ICADMO, as the

new algorithm adopts the multi population strategy in

coevolutionary algorithm and designing corresponding

coevolutionary competitive cooperator and coevolutionary

cooperative cooperator.

It can be seen from Algorithm 3, for every time step T,

there will be gmax iterations for the Pareto-optimal solutions

until T C Tmax.
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3.5 Performance metrics of ICCoA

A DMO problem can be seen as many standard multiob-

jective optimization problems, one at every moment.

Generally, the multiobjective optimization problem is

evaluated by the uniformity metric and the diversity metric.

Therefore, we choose two metrics to test the performance

of ICCoA.

3.5.1 Uniformity test: space metric (spacing, S (Van

Veldhuizen and Lamont 2000))

The space metric measures the uniformity of Pareto solu-

tion distribution and determines how distributed the solu-

tions in Pareto-front are. The smaller the metric is, the

more uniform the distribution will be. Formally:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n� 1

Xn

i¼1

ð�d � diÞ2
s

=�d ð13Þ

where di = minj(|f1
i (x) - f1

j (x)| ? |f2
i (x) - f2

j (-

x)| ? …? |fM
i (x) - fM

j (x)|), i = j, j = 1,…, n, �d denotes

the mean value of di and n is the number of the antibodies

on Pareto-front.

3.5.2 Diversity test: most spread metric (MS (Goh and Tan

2007))

Most spread metric measures the coverage degree of Pa-

reto-front (PFknown) and the real Pareto-front (PFtrue). The

higher the metric is, the larger the coverage area will be,

which means the diversity of the solutions in the objective

space will be better. Formally:

MS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM

i¼1

min PFtrue

� �
i
; PFknown

� �
i

� �
�max PFtrue

� �
i
; PFknown

� �
i

� �
PFtrue

� �
i
� PFtrue

� �
i

vuut
ð14Þ

where PFknown

� �
i

and (PFknown)i is the maximum and the

minimum of the i-th objective function on PFknown

respectively. Similarly, PFtrue

� �
i

and (PFtrue)i is the max-

imum and the minimum of the i-th objective function on

PFtrue respectively.

4 Discussion of experimental results

4.1 Test problems

ICCoA borrows five test problems from Farina et al.

(2004). The DMO Problems are stated as follows:

4.1.1 FDA1

The FDA1 are defined by Eq. (15):

min F1ðxIÞ ¼ x1

min F2ðxI; xIIÞ ¼ gðxIIÞ � hðF1; gÞ
where; gðxIIÞ ¼ 1þ

X
xi2xII

ðxi � G(t))2

hðF1; g) ¼ 1�
ffiffiffiffiffi
F1

g

r
; GðtÞ ¼ sinð0:5ptÞ; t ¼ 1

ns

s
sT

� �

8>>>>>>>><
>>>>>>>>:

ð15Þ

where xI ¼ ðx1Þ 2 ½0;1�;xII ¼ ðx2; � � � ;xnÞ 2 ½�1;1�;n¼ 20;

sT ¼ 5;nt ¼ 10:

In FDA1, POS at time t is xi = G(t) (i = 2,3, …,n).

G(t) changes with time t, and hence POS will change with

time t as well. Figure 1 gives the POS(t) and POF(t) for

FDA1 at different time steps.

Figure 1a gives the POS(t) for FDA1, where variations

on only the first and the second decision variables are

shown for ten time steps when t1 = 0, t2 = 0.1, t3 = 0.2,

t4 = 0.3, t5 = 0.4, t6 = 0.5, t7 = 0.6, t8 = 0.7, t9 = 0.8,

and t10 = 0.9. However, in FDA1, the resulting POF does

Fig. 1 POS(t) and POF(t) for

FDA1 at different time steps
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Fig. 2 Influence of the performance for ICCoA with different values of q1

Fig. 3 Experimental results of FDA1
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not change and In any time, POF(t) is always

F2 ¼ 1�
ffiffiffiffiffi
F1

p
. Figure 1b gives the POF(t) for FDA1 and it

remains the same.

4.1.2 FDA2

min FðxIÞ ¼ x1

min FðxI; xIIÞ ¼ gðxIIÞ:hðxIII;F1; gÞ
where; gðxIIÞ ¼ 1þ

X
xi2xII

x2
i hðxIII;F1; gÞ

¼ 1� F1

g

	 
ðHðtÞþP
xi2xII

ðxi�HðtÞÞ2Þ

HðtÞ ¼ 0:75þ 0:7 sinð0:5ptÞ;

GðtÞ ¼ sinð0:5ptÞ; t ¼ 1

ns

s
sT

� �

:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð16Þ

where, xI ¼ ðx1Þ 2 ½0; 1�; xII; xIII 2 ½�1; 1�; jxIIj ¼ jxIIIj ¼
15; n ¼ 31; sT ¼ 5; nt ¼ 10.

