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SUMMARY

Cognitive radio has been considered to be one of the main technologies to solve the problem of low
spectrum utilization, while the adaptive allocation of network resource is one of the key technologies. A
discrete polynary coding immune clonal selection (DPICS)-based joint subcarrier and power allocation
algorithm is proposed to solve the resource allocation problem in uplink cognitive OFDM networks. The
novelties of DPICS include the following: A unique coding method is adopted to deal with multi-value
discrete variables. Compared with the traditional methods, the proposed method can acquire the shortest
code. Meanwhile, the constraints of the subcarrier allocation are avoided. A heuristic mutation scheme is
used to direct the mutation. Subcarriers are reallocated randomly to the secondary users with larger
homotactic noise, which has a large probability to produce the optimal solution and improves the searching
process. Subcarriers and power are allocated simultaneously, which is different with the traditional biphasic
resource allocation algorithms. The biphasic resource allocation algorithms cannot acquire the subcarrier
allocation result and power allocation result simultaneously, which makes the final result imprecise. The
proposed algorithm avoids this situation and improves the accuracy of the final result. Compared with
state-of-the-art algorithms, the proposed algorithm is shown as effective by simulation results. Copyright
© 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The spectrum licensing mechanism is adopted now to manage the spectrum resource. According to this
mechanism, the spectrum resource is allocated to a certain number of users (licensed user or primary
user) to send a message in the long term. At this time, whether the spectrum is in use or not, other users
have no right of access. Therefore, when the spectrum channel remains unused, it will not be effectively
taken advantage, which makes the utilization of spectrum channels very low and change in a wide range.
Some researches point out that according to different times and different areas, the utilization of different
channels changes from 15% to 85% [1, 2]. Moreover, the development of modern radio communication
technology strains the spectrum resource. Therefore, how to improve the utilization of spectrum resource
becomes a more and more important issue. The cognitive radio technology is proposed for solving this
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problem [3]. Under the current spectrum management scheme, this technology can effectively improve
the utilization of spectrum without affecting the primary user. And finally, a cognitive network without
the concept of primary user will come true, which will change the current spectrummanagement scheme.
Cognitive radio can dynamically change its transmitter parameters to interact with the sur-

rounding environment [2, 4] and choose an appropriate unused channel to communicate. According
to the definition of cognitive radio, two core abilities are included, which are the cognitive ability
and the reconfiguration ability [2]. Cognitive ability refers to the ability that the cognitive radio
can sense the variation of the surrounding spectrum environment, while the reconfiguration ability
means that the cognitive radio can dynamically adjust its transmitter parameters to the surrounding
environment. The main challenges and development of cognitive radio are discussed in [2] and [4].
Orthogonal frequency-division multiplexing technology is one of the main technologies that are

used in the transport layer in modern radio networks [5]. This paper focuses on the power and
spectrum resource allocation in OFDM-based cognitive network, which is called cognitive OFDMnet-
work [5, 6]. In cognitive OFDM network, for different users, each channel has different transport char-
acteristic. Through the appropriate use of this characteristic, cognitive OFDM can improve the
utilization of spectrum resource [6]. Since being proposed, cognitive OFDM technology has attracted
a great attention from researchers, and a great development has been made. Meanwhile, some cogni-
tive OFDM model has been formulated. As an example, a greedy algorithm is proposed to optimize
distributed joint frequency, data transmit speed, and the power allocation on every subcarrier [7]. How-
ever, the proposed algorithm has a high complexity, which limits its practical use. For this reason, bi-
phasic resource allocation algorithms are proposed in [8] and [9], which can acquire suboptimal
solutions. In the proposed algorithm, subcarriers are firstly allocated under the assumption of equal dis-
tribution of power on every channel, and then the power will be reallocated. The proposed algorithm
can efficiently reduce the time complexity with suboptimal solutions. The basic resource allocation
schemes with optimal and suboptimal solutions are discussed in [10]. In addition, according to differ-
ent applications, researchers have proposed different cognitive OFDM resource allocation schemes. In
[11] and [12], the resource allocation algorithms in distributed wireless cognitive network are pro-
posed, and such algorithms in ad hoc networks are discussed in [13] and [14]. In [15], the resource al-
location algorithm in uplink cognitive OFDM network is proposed, and another algorithm in uplink
WiMAX networks is discussed in [16], while references [17] and [18] discuss in detail the resource
allocation problem in different conditions in cognitive OFDM.
In most common conditions, the allocation problem of wireless cognitive network resource

is a nonlinear problem, which is called an ‘NP-hard’ problem [19]. Such a problem is difficult
to solve with traditional schemes. However, the proposition of intelligent algorithm based on
bio-inspiration offers a new way to solve these problems [20]. There are some works in applying
the intelligent algorithm to the allocation problems in recent years. As an example, the design of
parameters in cognitive radio using the genetic algorithm is proposed in [21]. Meanwhile, some
genetic algorithms are proposed in [22] and [23] to solve the problem of resource allocation in
cognitive radio. In [24] and [25], the genetic algorithm is used to solve the problem of collabora-
tive spectrum sensing and allocation. In reference [26], the optimal resource allocation problem
under different optimization criteria using intelligent algorithm is discussed in cognitive network.
However, the traditional intelligent algorithm takes too much time to deal with the optimization
problem. For the resource allocation problem in OFDM network, the power and subcarrier
have to be allocated separately, making the final result imprecise, so in this paper, a new
intelligent algorithm is designed to solve the subcarrier and power allocation problem in cognitive
OFDM network.
The novelties of the proposed algorithm are as follows:

In the proposed algorithm, in order to reduce the time consumption, the solutions near the optimal
point are used as the initialized population, which is different with the traditional intelligent
algorithms that use randomly created solutions as the initialized population.

Meanwhile, a new coding method that reduces the number of variables is adopted. As a result, the
mutation scheme is redesigned. Prior information is used to direct the mutation operation and
makes such an operation become more effective.
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Subcarriers and power are allocated simultaneously, which guarantees the precision of the final
solution.

