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Abstract The existing algorithms to solve dynamic mul-
tiobjective optimization (DMO) problems generally have
difficulties in non-uniformity, local optimality and non-
convergence. Based on artificial immune system, quantum
evolutionary computing and the strategy of co-evolution, a
quantum immune clonal coevolutionary algorithm (QICCA)
is proposed to solve DMO problems. The algorithm adopts
entire cloning and evolves the theory of quantum to design a
quantum updating operation, which improves the searching
ability of the algorithm. Moreover, coevolutionary strategy
is incorporated in global operation and coevolutionary com-
petitive operation and coevolutionary cooperative operation
are designed to improve the uniformity, the diversity and the
convergence performance of the solutions. The results on test
problems and performance metrics compared with ICADMO
and DBM suggest that QICCA has obvious effectiveness and
advantages which shows great capability of evolving conver-
gent, diverse and uniformly distributed Pareto fronts.

Keywords Dynamic multiobjective optimization (DMO) ·
Immune clonal operation · Quantum updating operation ·
Coevolutionary · Pareto optimal front

1 Introduction

In the real world, a number of multiobjective optimization
problems exist in the environment changing over time, and
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this kind of problems are called dynamic multiobjective
optimization (DMO) problem (Farina et al. 2004). As a result
of the important role of DMO problem in practical appli-
cation, the study of algorithms for DMO problems is very
necessary (Back 1998).

Although there are some evolutionary multiobjective opti-
mization algorithms to solve static multiobjective optimiza-
tion (SMO) problems, e.g., (Deb et al. 2002; Zitzler and
Thiele 2005; Nebro et al. 2007), the research and promotion
of DMO problems are still on the preliminary stage. Branke
(2002) presented a multi-population strategy, which is an
effective method to construct dynamic intelligent optimiza-
tion algorithms. Farina et al. (2004) proposed a set of DMO
test problems and the correlative solution: Direction-based
method (DBM). In 2005, an immune clonal algorithm for
DMO was presented by Shang et al. (2005), which was based
on immune clonal mechanism. As far as the authors know, the
latest work reported for DMO is the dynamic competitive-
cooperation coevolutionary algorithm (dCOEA) proposed by
Goh and Tan (2009), which is focused on the competitive-
cooperation strategy in co-evolution.

In this paper, we design a new algorithm: quantum
immune clonal coevolutionary algorithm for dynamic multi-
objective optimization (QICCA) which can deal with DMO
problems. From the view of the adaptability of artificial
immune system (AIS) and the diversity of antibodies (de
Castro and Timmis 2002a,b; Gong et al. 2006; Liu et al.
2010), QICCA incorporates the quantum rotation gate strat-
egy in quantum evolutionary algorithm (Maravall and de
Lope 2007; Jiao et al. 2008) to design a quantum updat-
ing operation, which improves the searching ability in the
evolutionary process and achieves better results. In addi-
tion, QICCA employs the coevolutionary mechanism in
global search, which takes advantage of the multi-population
strategy in Jiao et al. (2006) and Goh and Tan (2007) to
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enhance the competitive and cooperative relationship and the
exchange of information among different populations as well
as the enlargement of the search region of the algorithm. We
consider the U -measure proposed by Leung and Wang (2003)
as the competitive operation of the algorithm and design a
new cooperative operation to improve the uniformity and the
diversity performance of the population. The test results on
five test problems in Farina et al. (2004) of the new algorithm,
which are compared with DBM and ICADMO, show that
QICCA has reached better results and effectively improves
the performance of the population. Moreover, we test dif-
ferent operations on a test problem, which shows that every
component of QICCA has its contribution to the performance
of the population.

This paper is organized as follows: we briefly introduce
the key concepts used in the field of DMO in Sect. 2. The
detailed framework and the designed operations of the new
algorithm QICCA are in Sect. 3. Thereafter, in Sect. 4, we
present the compared results of the proposed algorithm with
other two algorithms and the results with different operations,
which prove the feasibility of QICCA. In Sect. 5, we give the
concluding remarks and future work.