For FDA2, POF swings from a convex shape to a non-

convex shape with the change of H(t), while the corre-

sponding POS in the variable space remains unchanged. In

any time, POF is F2 ¼ 1� F
HðtÞþ15� 1þH tð Þð Þ2
1 .

4.1.3 FDA3

In FDA3, both POS and POF change with time, and the

density of the solutions on POF varies with time. In any

time, POF is F2 ¼ ð1þ GðtÞÞ � ð1�
ffiffiffiffiffi
F1

p
Þ.

min F1ðxIÞ ¼
X
xi2xI

x
FðtÞ
i

min F2ðxI; xIIÞ ¼ gðxIIÞ � hðF1; gÞ
where; gðxIIÞ ¼ 1þ GðxÞ þ

X
xi2xII

ðxi � GðtÞÞ2

hðF1; gÞ ¼ 1�
ffiffiffiffiffi
F1

g

s
;GðtÞ ¼ sinð0:5ptÞ;

FðtÞ ¼ 102 sinð0:5ptÞ; t ¼ 1

ns

s
sT

� �

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð17Þ

where, xI 2 0; 1½ �; xII 2 �1; 1½ �; n ¼ 31; sT ¼ 5; nt ¼ 10;

xIj j ¼ 5; xIIj j ¼ 25.

4.1.4 FDA4

In this problem, POF is three-dimensional. POS changes

with time, while POF maintains unchanged. In any time,

POF is
PM

i¼1 F�i
� �

¼ 1 þ GðtÞ.

min
x

F1ðxÞ ¼ 1þ g xIIð Þð Þ
YM�1

i¼1

cos
xip
2

� �
min

x
F2ðxÞ

¼ ð1þ gðxIIÞÞ
YM�2

i¼1

cos
xip
2

� � !
sinðxM�1p

2
Þmin

x
FMðxÞ

¼ ð1þ gðxIIÞÞ sin
x1p
2

� �
where; gðxIIÞ

¼
X
xi2xII

ðxi � GðtÞÞ2; k ¼ 2 : M � 1

GðtÞ ¼ j sinð0:5ptÞj; t ¼ 1

ns

s
sT

� �

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:
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(a) Box plots on the measure S

(b) Box plots on the measure MS
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Fig. 4 Box plots on the measure S and MS at ten time steps for FDA1
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where xII ¼ ðxM; � � � ; xnÞ; xi 2 ½0; 1�ði ¼ 1 : nÞ; n ¼ 12;

sT ¼ 5; nt ¼ 10; jxIIj ¼ 10.

4.1.5 FDA5

For FDA5, POF is three-dimensional. Both POS and POF

change with time, and the density of the solutions on POF

varies with time. In any time, POF is
PM

i¼1 F
�
i

	 
2

¼

1þ GðtÞ.

min
x

F1ðxÞ ¼ ð1þ gðxIIÞÞ
YM�1

i¼1

cos
yip
2

� �
min

x
F2ðxÞ

¼ ð1þ gðxIIÞÞ
YM�2

i¼1

cos
yip
2

� � !
sin

y1p
2

� �
� � � � � �min

x
FMðxÞ

¼ ð1þ gðxIIÞÞ sin
y1p
2

� �
where; gðxIIÞ ¼ GðtÞ þ

X
xi2xII

ðxi � GðtÞÞ2;

GðtÞ ¼ j sinð0:5ptÞj; FðtÞ ¼ 1þ 100 sin4ð0:5ptÞ

yi ¼ x
FðtÞ
i ; for i ¼ 1 : M � 1; t ¼ 1

ns

s
sT

� �

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð19Þ

where xII ¼ ðxM; � � � ; xnÞ; xi 2 ½0; 1�ði ¼ 1 : nÞ; n ¼ 12;

sT ¼ 5; nt ¼ 10; jxIIj ¼ 10.

4.2 Parameter settings

On all test problems, the parameters of ICCoA are as fol-

lows: the size of antibody population N, the iteration

number gmax, the size of nondominated antibody popula-

tion Nnon, the expected number of nondominated antibody

population N1 and the proportion of cloning q1. In every

test DMO problem, we give a fix maximum runtime T. The

influence of N, gmax, and N1 to the performance of the

algorithm is very clear, and if we don’t take the complexity

of the algorithm into consideration, the greater the values

of these parameters are, the better the results of the algo-

rithm will be. In general, the larger the N is, the greater the

value of Nnon will be. Taking the effectiveness and the

complexity of the proposed algorithm, we set N = 300, at

the first time step, gmax = 150 and at other time steps,

gmax = 100. The size of nondominated antibody population

Nnon: the value is related to the test problem and the size of

antibody population. The expected number of nondomi-

nated antibody population N1: the value is related to the test

problem. The influences of the parameters q1 and pm to the

algorithm’s performance are more complex. In ICCoA, Let

the Inconsistent mutation probability: pm = 1/n (n is the

dimension of the decision variable vector space).

The influence of the clonal proportion q1 to the algo-

rithm is quite complex. To illustrate the effect of q1 with

different values, we take FDA4 as an example by empirical

analysis.