The basic process of the proposed algorithm includes initialization of population, clone, muta-
tion, fitness evaluation, and update population. In the initialization of population, the approximately
greedy scheme is used to allocate the subcarriers to the secondary users with the minimum noise. In
the clone and update process, the traditional operation is adopted. And in the mutation and fitness
evaluation process, new mutation operation and fitness function according to the problem model are
designed. The antibodies in the population are coded as possible subcarrier allocation solutions, and
the allocation of power is operated in the fitness evaluation process.
The rest of this paper is organized as follows: the second part introduces the basic model of

cognitive OFDM resource allocation; the third part gives a detailed description of the proposed
algorithm; in order to evaluate the effectiveness of the proposed algorithm, a series of experiments
are designed, and the experimental results are given and analyzed in the fourth part; future work is
discussed in the fifth part.

2. SYSTEM MODEL

Consider a single base station cognitive OFDM network withm secondary users and n subcarriers and
assume that the parameters of the network have been acquired by the process of spectrum sensing and
analysis. The serial data are coded to be an OFDM symbol and is transmitted by the subcarriers
and power allocated by the algorithm. Here, we assume that one subcarrier can only be occupied
by one secondary user at the same time. Therefore, there is no interference when the secondary
user transmits its information. When the interference between different base stations is ignored,
the noise of every subcarrier only includes the environment noise, which is white Gaussian noise.
We use N0 to denote the noise spectral density of every channel andWc to denote the channel band-

width of the subcarrier. Then the Gaussian noise of the subcarrier can be represented as follows [27]:

Pn ¼ N0*Wc (1)

According to the Shannon formula, in the ideal condition, the channel capacity of every
subcarrier can be represented as

C ¼ Wc* log 1þ Ps

Pn

� �
(2)

In formula (2), C denotes the system capacity, and Ps denotes the signal power. In a practical
case, the channel capacity is also affected by the channel gain and BER. In such a case, the data
transmitter rate of secondary user i on channel k can be represented as follows [27]:

Rik ¼ 1
n
Wc log 1þ Pikgik

2

δN0Wc

� �
(3)

In formula (3), Rik denotes the maximum system transmit rate of secondary user i on channel k,
with transmit power pik. pik denotes the power of secondary user i on channel k. gik denotes the
channel gain of channel k when secondary user i uses this channel. Generally, because of the
multipath effect, gik will be a Rayleigh distributed random number [28]. δ denotes a function of
BER, and in the Rayleigh channel, δ can be calculated as follows [29]:

δ ¼ 0:2
Pe

� 1

� �
=1:5 (4)

From the preceding analysis, for the i-th secondary user, the data transmit rate under the
subcarrier allocation proposal Ω can be calculated as follows [27]:
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Ri ¼
Xn
k¼1

ωikRik (5)

In formula (5), Ri denotes the acquired data transmit rate of secondary user i, while Ω = {ωik|ωik∈
{0, 1}, 1≤ i≤m, 1≤ k≤n} denotes a possible channel allocation proposal. And when ωik=1, it means
the i-th secondary user uses channel k; otherwise, the i-th secondary user does not use channel k.
In cognitive radio, according to the different demands for service, there are different optimization

criterions, demanding different optimization functions. Among them, three are common [19, 20],
ones that are shown as follows:

(1) Max-Sum-Reward (MSR), this criterion can be expressed as follows:

U Rð Þ ¼
Xm
i¼1

Ri (6)

(2) Max-Min-Reward (MMR), which means maximizing the data transmit rate of the secondary
user that acquires the smallest rate. It can be expressed as follows:

U Rð Þ ¼ min Rið Þ i ¼ 1;…;m (7)

(3) Max-Proportional-Fair (MPF), which means that the transmit rate should be proportionally
distributed among the secondary users while maximizing the data transmit rate, which can be
expressed as follows:

U Rð Þ ¼ ∏
m

i¼1
Ri (8)

Except this expression of MPF, some researchers also propose different expressions of this
criterion [21, 22]. Different expressions can acquire different effects, such as in reference [27],
which can realize any proportional distribution of the transmit rate in secondary users.
For the power allocation, to realize the maximization of the earlier criterion, different power

allocation proposals will be acquired. Meanwhile, there are some constraints on the power alloca-
tion. Firstly, for every subcarrier, because it can only be allocated to one user at the same time, it
will cause interference if other secondary users do not use this subcarrier load power on the
subcarrier. Therefore, the power allocation proposal P= {pik|1≤ i≤m, 1≤ k≤ n} in secondary
users should meet the following constraints [27]:

pik
> 0; ωik ¼ 1

¼ 0; ωik ¼ 0
i ¼ 1;…;m; k ¼ 1;…; n

�
(9)

Secondly, because of the restriction of the device, the transmit power of every secondary user is
limited. For this reason, the power allocation proposal P should meet the constraints of transmit
power, which can be expressed as follows [29]:

Xn
k¼1

ωik*pik ≤ Pi i ¼ 1;…;m (10)

where Pi denotes the maximum transmit power of secondary user i.
At last, to guarantee the communication quality of the primary user, the power loaded on each

subcarrier should remain in the tolerable range of the primary user. The interference temperature model
[2] describes in detail the necessity of interference constraint, which can be expressed as follows:

Xm
i¼1

pikIik ≤Qk k ¼ 1;…; n (11)
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where Iik denotes the interference constraint of secondary user i on the subcarrier k and Qk denotes
the ceiling of the interference constraint of the primary user on subcarrier k.
To realize the joint optimal allocation of subcarrier and power, with the preceding optimization

criterion, the optimal subcarrier allocation proposal Ω* and power allocation proposal P* can be
calculated as follows [26]:

Ω�;P�ð Þ ¼ argmaxU Rð Þ for all Ω�;P�ð Þ (12)

The MSR criterion is considered in this paper, which means that the algorithm will realize the
maximum system transmit rate through reasonable subcarrier and power allocation proposals.