Set N = 300, stop iteration number gmax = 100 and

inconsistent mutation probability pm = 1/n. The clonal

proportion q1 is equal-length sampled from 0.5 to 5 with an

interval of 0.5. With running independently for 20 times,

the maximum value, the minimum value, the mean value

and the variance of the performance metrics are shown in

Fig. 2.

It can be seen from Fig. 2a that the change of metric S is

very clear with the variation of q1. The result indicates that

the spread of the solutions on Pareto-fronts is more and

more uniform with the enlargement of q1.

Figure 2b shows the change of metric MS with different

value of q1. It is indicated that the change is not quite

obvious, which means that with the amplification of q1, the

spread of solutions is more and more extensive but with

little change.

Table 1 The t-test results of ICCoA with the compared algorithm on S and MS for FDA1 at ten time steps over 30 independent runs

Time

steps

NSGA-II(S) ICADMO(S) DBM NSGA-II(MS) ICADMO(MS) DBM(MS)

p h p h p h p h p h p h

t1 1.5982e-023 1 4.3230e-022 1 2.9506e-010 1 4.5098e-008 1 2.1198e-010 1 1.0880e-007 1

t2 9.5159e-023 1 7.5250e-023 1 0.0167 1 5.8244e-006 1 7.6999e-014 1 1.3667e-004 1

t3 2.2250e-030 1 5.1674e-030 1 1.1197e-008 1 1.9739e-009 1 2.1278e-009 1 1.6656e-004 1

t4 1.5818e-026 1 6.1446e-025 1 9.9005e-008 1 1.4330e-013 1 3.1998e-013 1 0.0480 1

t5 8.4783e-022 1 1.2068e-020 1 3.3391e-006 1 3.2695e-012 1 2.5556e-018 1 2.2760e-008 1

t6 1.2477e-015 1 2.9130e-018 1 0.5305 0 1.6306e-009 1 4.8897e-011 1 4.8474e-008 1

t7 7.3299e-023 1 9.9778e-021 1 4.5930e-006 1 4.6614e-008 1 2.4251e-011 1 2.8840e-006 1

t8 1.9463e-027 1 1.7157e-029 1 2.6488e-006 1 5.1846e-018 1 9.4233e-017 1 2.7733e-010 1

t9 1.7437e-024 1 4.8559e-023 1 4.2423e-009 1 2.8887e-009 1 1.4121e-011 1 5.9719e-009 1

t10 2.4410e-023 1 1.9374e-025 1 1.7258e-007 1 3.2005e-008 1 9.3734e-012 1 5.2933e-017 1
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As a result of the factors above, the clonal proportion q1

of the algorithm is set as 5 in this paper.

4.3 Experimental results and comparisons

In this section, the simulation results of NSGA-II, DBM,

ICADMO and ICCoA on five test problems are given. In

all the problems, the POF of NSGA-II, ICADMO and

ICCoA are represented as ‘*’, while the POF of DBM is

represented as ‘o’, which are borrowed from the original

reference (Farina et al. 2004).

Moreover, we will compare following performance of

ICCoA and ICADMO:

(1) The uniformity of Pareto solution distribution;

(2) The diversity of Pareto solutions.

where (1) indicates the uniformity of the algorithms, and

(2) illustrates the diversity of POF. The uniformity and

diversity are both the important metrics to measure a multi-

objective optimization algorithm. In this paper, the simu-

lation box plots (Chambers et al. 1983) on the measure S

and MS on 30 independent runs for ICCoA and ICADMO

are given.

4.3.1 FDA1

POF of FDA1 is convex. The POFs of NSGA-II, DBM,

ICADMO and ICCoA are illustrated in Fig. 3.

Figure 3 shows the obtained solutions of four algorithms

at ten steps when t1 = 0, t2 = 0.1, t3 = 0.2, t4 = 0.3,

t5 = 0.4, t6 = 0.5, t7 = 0.6, t8 = 0.7, t9 = 0.8, and

t10 = 0.9 from the lower-left to the upper-right respec-

tively. Figure 3a shows that NSGA-II cannot maintain a

good uniformity and diversity of solutions on the Pareto-

optimal front. Figure 3b indicates that when F2 is

approaching 1, DBM fails to find the POF, thus, it has

difficulty in preserving diversity. Figure 3c shows that the

POF of ICADMO has better diversity than DBM, but it is

not uniform. However, the results depicted in Fig. 3d prove

that ICCoA does better than DBM and ICADMO at each

time step. It reaches a better distribution in the objective

space and it is able to maintain uniformity. Therefore,

ICCoA is the best to keep the diversity and uniformity of

the solutions in the objective space for FDA1.

The box plots on the measure S and MS on FDA1 for

four algorithms are illustrated in Fig. 4.

As the box plots in Fig. 4a show, the upper quartile, the

median and the lower quartile of the S values for ICCoA

are all smaller than the corresponding values of the com-

pared algorithms, which indicates that for FDA1, ICCoA is

able to preserve the uniformity of the solutions. Figure 4b

shows the box plots on the measure MS for FDA1.

Although the results on FDA1 of ICCoA are similar with

DBM and ICADMO at ten time steps, the median and the

lower quartile of the MS values for ICCoA are all greater

than the corresponding values of the other three algorithms.

Thus, we can figure that ICCoA improves the diversity of

FDA1.

For a thorough comparison the t test (Sun et al. 2011)

and the Wilcoxon signed rank test (Gibbons 1985) have

also been carried out. For the t-test, function ‘‘[h, p] = t-

test(x, y)’’ in matlab statistic toolbox is used, which per-

forms a paired t-test of the hypothesis that two matched (or

paired) samples in the vectors x and y come from distri-

butions with equal means’’ (Gibbons 1985). If there is a

significant difference, h = 1; otherwise, h = 0. And p is

the p-value, which shows the significance level. For the

Wilcoxon signed rank test, h is the result of the test, and

p is the probability of a hypothesis of equal median for two

paired samples. If the median of the difference between

Table 2 The Wilcoxon signed rank test results of ICCoA with the compared algorithm on S and MS for FDA1 at ten time steps over 30

independent runs

Time

steps

NSGA-II(S) ICADMO(S) DBM NSGA-II(MS) ICADMO(MS) DBM(MS)

p h p h p h p h p h p h

t1 1.7344e-006 1 1.7344e-006 1 2.3534e-006 1 1.0246e-005 1 2.3534e-006 1 1.2381e-005 1

t2 1.7344e-006 1 1.7344e-006 1 0.0218 1 1.0570e-004 1 1.7344e-006 1 3.3173e-004 1

t3 1.7344e-006 1 1.7344e-006 1 4.7292e-006 1 2.1266e-006 1 5.7517e-006 1 4.1955e-004 1

t4 1.7344e-006 1 1.7344e-006 1 6.3391e-006 1 1.7344e-006 1 1.7344e-006 1 0.0598 0

t5 1.7344e-006 1 1.7344e-006 1 3.7243e-005 1 1.7344e-006 1 1.7344e-006 1 8.4661e-006 1

t6 1.7344e-006 1 1.7344e-006 1 0.5999 0 2.8786e-006 1 2.6033e-006 1 4.2857e-006 1

t7 1.7344e-006 1 1.7344e-006 1 5.3070e-005 1 6.9838e-006 1 1.9209e-006 1 5.3070e-005 1

t8 1.7344e-006 1 1.7344e-006 1 5.3070e-005 1 1.7344e-006 1 1.7344e-006 1 1.9209e-006 1

t9 1.7344e-006 1 1.7344e-006 1 6.3391e-006 1 2.3534e-006 1 1.7344e-006 1 3.1817e-006 1

t10 1.7344e-006 1 1.7344e-006 1 3.5152e-006 1 5.2165e-006 1 2.1266e-006 1 1.7344e-006 1
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ICCoA and another compared algorithm is zero, h = 0;

Otherwise, there is a significant difference, then h = 1

(Gibbons 1985).

Table 1 shows the t-test results of ICCoA with the

compared algorithm on S and MS for FDA1 at ten time

steps over 30 independent runs.

It can be seen from Table 1 that, for test problem FDA1,

at most of the time steps, for the metric S, the differences

between ICCoA and the compared algorithms are signifi-

cant, except for compared with algorithm DBM at time

step t6, which means the solutions obtained by ICCoA have

a significant improvement on the uniform distribution at

most of the time steps. At all the time steps, for the metric

MS, the differences between ICCoA and the compared

algorithms are significant, which indicates the solutions

obtained by ICCoA can obtain a significant improvement

in covering the large area in the Pareto-front and in

maintaining the best diversity.

Table 2 gives the Wilcoxon signed rank test results of

ICCoA with the compared algorithm on S and MS for

FDA1 at ten time steps over 30 independent runs.

As for the Wilcoxon signed rank test, it can be seen from

Table 2 that, for test problem FDA1, at most of the time steps,

for the metric S, ICCoA gets significant differences compared

with the other three algorithms, except for compared with

algorithm DBM at time step t6. For the metric S, ICCoA gets

significant differences compared with the other three algo-

rithms, except for compared with algorithm DBM at time step

t4. The Wilcoxon signed rank test results indicate that, at most

of the time steps, ICCoA constitutes a significant improve-

ment on both uniformity and diversity of POF for FDA1.

4.3.2 FDA2

POF of FDA2 swings from a convex shape to a non-convex

shape. The POFs at six time steps when t1 = 3.4, t2 = 3.7,

Fig. 5 Experimental results of FDA2
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t3 = 4, t4 = 4.3, t5 = 4.6, and t6 = 4.9 from the lower-left

to the upper-right of NSGA-II, DBM, ICADMO and IC-

CoA are illustrated in Fig. 5.