3. THE PROPOSED ALGORITHM

A discrete polynary coding immune clonal selection (DPICS)-based joint subcarrier and power al-
location algorithm is adopted in this paper to allocate the subcarrier and power jointly in the uplink
OFDM network. There is a basic process in such an algorithm, which includes the population ini-
tialization, clone, mutation, fitness evaluation, population updating, and so on. Each antibody in the
population denotes a possible subcarrier allocation proposal; as a result, the operation on antibodies
is equal to the operation on the subcarrier allocation proposal. The power allocation is completed in
the fitness evaluation operation. The MSR criterion is used as the fitness value of every subcarrier
and power allocation proposal. After several iterations of elimination of low fitness antibody, the
proposed algorithm can acquire the optimal solutions.

3.1. The implementation principle of the proposed algorithm

The reason the proposed algorithm can acquire the optimal solution is that, in the execution of the
algorithm, the solution will evolve in the right direction continuously by eliminating the bad anti-
bodies and generating better antibodies randomly. The behavior of the population in the execution
of the algorithm can be shown in Figure 1. In Figure 1, the dashed line denotes the population range
after clone and mutation. The solid line represents the population range after the population update.
Solid arrows indicate the direction of the evolution of the antibodies in the population, and the
direction of the population is represented by the bold arrow.

Figure 1. The illustration of the algorithm in this paper.

68 R. SHANG ET AL.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2016; 29:64–83
DOI: 10.1002/dac



Figure 1 can be explained as follows: in the initialization process, the proposed algorithm uses a
similar greedy method, making the antibodies in the population gather near the optimal solutions
and overlap with each other. After the first clone and mutation operations, the antibodies of the
population begin diffusion in different directions, which are shown by the solid points and hollow
points in the dashed circle in Figure 1. However, because the mutation operation in the algorithm is
based on the heuristic method, by using the prior knowledge to guide the process of mutation, the
antibodies in the population have a high possibility of evolving in the right direction. Therefore, it is
easy to acquire a better solution. In the population updating operation, the antibody with the right
direction will be kept (as shown by the solid point in the solid line circle in Figure 1), while the
one with the wrong direction will be eliminated (as shown by the dashed point in the dashed circle).
The newly formed population will carry the clone and mutation operations again. The preceding
process will be repeated iteratively, driving the population to evolve in the right direction. Finally,
the optimal solutions will be acquired. The evolution direction is shown by the bold arrow in
Figure 1.

3.2. The realization of the proposed algorithm

3.2.1. Related terms. There are some terms in immune clonal selection-based algorithm, and the
definitions of the related terms are given as follows.

Antibody: Antibody consists of genes. In the proposed algorithm, an antibody is a row vector,
which will be described in Section 3.2.2.
Gene: Gene is the element of antibody. In the proposed algorithm, a gene is an element in the row
vector (antibody); n genes compose an antibody. Here, n is the number of subcarriers. The
relationship of gene (xi) and antibody (x) is described in Section 3.2.2.
Population: A population consists of several antibodies; the number of antibodies a population
consists of is the scale of the population. In the proposed algorithm, the population is a two-
dimensional matrix. The row of this matrix is an antibody, and every element in this matrix is
a gene. The number of rows in the matrix is the scale of the population.
Fitness: Fitness value is the value of the objective function. Each antibody has a fitness value,
which represents whether the antibody is suitable to be the final solution. The higher the fitness
value, the more suitable is the antibody as the final solution. In the proposed algorithm, the
objective function is the MSR criterion; therefore, the fitness value is the system transmit rate.
Population coding: How to use the antibody to represent the resource allocation result and how
to acquire the resource allocation result from an antibody are very important. In the proposed
algorithm, the resource allocation result is coded as a row vector.
Population initialization: This step gives every gene and antibody in the population initial
value. In the proposed algorithm, it means that every element of the matrix is initialized with
an integer value.
Clone operation: Create more of the same antibodies using one antibody. In the proposed
algorithm, it means creating more of the same row vectors using a row vector, which will make
the matrix (population) bigger.
Mutation operation: Change the value of some genes of an antibody, which adjusts the resource
allocation result in a small extent. In the proposed algorithm, it means changing the value of a
randomly picked element in a row vector.
Fitness evaluation: Calculate the fitness value (the value of objective function) for every anti-
body. In the proposed algorithm, it means the system transmit rate.
Population update: Use antibodies with high fitness values to replace antibodies with low fitness
values. In the proposed algorithm, it means the row vectors with low fitness values are replaced
with those having high fitness values.

3.2.2. Population coding. In the proposed algorithm, a unique coding method is adopted, which is
described as follows.
Because one subcarrier can only be allocated to one user at the same time, all the subcarriers are

coded. The length of the code is n (the number of subcarriers), and the value of each bit of the code
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ranges in the interval [1, m] while keeping it as an integer, which is, in other words, a multi-value
discrete variable. The value represents the number of secondary users who use the subcarrier. We
use x to represent a possible subcarrier allocation proposal, which is an antibody in the population.
We use xk to represent the allocation result of subcarrier k, which is the k-th gene of the antibody
and means that the subcarrier k is allocated to secondary user xi [30]. Then the antibody x can be
expressed as follows:

x ¼ x1; x2…xk…xnð Þ (13)

Compared with other coding methods [19, 22], this kind of code has the least variables, which can
reduce the dimension of decision space and can speed up the convergence of the proposed algorithm.