Figure 5a shows that NSGA-II fails to find its POFs at

time steps: t1 = 3.4 and t2 = 3.7 and the solutions at

t3 = 4 and t4 = 4.3 are not uniformly distributed and

cannot converge to the true Pareto-front. From Fig. 5b, we

can see that DBM preserves good diversity, while at every

time step, it is unable to preserve the convergence, and

moreover, it tends to have difficulties in preserving

uniformity.

Figure 5c shows that ICADMO has better convergence,

but at the first time step t1 = 3.4 and the second time step

t2 = 3.7, it appears to fail to maintain uniformity and

diversity. At other time steps, the POF of ICADMO also

has better distribution. However, ICCoA behaves very well

at every time step for the POF uniformly distribution and

reaches a broader spread. Therefore, ICCoA is better than

NSGA-II, DBM and ICADMO to preserve the diversity

and uniformity of Pareto optimal solutions for FDA2.

The box plots on the measure S and MS on FDA2 for

four algorithms are illustrated in Fig. 6.

As the box plots depicted in Fig. 6a, the upper quartile,

the median and the lower quartile of the S values for IC-

CoA are all smaller than the corresponding values of the

compared algorithm, and ICADMO is incapable of effi-

cient distribution on any time, thus ICCoA is able to pre-

serve the uniformity of the solutions in the objective space

for FDA2. Figure 6b shows the box plots on the measure

MS for FDA2. Although the results on FDA1 of ICCoA are

similar with DBM at six time steps, except for time step 1

obtained by DBM, the median of the MS values for ICCoA

(a) Box plots on the measure S

  (b) Box plots on the measure MS 
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Fig. 6 Box plots on the measure S and MS at six time steps for FDA2

Table 3 The t-test results of ICCoA with the compared algorithm on S and MS for FDA2 at six time steps over 30 independent runs

Time

steps

NSGA-II(S) ICADMO(S) DBM NSGA-II(MS) ICADMO(MS) DBM(MS)

p h p h p h p h p h p h

t1 2.3641e-019 1 8.4037e-031 1 7.3556e-005 1 1.1450e-037 1 2.4082e-024 1 0.3891 0

t2 8.3634e-020 1 3.6193e-022 1 0.0783 0 8.7419e-042 1 1.5094e-024 1 3.7287e-014 1

t3 4.1280e-019 1 3.5640e-033 1 0.1251 0 6.1063e-040 1 1.0165e-021 1 1.3753e-013 1

t4 6.6070e-008 1 1.2019e-023 1 0.6151 0 7.4292e-025 1 1.4679e-017 1 1.2702e-018 1

t5 2.4520e-006 1 9.0506e-025 1 0.1426 0 7.8866e-018 1 3.0942e-019 1 1.2063e-014 1

t6 1.4869e-008 1 1.1109e-025 1 0.0032 1 1.6534e-017 1 1.8579e-028 1 3.1349e-013 1
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are greater than the corresponding values of the other three

algorithms. So ICCoA has better diversity than the com-

pared algorithm at most of the time steps.

The t-test results of ICCoA with the compared algorithm

on S and MS for FDA2 at six time steps over 30 inde-

pendent runs are shown in Table 3.

Table 4 The Wilcoxon signed rank test results of ICCoA with the compared algorithm on S and MS for FDA2 at six time steps over 30

independent runs

Time

steps

NSGA-II(S) ICADMO(S) DBM NSGA-II(MS) ICADMO(MS) DBM(MS)

p h p h p h p h p h p h

t1 1.7344e-006 1 1.7344e-006 1 2.8308e-004 1 1.7344e-006 1 1.7344e-006 1 0.3933 0

t2 1.7344e-006 1 1.7344e-006 1 0.0495 1 1.7344e-006 1 1.7344e-006 1 1.9209e-006 1

t3 1.7344e-006 1 1.7344e-006 1 0.1779 0 1.7344e-006 1 1.7344e-006 1 1.7344e-006 1

t4 5.7517e-006 1 1.7344e-006 1 0.6435 0 1.7344e-006 1 1.7344e-006 1 1.7344e-006 1

t5 3.7243e-005 1 1.7344e-006 1 0.1254 0 1.7344e-006 1 1.7344e-006 1 1.7344e-006 1

t6 2.3534e-006 1 1.7344e-006 1 0.0082 1 1.7344e-006 1 1.7344e-006 1 1.7344e-006 1

Fig. 7 Experimental results of FDA3
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It can be seen from Table 3 that, for test problem FDA2,

for metric S, compared with algorithm DBM, ICCoA fails

to get significant differences at time step t2, t3, t4 and t5 for

metric S and at time step t1 for metric MS, which indicates

that at these time steps ICCoA can not get the significant

improvement on the uniform distribution or the coverage

for Pareto-front of the solutions. However, at all of the time

steps, for the metrics S and MS, the differences between

ICCoA and NSGA-II, ICADMO algorithms are significant,

which indicates that the solutions obtained by ICCoA have

a significant improvement on uniform distribution and

coverage area in the Pareto-front.

(a) Box plots on the measure S
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Fig. 8 Box plots on the measure S and MS at five time steps for FDA3

Table 5 The t-test results of ICCoA with the compared algorithm on S and MS for FDA3 at five time steps over 30 independent runs

Time

steps

NSGA-II(S) ICADMO(S) DBM NSGA-II(MS) ICADMO(MS) DBM(MS)

p h p h p h p h p h p h

t1 1.3992e-012 1 5.9054e-024 1 0.3128 0 1.5064e-023 1 8.4560e-018 1 2.3246e-010 1

t2 1.7674e-009 1 3.9860e-024 1 1.0385e-006 1 4.7750e-025 1 5.9870e-014 1 7.2959e-005 1

t3 4.2761e-011 1 2.3749e-024 1 0.0325 1 4.4086e-019 1 1.9405e-021 1 3.3764e-007 1

t4 1.1115e-010 1 5.3013e-024 1 2.9464e-004 1 1.3910e-020 1 2.3268e-017 1 5.8991e-028 1

t5 1.1891e-013 1 6.9741e-023 1 0.0451 1 4.7823e-027 1 2.0735e-023 1 3.1287e-017 1

Table 6 The Wilcoxon signed rank test results of ICCoA with the compared algorithm on S and MS for FDA3 at five time steps over 30

independent runs

Time

steps

NSGA-II(S) ICADMO(S) DBM NSGA-II(MS) ICADMO(MS) DBM(MS)

p h p h p h p h p h p h

t1 1.9209e-006 1 1.7344e-006 1 0.4165 0 1.7344e-006 1 1.7344e-006 1 2.1266e-006 1

t2 3.1817e-006 1 1.7344e-006 1 4.0715e-005 1 1.7344e-006 1 1.7344e-006 1 2.4118e-004 1

t3 2.1266e-006 1 1.7344e-006 1 0.0316 1 1.7344e-006 1 1.7344e-006 1 1.9729e-005 1

t4 1.7344e-006 1 1.7344e-006 1 0.0012 1 1.7344e-006 1 1.7344e-006 1 1.7344e-006 1

t5 1.7344e-006 1 1.7344e-006 1 0.0270 1 1.7344e-006 1 1.7344e-006 1 1.7344e-006 1
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Fig. 9 Experimental results of FDA4
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Table 4 gives the Wilcoxon signed rank test results of

ICCoA with the compared algorithm on S and MS for

FDA2 at six time steps over 30 independent runs.

Table 4 shows that compared with NSGA-II and IC-

ADMO, at all the time steps, for both S and MS, ICCoA

gets significant differences. The median differences

between ICCoA and DBM are significant at time steps t1, t2
and t6 for metric S and at time steps t2, t3, t4, t5 and t6 for

metric MS. The statistic results show that at most of the

time steps, ICCoA gets significant improvement of the

obtained solutions for test problem FDA2.

4.3.3 FDA3

POF of FDA3 changes over time. The POFs at five time

steps when t1 = 0.1, t2 = 0.4, t3 = 0.7, t4 = 1, t5 = 1.4,

from the lower-left to the upper-right of NSGA-II, DBM,

ICADMO and ICCoA are illustrated in Fig. 7.

Figure 7a shows that NSGA-II has difficulties in pre-

serving the uniformity and the diversity of the solutions.

From Fig. 7b, it can be seen that DBM fails to find a

widespread POF at the fourth and the fifth time steps.

While in Fig. 7c, ICADMO has improved the diversity a

lot, but it does not guarantee the uniformity. Figure 7d

shows that ICCoA does better at any time step for it

reaches both better distribution and uniformity. Therefore,

ICCoA is the best to keep the diversity and uniformity of

the solutions in the objective space on FDA3.

The box plots on the measure S and MS on FDA3 for

four algorithms are illustrated in Fig. 8.

Figure 8a shows that at most of the time steps, the

median of S values obtained by ICCoA are all much

smaller than the corresponding values of the compared

algorithms except for time step t1 of DBM, which shows

that for FDA3, ICCoA is able to preserve the solutions

uniform at most of the time steps. The box plots on the

Fig. 9 continued
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measure MS for FDA3 are depicted in Fig. 8b. The values

at five time steps of ICCoA are all greater than the corre-

sponding values of the compared algorithm. Thus, ICCoA

has improved the diversity of FDA3 very well.

Table 5 gives the t-test results of ICCoA with the

compared algorithm on S and MS for FDA3 at five time

steps over 30 independent runs.

It can be seen from Table 5 that, for test problem FDA3,

for metric S, compared with the other algorithms, at most

of the time steps, ICCoA can get significant differences

except for at time step t1 for DBM, which indicates that at

most of the time steps ICCoA can get the significant

improvement on the uniform distribution of the obtained

solutions. Moreover, at all of the time steps, for metric MS,

the differences between ICCoA and the compared algo-

rithms are significant, which indicates that the solutions

obtained by ICCoA have a significant improvement on the

coverage area in the Pareto-front.