3.2.3. Population initialization. Different from the random distributed initialized population in tra-
ditional immune clonal selection algorithms, the similar greedy method is adopted in the population
initialization process [21, 22]. The homotactic noise ci is defined as follows:

ci ¼ gik
2

δN0Wc
(14)

Without the consideration of the variation of the power, it can be known from formula (14) that
the higher the value of ci, the higher the data transmitter rate. As a result, for every subcarrier, the
secondary user with the highest ci value is allocated to it.
When taking the power into consideration, because the subcarrier allocation result will affect the

allocation of power, this method could not find the optimal population, but the suboptimal. A sub-
sequent adjustment is needed to acquire the optimal solutions.
The initialization of the population can be expressed as follows:

A 1ð Þ ¼ A1 1ð Þ;A2 1ð Þ;…;An 1ð Þð Þ (15)

Because the random scheme is not introduced in the initialization process, the antibodies in the
initialized population are equal, that is, A1(1) =A2(1) =… =An(1).

3.2.4. Clone operation. In the traditional immune clone selection algorithm, the fitness is calcu-
lated firstly, and the proportion of clone is decided by the fitness value. However, in the proposed
algorithm, in order to reduce the time complexity, we assume that the fitness of all antibodies is the
same; therefore, the proportion of clones is the same as all antibodies. If this proportion takes a
small value, which means a small scale of the population, the population is not conductive to
expand its search in the follow-up operation, while a large proportion of clones will increase the
time assumption in the follow-up operation. Therefore, a suitable proportion is explored. The exper-
iments show that a proportion of 4 could lead the proposed algorithm to acquire a good effect, the
value of which is taken in the proposed algorithm.
The population after clone operation can be expressed as follows:

B itð Þ ¼ B1 itð Þ;B2 itð Þ;…;B4*n itð Þ� �
(16)

where it denotes the current generation. The clone operation can be expressed as follows:

B itð Þ ¼ clone A itð Þð Þ ¼ clone A1 1ð Þð Þ; clone A2 1ð Þð Þ;…; clone An 1ð Þð Þð Þ (17)

When the proportion of clone is 4, then

Clone Ai itð Þð Þ ¼ B1þ4* i�1ð Þ itð Þ;B2þ4* i�1ð Þ itð Þ;B3þ4* i�1ð Þ itð Þ;B4þ4* i�1ð Þ itð Þ
� �

(18)
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And the following equation holds:

B1þ4* i�1ð Þ itð Þ ¼ B2þ4* i�1ð Þ itð Þ ¼ B3þ4* i�1ð Þ itð Þ ¼ B4þ4* i�1ð Þ itð Þ (19)

After the clonal operation, the scale of the population will expand four times.

3.2.5. Mutation operation. Wepropose a newmutation operation called the heuristic mutation scheme,
which implements local search in the decision space by randomly picking up a gene in antibodies and
changing its value. From the analysis in Section 3.2.2, if the subcarriers are allocated to the user with
a large value of ci, then a large system throughput will be achieved. Therefore, the heuristic method is
taken in themutation operation. That is, we use the ci as prior knowledge to guide themutation operation,
making it easier for the user with large ci to obtain the subcarrier. This method can increase the pro-
bability of optimal solution, therefore speeding up the convergence.
The heuristic mutation operation is described as follows: firstly, a gene is randomly picked up

according to the probability for every antibody, which denotes a subcarrier. Secondly, calculate
the value ci for all secondary users on this subcarrier and assign the ci value of the user who used
the subcarrier before to be zero. Thirdly, the ci value should be normalized and taken as probability.
At last, a secondary user is picked up randomly according to the probability. The number of this
user is taken as the value of the picked gene. The process of heuristic mutation operation is shown
as Algorithm 1:

Algorithm 1: Mutation Operation

Input: Pop: the population consisting of the allocation of subcarriers
pm: the mutation probability

Output: ChiPop: the result population of mutation operation
The process of the proposed algorithm:

[N,C]← size of Pop
CI←g2./δN0Wc); % the division of matrix
[MN,MC=size(CI);
ChiPop=Pop
If MN>1
For i=1:N

If rand(1,1)<pm
Ma ← random integer from [1 C]
CI1=CI
CI1ChiPop(I,Ma)) ←0
Cs←zeros(MN, 1;)
For every element Cs(j)in Cs
Cs(j)←sum(CI1(1:j, Ma))

End of for
Cs ← normalization of Cs
Ran=rand(1,1)
For every element Cs(j)in Cs
If Cs(j-1)<Ran<Cs(j)

ChiPop(i, Ma)=j
End of if

End of for
End of if

End of for
End of if
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3.2.6. Fitness evaluation. The MSR criterion is used in this operation, which is described in for-
mula (6), as the fitness function. The following process is included in this operation: firstly, acquire
the power allocation proposal through the power allocation algorithm described in the following
and then calculate the overall system transmitter rate through formulae (3), (5), and (6). The value
is taken as the fitness value.
In the proposed algorithm, the power is allocated by the fitness evaluation operation. The water-

filling algorithm is considered here. However, it is not suitable for two constraint optimization
problems. We draw the thought in reference [29] and take the power allocation problem in two
steps. We firstly consider the power constraint only and allocate the power. Then we consider the
interference constraint and correct the first allocation result. That is, if the power exceeds the
interference constraint, it will be replaced with the upper bound of the interference constraint.
The process of power allocation operation is described as follows: firstly, we should acquire the

subcarrier allocation proposal through the antibodies in the population, and then we calculate the
water-filling level through the water-filling theorem for every secondary user. The power is
allocated for every subcarrier according to the water-filling level. Thirdly, we calculate the allocated
power and find whether it exceeds the interference constraint, and if the power exceeds the
interference constraint, it will be replaced by the upper bound of the interference constraint. The
process is shown in Algorithm 2:

Algorithm 2: Power Allocation

Input: Pop: the population consisting of the allocation of subcarriers
Output: PowPop: the result population of allocating the power in transmitter
The process of the proposed algorithm:

[N, C ← size of Pop
CI←δN0Wc./g; % the division of matrix
Q=ones(m,1)*Q; Cq←Q./I;
For i=1: N

Cw←zeros(m,n)
For j=1:n
Cw(j, Pop(i, j)) ←1

End of for
CPn←N0*Wc*Cw
CN← the nuber of subcarriers owned by every secondary user, which hasm rows and 1column
Cy←(Paver+sum(CPn, 2./CN; where Paver is the power limitation of transmitter of every

secondary user
Cy =ones(m,1)*Cy; P←Cw .*(Cy-CI)
For every element pik in P and corresponding element qik in Cq

If pik>qik then
pik←qik

End of if
End of for

PowPop(i, :, :) ←P
End of for

3.2.7 Population updating. In order to reduce the time complexity of the proposed algorithm, a simple
way is taken to update the population. We firstly sort all the antibodies in the population from large to
small according to their fitness value. Then we take CNM antibodies in the front to form the new
population. Here, CNM denotes the scale of the population.