Table 6 gives the Wilcoxon signed rank test results of

ICCoA with the compared algorithm on S and MS for

FDA3 at five time steps over 30 independent runs.

It can be seen from Table 6 that, the results of the

Wilcoxon signed rank test also demonstrates the advantage

of ICCoA. ICCoA is significantly better at most of the time

steps for test problem FDA3 except at time step t1 for

DBM, which shows that at most of the time steps, ICCoA

achieves significantly improvement on both uniformity and

diversity of the obtained solutions.

4.3.4 FDA4

The POF of FDA4 remains unchanged. The POFs at four

time steps when t1 = 0, t2 = 0.5, t3 = 1, t4 = 1.5 of

NSGA-II, DBM, ICADMO and ICCoA on FDA4 are

illustrated in Fig. 9.

(a) Box plots on the measure S                 

(b) Box plots on the measure MS 
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Fig. 10 Box plots on the measure S and MS at four time steps for FDA4

Table 7 The t-test results of ICCoA with the compared algorithm on S and MS for FDA4 at four time steps over 30 independent runs

Time

steps

NSGA-II(S) ICADMO(S) DBM NSGA-II(MS) ICADMO(MS) DBM(MS)

p h p h p h p h p h p h

t1 2.1765e-020 1 5.8597e-024 1 5.5940e-011 1 2.1631e-019 1 3.6343e-023 1 0.4239 0

t2 8.1604e-023 1 1.9208e-023 1 1.0176e-013 1 4.1203e-018 1 2.6357e-032 1 2.7505e-006 1

t3 1.7824e-023 1 8.0186e-023 1 3.5885e-012 1 9.6886e-022 1 1.1240e-026 1 1.0543e-009 1

t4 8.7315e-027 1 3.3989e-022 1 1.3067e-017 1 7.0440e-020 1 2.1008e-024 1 1.6234e-019 1
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It can be seen from Fig. 9 that for FDA4, in spite of the

changing time, all of the four algorithms have found the

same spherical surface with a radius of 1. From Fig. 9 a-1

to a-4, b-1 to b-4, c-1 to c-4, we can see that ICADMO has

broader spread than NSGA-II and DBM, which means it

improves the diversity. Nevertheless, ICADMO is unable

to maintain the uniformity. From the test results in Fig. 9d-

1 to d-4, it has shown that ICCoA achieves uniform dis-

tribution and better diversity at every time step.

The box plots on the measure S and MS on FDA4 for

four algorithms are illustrated in Fig. 10. From the results of

the box plots in Fig. 10a, it can be seen that the results on

FDA4 of ICCoA are much smaller than the compared

algorithms at fou time steps. The upper quartile, the median

and the lower quartile of the S values for ICCoA are all

smaller than the corresponding values of compared algo-

rithms. The larger values indicate that for FDA4, the POF of

ICADMO and NSGA-II do not have uniform distribution.

Figure 10b shows the box plots on the measure MS for

FDA4 of four algorithms. Except for time step t1 for DBM,

at most time steps, the median and the lower quartile of the

MS values for ICCoA are all greater than the correspond-

ing values of the compared algorithms, which means IC-

CoA improves the diversity of FDA4.

Table 7 gives the t-test results of ICCoA with the

compared algorithm on S and MS for FDA4 at four time

steps over 30 independent runs.

It can be seen from Table 7 that, for test problem FDA4,

at all of the time steps, for the metric S, the differences

between ICCoA and the compared algorithms are signifi-

cant, which means the solutions obtained by ICCoA have a

significant improvement on the uniform distribution of the

obtained solutions. At most of all the time steps, except for

compared with algorithm DBM at time step t1, for the

metric MS, the differences between ICCoA and the com-

pared algorithms are significant, which indicates the solu-

tions obtained by ICCoA have a significant improvement in

covering the area in the Pareto-front and in maintaining the

best diversity.

Table 8 gives the Wilcoxon signed rank test results of

ICCoA with the compared algorithm on S and MS for

FDA4 at four time steps over 30 independent runs.

As for the Wilcoxon signed rank test, it can be seen from

Table 8 that, for test problem FDA4, at all of the time

steps, for the metric S, ICCoA gets significant differences

compared with the other three algorithms. For the metric S,

ICCoA gets significant differences compared with the other

three algorithms, except for compared with algorithm

DBM at time step t1. The Wilcoxon signed rank test results

indicate that, on most of the time steps, ICCoA constitutes

a significant improvement on both uniformity and diversity

of POF for FDA4.

4.3.5 FDA5

The POF of FDA5 changes over time. The POFs at four

time steps when t1 = 0, t2 = 0.125, t3 = 0.25, and

t4 = 0.375 obtained by NSGA-II, DBM, ICADMO and

ICCoA are illustrated in Fig. 11.

Figure 11 shows that for test problem FDA5, the

acquired POF of NSGA-II fail to converge to its real POF

at some time steps and have difficulties to keep its uni-

formity. Moreover, the attained POF of DBM is worse than

both ICADMO and ICCoA, which indicates that the other

two algorithms have better diversity and uniformity.