3.2.8 The whole process of the proposed algorithm. The basic operation of the proposed algorithm
includes population initialization, clone, mutation, fitness evaluation, population update, and so on.

72 R. SHANG ET AL.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2016; 29:64–83
DOI: 10.1002/dac



The antibody in the population represents the possible subcarrier allocation proposal. Therefore, the
operation on the antibody corresponds to the subcarrier allocation adjustment. The power allocation
is completed in the fitness evaluation operation in cognitive OFDM networks. Through iteratively
eliminating the proposals with low fitness value and randomly acquiring better proposals, the
optimal solution will finally be achieved. The whole process of the proposed algorithm is shown
in Algorithm 3.

Algorithm 3: Immune clonal selection based joint subcarrier and power allocation in uplink cogni-
tive OFDM network

variance: Pop: the population consisting of the allocation of subcarriers
gmax: the largest generation of the population
pm: the probability of mutation
ChiPop: the result population of mutation process
Pa, ChiPa: the fitness of the variance Pop, ChiPop
CNM: the size of the population

The process of the proposed algorithm:
Initialization of variance gmax, pm, CNM
Initialization of the Population Pop
ChiPop← Mutation of Pop
Pop←[ChiPop; Pop(1, :)]
Pa← the fitness of Pop
g ← 1
while g<gmax

ChiPop← clone of Pop
ChiPop← mutation of ChiPop
ChiPa← the fitness of ChiPop
ChiPop←[ChiPop; Pop]
ChiPa←[ChiPa; Pa]
(Pop, Pa)← update from (ChiPop, ChiPa)
g← g+1

end of while

3.3 Convergence analysis

The proposed algorithm, which based on the immune clonal selection, converges with probability 1.
The proof is given as follows.
We use ϑ(A) to represent the number of optimal solutions in population A, while Ai is used to

denote the population of the i-th generation. The optimal solution is obtained when and only when
the following equation is satisfied:

p ϑ Aið Þ > 0f g ¼ 1

In the preceding equation, the left-hand side means the probability that there are optimal solutions
in the population of the i-th generation. To verify the preceding equation, we should firstly resolve
the probability that p{ϑ(Ai) = 0}. According to Bayesian theorem, there is the following derivation:

p ϑ Aið Þ ¼ 0f g ¼ p ϑ Aið Þ ¼ 0jϑ Ai�1ð Þ > 0f g*p ϑ Ai�1ð Þ > 0f g
þp ϑ Aið Þ ¼ 0 ϑ Ai�1ð Þ ¼ 0g*p ϑ Ai�1ð Þ ¼ 0f gjf

According to the population updating scheme in the proposed algorithm, there must be optimal
solutions in population Ai if optimal solutions exist in population Ai�1; therefore,
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p ϑ Aið Þ ¼ 0 ϑ Ai�1ð Þ > 0g ¼ 0jf
And p{ϑ(Ai) = 0} = p{ϑ(Ai) = 0|ϑ(Ai�1) = 0} * p{ϑ(Ai�1) = 0}.
We use ξ to represent the minimum probability of p{ϑ(Ai)> 0|ϑ(Ai�1) = 0}.
Then, 1≥ p{ϑ(Ai)> 0|ϑ(Ai�1) = 0}≥ ξ > 0.
And 1� ξ ≥ 1� p{ϑ(Ai)> 0|ϑ(Ai�1) = 0}≥ 0.
Because p{ϑ(Ai) = 0|ϑ(Ai�1) = 0} = 1� p{ϑ(Ai)> 0|ϑ(Ai�1) = 0}, therefore,

p ϑ Aið Þ ¼ 0f g ¼ p ϑ Aið Þ ¼ 0jϑ Ai�1ð Þ ¼ 0f g*p ϑ Ai�1ð Þ ¼ 0f g

¼ p ϑ A1ð Þ ¼ 0f g*∏
i

j¼2
p ϑ Aj

� � ¼ 0jϑ Aj�1
� � ¼ 0

	 

≤ p ϑ A1ð Þ ¼ 0f g* 1� ξð Þi�1

Because 1≥ p{ϑ(A1) = 0}> 0 and lim
i→∞

1� ξð Þi�1 ¼ 0, therefore, lim
i→∞

p ϑ Aið Þ ¼ 0f g ¼ 0. That

is, lim
i→∞

p ϑ Aið Þ > 0f g ¼ 1.

This means that the proposed algorithm converges with probability 1.

3.4. Complexity of the proposed algorithm

We use g to denote the generations of iteration, c to denote the scale of population, n to denote the
number of genes for every antibody, and m to denote the size of the set of values. So the complexity
of each run is as follows:

In the population initialization, the equivalent noise needs to be calculated one time, which has
the complexity of O(mn), and this needs to be assigned to every antibody, so the complexity of
the population initialization is O(cn+mn).

In the clone operation, every antibody and every gene need to be traversed once, so the com-
plexity of this operation is O(cn).

In the mutation operation, the scale of the population is 4*n, for every antibody, only one gene is
picked up and operated, which means the complexity of mutation operation is O(c).

In the affinity evaluation operation, the decoding process and power allocation process need to be
carried out. The affinity of all the antibodies needs to be calculated, so the complexity of the
affinity evaluation is O(cmn).

In the population updating operation, all antibodies need to be sorted, which has a complexity of
O(clog(4c)).

All the preceding operations have a linear complexity. With g generations of iteration, the
complexity of the proposed algorithm is O(gcmnlog(4c)).

From preceding analysis, it is indicated that the complexity is affected by the scale of the popu-
lation and the iteration, which make it hard to compare the complexity of the proposed algorithm
with that of the contrast algorithms. But the fact is that the complexity is proportional to the number
of secondary users and the number of subcarriers, while the generations of iteration and the scale of
population are determined not by the scale of problem, but by the algorithm. The complexity of the
contrast algorithms is given in Table I.
Table I indicates the same complexity of the proposed algorithm with the algorithms in [27] and

in [30], which is lower than the algorithm in [29].

4. EXPERIMENT AND ANALYSIS

4.1. Parameter settings

In this paper, we assume a cognitive OFDM network with a single base station, which has m
secondary users and n subcarriers. The network is not affected by other networks. Because the
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multipath effect commonly exists in the modern communication system, the experimental network
is thought to be affected by the multipath effect. And because of this influence of the multipath, the
channel and interference temperature index obey the Rayleigh random distribution. Therefore, the
Rayleigh random numbers with a mean value of 1 are taken to simulate the channel gain gik and
interference temperature index Iik. In addition, the other parameters are set as follows: all the chan-
nel widths are set asWc = 1; the BER is set as Pe = 10

�3, according to formula (4), and δ is 132. The
Gaussian white noise power spectral density is set to be 10�7 for all the channels.
In the experiment, the power constraints and interference constraints will change according to the

experiment conditions, which is convenient for comparing different experiment results.
In the proposed algorithm, the scale of the population has a large effect on the performance of

the proposed algorithm. A large scale of the population can avoid local optima, which is one of
the difficulties of traditional algorithm dealing with optimization problems. A small scale of the
population can reduce the time complexity of the algorithm but can make it easier to acquire
local optimal solutions. Experiments show that a population with 30 antibodies and 50 genera-
tions is suitable for the proposed algorithm. Meanwhile, the proportion of clones is set to be 4,
and the probability of mutation is set to be 1.

4.2. Convergence analysis

In order to evaluate the convergence of the proposed algorithm, the following experiment is consid-
ered: the proposed algorithm runs with the parameters described in Section 4.1, while the generation
is not stationary at 50 but varies according to the experiment. We count the mean and the maximum
of the system throughput in every generation. When these two values are approximately equal, the
proposed algorithm converges. To test the convergence of the proposed algorithm, the generation
that needs to converge is counted in this experiment.
The convergence process of the proposed algorithm is shown in Figure 2, with m= 4 and n= 32.
The deterministic subcarrier allocation scheme is taken in the proposed algorithm; therefore, all

the antibodies in the population are equal after the population initialization, so as the system
throughput. As a result, the mean and the maximum of the system throughput are equal too, and
near the optima. But in the following generation, these two values are not equal because the

Table I. The complexity of the contrast algorithms.

Different algorithms Complexity

Algorithm in [29] O(n2m)
Algorithm in [27] O(nm)
Algorithm in [30] O(nm)
Our proposed algorithm O(gcmnlog(4c))

Figure 2. An illustration of convergence of the proposed algorithm.
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antibodies evolve in different directions in the clone and mutation operations, making different
subcarrier allocation proposals involved in the population and leading the diversity of the popula-
tion. The convergence of the proposed algorithm is illustrated in Figure 2.
Figure 2 shows that the maximum the system has already been acquired after 20 generations,

while the mean value is acquired after many more generations than the maximum value. This
process is beneficial. The maximum value converges fast, which shows the good ability of the
proposed algorithm to find the optimal solution. The mean value converges slowly, which means
that the population is good at keeping diversity and can search a broader range, which can avoid
local optima and guarantee the maximum value to be the optimal solution.
Although the maximum value of system throughput converges to the optimal solution in the early

stage of the proposed algorithm, the following generation is necessary. Because in the early stage,
the mean value does not converge to the optimal solution, which means that the proposed algorithm
is still in the process of searching optimal solutions. With the mean value close to the maximum value,
the searching process converges gradually, which can guarantee the avoidance of local optima.

4.3. The performance analysis under the MSR criterion

It can be seen from the system model that the power allocation in the cognitive OFDM network has
two kinds of constraints: the power constraint and the interference constraint. In order to test the
performance of the proposed algorithm under different constraints, the improved water-filling algo-
rithm in [29] is taken as the contrast algorithm. And two experiments are designed as follows:

Given the number of subcarriers n= 32 and the number of secondary users m= 4, the performance
of these two algorithms under the following two conditions is tested. Firstly, taking the interfer-
ence constraints to be Qk= 0.01 +AWGN where AWGN denotes Gaussian white noise, the initial
power constraints to be Pi = 0.01, and Qk to be constant while Pi increases by 0.05 for 16 times,
the performance of the proposed algorithm and the compared algorithm is tested. Its power is
0.01. Secondly, we take the same initial value of Qk and Pi, but Pi is constant in this condition,
while Qk increases by 0.01 for 16 times. The results are shown in Figure 3.
Figure 3(a) presents the variation of the system transmit rate with transmit power. Figure 3(b)
presents the variation of the system transmit rate with the interference temperature constraint.
These three curves denote respectively the maximum result in initial population, the optimal so-
lution obtained by the proposed algorithm in this paper, and the solution obtained by improved
water-filling algorithm. From Figure 3(a, b), we can find that for both the proposed algorithm
and the improved water-filling algorithm, the solutions are improved much compared with the re-
sult of the initial population. It suggests that the similar greedy method is not the optimal method,
which needs the follow-up adjustment in order to acquire the optimal solution.
It can be seen from Figure 3(a) that when the power is low, which corresponds to the former
curve, the performances of the proposed algorithm and the improved water-filling algorithm
are roughly equal; but when the power is high, which corresponds to the latter curve, the