However, from Fig. 11c-1 to c-4 and Fig. 11d-1 to d-4, we

can see that ICCoA shows an improvement of uniformity

over ICADMO, and it performs well at every time step.

The box plots on the measure S and MS on FDA5 for

four algorithms are illustrated in Fig. 12. Figure 12a show

that the upper quartile, the median and the lower quartile of

the S values for ICCoA are all smaller than the corre-

sponding values of the compared algorithms, which indi-

cates that ICCoA is able to find more uniform solutions for

FDA5.

With the box plots in Fig. 12b, we can see that the

median and the lower quartile of the MS values at four time

steps for ICCoA are all greater than the corresponding

values of the compared algorithms, which shows that IC-

CoA is able to improve the diversity of POF for FDA5.

The t-test results of ICCoA with the compared algorithm

on S and MS for FDA5 at four time steps over 30 inde-

pendent runs are shown in Table 9.

Table 8 The Wilcoxon signed rank test results of ICCoA with the compared algorithm on S and MS for FDA4 at four time steps over 30

independent runs

Time

steps

NSGA-II(S) ICADMO(S) DBM NSGA-II(MS) ICADMO(MS) DBM(MS)

p h p h p h p h p h p h

t1 1.7344e-006 1 1.7344e-006 1 1.9209e-006 1 1.7344e-006 1 1.7344e-006 1 0.2536 0

t2 1.7344e-006 1 1.7344e-006 1 1.9209e-006 1 1.7344e-006 1 1.7344e-006 1 2.1630e-005 1

t3 1.7344e-006 1 1.7344e-006 1 1.7344e-006 1 1.7344e-006 1 1.7344e-006 1 1.9209e-006 1

t4 1.7344e-006 1 1.7344e-006 1 1.7344e-006 1 1.7344e-006 1 1.7344e-006 1 1.7344e-006 1

440 R. Shang et al.

123



Fig. 11 Experimental results of FDA5
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It can be seen from Table 9 that, for test problem FDA5,

for metric S, at all of the time steps, ICCoA is able to get

significant differences, which indicates that ICCoA can get

the significant improvement on the uniform distribution of

the solutions. Compared with algorithm DBM, ICCoA fails

to get significant differences at time step t1 for metric MS,

which indicates ICCoA can not get the significant

improvement on the coverage for Pareto Front of the

solutions. However, at the other three time steps, for the

metrics MS, the differences between ICCoA and the

compared algorithms are significant, which indicates that

the solutions obtained by ICCoA have a significant

improvement on the coverage area in the Pareto-front.

Table 10 gives the Wilcoxon signed rank test results of

ICCoA with the compared algorithm on S and MS for

FDA5 at four time steps over 30 independent runs.

Table 10 shows that compared with NSGA-II and IC-

ADMO, at all the time steps, for both S and MS, ICCoA

gets significant differences. The median differences

between ICCoA and DBM are significant at all the time

steps for metric S and at time steps t2, t3 and t4 for metric

MS. The statistic results show that at most of the time

steps, ICCoA gets significant improvement of the obtained

solutions for test problem FDA5.

5 Conclusions

In this paper, in order to solve DMO problems, an ICCoA

for DMO has been presented. On the basis of the thought of

immune clone in artificial immune system, ICCoA employs

the theory of coevolution to propose an improving strategy

for the uniformity and diversity of Pareto-optimal solu-

tions. On five different difficult test problems borrowed

from the literature, it is shown that the experimental results

are in accordance with the theory of ICCoA. By being

(a) Box plots on the measure S  

(b) Box plots on the measure MS
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Fig. 12 Box plots on the measure S and MS at four time steps for FDA5

Table 9 The t-test results of ICCoA with the compared algorithm on S and MS for FDA5 at four time steps over 30 independent runs

Time

steps

NSGA-II(S) ICADMO(S) DBM NSGA-II(MS) ICADMO(MS) DBM(MS)

p h p h p h p h p h p h

t1 5.1658e-018 1 3.9873e-018 1 1.3172e-008 1 0.0100 1 1.4099e-018 1 0.6108 0

t2 3.5199e-022 1 7.7033e-025 1 1.1889e-006 1 0.0034 1 2.4621e-017 1 3.5278e-006 1

t3 1.3501e-023 1 2.5984e-023 1 7.0937e-008 1 4.5462e-012 1 2.6914e-024 1 3.1192e-020 1

t4 1.2702e-022 1 3.2628e-025 1 4.2988e-013 1 2.7415e-023 1 4.0759e-009 1 6.6519e-025 1
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compared with the results of the classic genetic algorithm

NSGA-II, DBM and ICADMO and being measured on two

performance metrics, ICCoA is proved to improve both the

uniformity and the diversity and reach better distribution

on Pareto-fronts. However, with regard to future perspec-

tives, it is worthwhile to improve the speed of convergence

and find a better way to evaluate a DMO algorithm.
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