Figure 3. The variation of system throughput versus power limitation (a) or interference limitation (b).
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performance of the proposed algorithm is much better than that of the improved water-filling
algorithm. The reason is obvious. When the power is low, the power constraints play the major
role to the resource allocation. Therefore, the improved water-filling algorithm is effective for the
resource allocation, obtaining good performance. When the power is high, the interference con-
straints play the major role to the resource allocation. Therefore, the improved water-filling algo-
rithm is invalid for the resource allocation, obtaining bad performance. Meanwhile, no matter
which constraints play the major role, the proposed algorithm can acquire good performance.
From Figure 3(b), we can find that in the former curves, the interference is low and plays the major
role. Therefore, the performance of the proposed algorithm is much better than that of the improved
water-filling algorithm. In the latter curves, the condition is converse and the performance of both
algorithms is roughly equal. The result of Figure 3(b) confirms the preceding analysis in Figure 3(a).

To verify the performance of both algorithms when there are many secondary users, we design
this experiment. The condition is same with experiment 1 except for the following parameter:
in condition 1, the initial value of Pi is 0.01, and the step is 0.02, which is repeated for 16 times;
in condition 2, the value of Pi is 0.2, and the setting of Qk is the same with that in experiment 1.
The result is shown in Figure 4.
From Figure 4(a, b), we can find that when there are many secondary users, the result is similar
with experiment 1. Meanwhile, when the power constraints play the major role, the proposed al-
gorithm is better than the improved water-filling algorithm, which is different with experiment 1.

To verify the effect of the number of secondary users on the performance of both algorithms, we
run both algorithms respectively under the condition of power taking the major role or the con-
dition of interference taking the major role with different numbers of secondary users. The results
are shown in Figure 5. In Figure 5(a), we set the power to be Pi= 0.05, and the interference tem-
perature to be Qk= 0.01. Meanwhile in Figure 5(b), we set the power to be Pi= 10, and the inter-
ference temperature to be Qk= 0.01. The number of subcarriers is 32 in both conditions.

From Figure 5, we can find that, when there is only one secondary user, the results of both algo-
rithms are the same and equal to the initial population, which means it is not necessary to allocate
the network resource when there is only one secondary user. In addition, when the number of
users is larger or the interference constraints play the major role, the performance of the proposed
algorithm is much better than the improved water-filling algorithm.

4.4. The comparison of different criterions

In order to compare the performance under different criterions, which are mentioned in part 2, the
following experiment is designed: we set n= 32, Qk= 0.01 +AWGN, and Pi= 0.01. The initial
number of secondary users is set to 4, the final number is set to 11, and the step is set to 1. The
proposed algorithm runs under the MSR criterion, the MMR criterion, and the MPF criterion,

Figure 4. The variation of system throughput versus power limitation (a) or interference limitation (b), when
m = 12.
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respectively. We count the optimal result, the average system throughput, and the variance of
secondary users to it under the aforementioned three criterions. The simulation results under
different criterions are shown in Table II.
It can be seen from Table II that under the MSR criterion, the proposed algorithm can

acquire the largest system throughput, while its variance is the largest too. This means an
unfair allocation of data transmit rate between secondary users. Under the MMR criterion,
the proposed algorithm acquires the least average system throughput with the least variance.
This means that the MMR criterion emphasizes the fairness between secondary users most
and sacrifices the data transmit rate. Under the MPF criterion, the average system throughput
and the variance are middle in these three criterions. This means that the MPF criterion can
make a compromise between the system throughput and the fairness among secondary users.
Overall, these three criterions have their own characteristic. If we emphasize the system
throughput, the MSR criterion is recommended. If the fairness among secondary users is more
important, the MMR criterion should be considered. If both characteristics are in need, the
MPF criterion should be in reference.

4.5. The effect comparison with other intelligent algorithms

For the resource allocation problem in the OFDM network, there are many intelligent algorithms
proposed. We also take the algorithms in [27] and [30] as contrastive algorithms to testify to the
effectiveness of the proposed algorithm. The OFDM network with one base station is assumed here,
which has n subcarriers and m secondary users. The parameters of the network are set as in [30],
which are listed as follows:

Figure 5. The variation of system throughput versus the number of secondary user when power constraints
(a) or interference constraints (b) take the main effect.

Table II. The simulation results under different criterions.

Number of
secondary
users

Fitness value
Average throughput of
each secondary user

Variance of the throughput of
each secondary user

MSR MPF MMR MSR MPF MMR MSR MPF MMR

4 156.44 2330221 38.26 39.11 39.08 38.89 71.45 2.45 1.58
5 165.55 39357489 31.60 33.11 33.10 32.66 32.92 21.95 8.65
6 175.23 6.12E+08 27.78 29.21 29.20 28.70 30.38 23.64 9.72
7 180.06 7.19E+09 23.59 25.72 25.68 24.68 99.39 30.27 13.77
8 185.33 8.23E+10 22.17 23.17 23.15 22.89 46.15 1.73 0.95
9 188.26 7.02E+11 18.51 20.92 20.84 20.47 110.44 45.82 27.85
10 192.98 6.76E+12 18.22 19.29 19.28 19.11 40.72 38.68 22.52
11 196.19 5.3E+13 13.44 17.84 17.76 17.02 88.22 24.21 20.04

MSR, Max-Sum-Reward; MPF, Max-Proportional-Fair; MMR, Max-Min-Reward.
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The number of subcarriers is 64.
The number of secondary users is set between 2 and 16.

The equivalent noisy power spectral density is 1.1565 × 10�8W/Hz.

The channel bandwidths is 1MHz.

The total power of the base station is 1W.

The channel gains of the OFDM network are uniform random numbers in the interval [0 1].

The BER is set to be 10�3.

At the same time, to testify the performance of the proposed algorithm under the MPF criterion,
an MPF-based penalty term is added to the objective function [27], which is shown in formula (20).
The penalty parameter is w= 1.5. In the experiment, the results of the proposed algorithm with and
without the penalty term are presented.

f ¼ U Rð Þ þ w*max 0; 1�
XM
i¼1

Ri

 !2

=XMi¼1

Ri
2

0
B@

1
CA

0
B@

1
CA (20)

In formula (20), U(R) is calculated by formula (6).
In this experiment, four algorithms run for 100 times separately, the results are counted and

presented in the form of a boxplot, and the average results are calculated and presented;
Figures 6–8 show the experiment results.
Figure 6 shows the average results of four algorithms when the secondary users vary from 2 to 16

and are an even number. This figure tells us that when the number of secondary users increases, the
system transmit rate of four algorithms increases too, which confirms the diversity effect of second-
ary users. The proposed algorithm can acquire a higher system transmit rate compared with both
two contrastive algorithms. Meanwhile, from the proposed algorithm, we can find that the result
does not change if the penalty term is added to the objective function, which means that the system
transmit rate is uniformly distributed among secondary users and the MPF criterion can be
guaranteed by the proposed algorithm.
To test the stability of the proposed algorithm, we take the number of secondary users to be six

and use a boxplot to show the 100-run results of four algorithms in Figure 7.
From Figure 7, we can find that, compared with the two contrastive algorithms, the proposed

algorithm shows very steady results. Meanwhile, we can also find that the result does not change
if the penalty term is added to the objective function, which means the MPF criterion can be
guaranteed by the proposed algorithm.
In order to further test the performance of the proposed algorithms under the MPF criterion, we

count the transmit rate of every secondary user for four algorithms in every run and calculate the
relative variance according to formula (21).

Figure 6. System transmit rate versus the number of secondary users.
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V Rð Þ ¼
Xm
i¼1

Ri � Raver

Raver

� �2

(21)

In formula (21), the Raver is calculated as formula (22)

Raver ¼

Xm
i¼1

Ri

n
(22)

From formula (21), we can find that the value of V(R) is always positive; the smaller the value of
V(R) is, the smaller the difference of transmit rate among secondary users, which means the system
transmit rate is distributed more even among secondary users; when the value of V(R) is 0, the
system transmit rate is distributed absolutely even among secondary users.
The relative variance of 100 runs for four algorithms is shown in Figure 8. We take the secondary

users to be 4.
From Figure 8, we can find that both the proposed algorithm and the algorithm in [27] can realize

the uniform distribution of the system transmit rate among secondary users, and the result of the
proposed algorithm is very steady. In addition, from the results of the proposed algorithm with
and without the penalty term, we can find that the penalty term hardly has any effect on the

Figure 7. The statistic of 100 runs for different algorithms.

Figure 8. The statistic of variance of different users.
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performance of the proposed algorithm. The proposed algorithm can satisfy the MPF criterion even
without the penalty term.

4.6. The effect of the proposed algorithm under imperfect channel state information

In a real communication network environment, the accurate channel parameters cannot be acquired
because of the error and delay of channel information, which will lead to two influences: (1) this
will cause channel parameter estimation errors and improve the BER and (2) parameter estimation
results is outdated. To solve the delay problem of channel estimation, probability estimation
methods (like maximum likelihood estimation) are used to estimate current channel state informa-
tion, the channel information known in the past. In cognitive radio technology, the estimation of
channel state information is completed in spectrum analysis, which is not the main purpose of
the paper; however, the influence of the channel estimation error must be considered, which mainly
causes the improvement of BER. In a real urban environment, because of multipath effects, channel
gain generally obeys the Rayleigh distribution. When M-QAM modulation is used, the BER can be
calculated using the following formula [31]:

Pe ¼ c1 exp
�c2γik
2Rik � 1

� �
(23)

In the preceding formula, γik denotes signal-to-noise ratio and c1 and c2 are the experience values,
where c1 is set to be 0.5 and c2 is set to be 1.2[32].
In this experiment, the random numbers that obey Rayleigh distribution with average 1 are used

to simulate the channel gains and interference temperature index. Meanwhile, the channel band-
width is set to Wc = 1MHz. The AWGN for every subcarrier is set to be the Gaussian number with
an average of 10�7W/Hz. The BER will be calculated using the preceding formula.
The number of subcarriers is set to be n = 32. Keep the interference temperature limit for every

subcarrier to be Qk= 0.1 +AWGN, while the number of secondary users is set to m= 2–16 and
increases by 2. The effects of the proposed algorithm and the contrast algorithms are tested.
From Figure 9, we can find the stability of the proposed algorithm, which indicates the same

conclusion as in Section 4.5.

5. CONCLUSIONS

The DPICS algorithm is proposed in this paper for the resource allocation problem in a cognitive
OFDM network. Different from the traditional algorithm, the proposed algorithm codes the
subcarrier and uses the discrete decision space. The main advantages of the proposed algorithm
are the following:

Figure 9. System transmit rate versus the number of secondary users.
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It codes the subcarrier. This coding has the shortest length compared with that of other algo-
rithms. The length of this coding is affected only by the number of subcarriers. The variables take
the integer value in the interval [1m] and are affected only by the number of secondary users.

The mutation operation takes the heuristic method, which makes the search of new allocation
proposal more effective than the traditional ones and reduces the time cost as a result. Meanwhile,
this mutation operation can handle multi-value discrete variables.

The proposed algorithm allocates the subcarrier and the power at the same time with low time
complexity, which is different with the two-step algorithms.

The proposed algorithm avoids the processing of subcarrier allocation constraints. The power allo-
cation operation can handle the constraints effectively. As a result, the complexity is reduced.

A series of experiments are designed to verify the performance of the proposed algorithm. The
results and analysis of the experiments show the good effectiveness of the proposed algorithm.
But still, there are some problems that need to be solved, just like the time cost problem, the
accuracy of the optimal solution, the adaptive control of the scale of the algorithm, and so on.
Therefore, our future work will focus on these problems.
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