2 Problem statement and basic definitions

Definition 1 Consider a DMO problem which includes a
time t , an n-dimensional decision variable x, M-objectives,
and the constraint conditions. The objective functions and the
constraint conditions are the functions of decision variable x.
The mathematical model of the DMO problem is formulated
as:{

min f = { f1(x, t), f2(x, t) . . . , fM (x, t)}
s.t. g(x, t) ≤ 0, h(x, t) = 0

(1)

where t ∈ [t0, ts]denotes the time variable, x = (x1, x2, . . . ,

xn) ∈ X(t) is the variable vector (decision variable), f =
{ f1(x, t), f2(x, t), . . . , fM (x, t)} ∈ Y(t) is the objective
vector. X(t) and Y(t) are called decision space and objective
space, respectively. g(x, t) and h(x, t) are the constraints,
which determine the feasible region (Wang and Dang 2008).

Definition 2 X f (t) denotes the set of feasible decision vari-
ables, i.e., decision variables fulfilling the constraints.

X f (t) = {x ∈ X(t) |g(x, t) ≤ 0, h(x, t) = 0 } (2)

The mapping of X f (t) is the feasible region of objective
space, which is denoted as Y f (t) = f (X f (t)) (Jiao et al.
2006).

Definition 3 For any two objective vectors u and v

u = v, iff ∀i ∈ {1, 2, ..., k}, ui = vi

u ≥ v, iff ∀i ∈ {1, 2, . . . , k}, ui ≥ vi

u > v, iff u ≥ v ∈ u �= v

(3)

Definition 4 For any two decision vectors a and b

a � b(a dominates b), (4)

where for every i ∈ {1, 2, . . . , M}, fi (a) ≤ fi (b) and for at
least one k ∈ {1, 2, . . . , M}, s.t. fk(a) < fk(b).

Definition 5 At some moment t , a feasible decision vec-
tor x∗ ∈ X f (t) is the Pareto optimal if there is no other
x ∈ X f (t) that dominates x∗. Moreover, the set of all
Pareto optimal decision vectors in X f (t) is called Pareto
set, denoted as X p(t) · Y p(t) = f (X p(t)) is the set of all
Pareto optimal objective vectors, which stands for the Pareto
front (Jiao et al. 2006).

On the basis of Definition 5, there can be four different
types of DMO problems according to the changes of X p(t)
and Y p(t) (Farina et al. 2004).

• Type 1, where X p(t) changes while Y p(t) remains
unchanged.

• Type 2, where both X p(t) and Y p(t) change.
• Type 3, where X p(t) does not change, while Y p(t)

changes.
• Type 4, where both X p(t) and Y p(t) remain invariant,

although the DMO problem is changing over time.

3 Quantum immune clonal coevolutionary algorithm
for dynamic multiobjective optimization

3.1 Algorithm description

Quantum immune clonal coevolutionary algorithm (QICCA)
is proposed for DMO. QICCA makes use of the immune
clonal function and clonal selection function in AIS to
achieve the large-scale evolution towards the excellent
schema of the optimal antibodies (Coello and Cortes 2002; de
Castro and Timmis 2002a,b; Shang et al. 2012). With the con-
sideration of the improvement of the uniformity and the diver-
sity of the population, we implement the multi-population
strategy in co-evolution theory (Jiao et al. 2006) and take
advantage of the competitive and cooperative relationship
to enhance the exchange of the information among differ-
ent populations. In addition, inspired by the characteristics
of quantum computing, in this new algorithm, we design a
quantum updating operation, and the design of the quantum
rotation angle in the quantum rotation gate (Jiao et al. 2008;
Li et al. 2012b) realizes the improvement of the searching
ability of the population and the better distribution of the
Pareto optimal solutions. The flow chart of QICCA at a fixed
time t is shown in Fig. 1.

It can be seen from Fig. 1 that QICCA mainly combines the
immune clonal operation, the quantum updating operation,
and the coevolutionary operation. The three main operations
are described in Sects. 3.2, 3.3 and 3.4.
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Fig. 1 Flow chart of QICCA

3.2 Immune clonal operation

3.2.1 Immune clonal proliferation operation

In immunology, the word “clone” generally means the asex-
ual propagation, which means the asexual propagation can
descend a group of identical cells from a single common
ancestor, for example, members of bacterial colony can be
arisen from a single original cell as the result of mitosis.
Based on the theory of AIS, the clonal operation realizes
the enlargement of the space and provides the foundation
of the global search for attain new population and algo-
rithms. Moreover, the clonal operation provides the condi-
tion for the restructuring strategies, such as partial restructur-
ing and entire restructuring, which improves the information
exchange among different antibodies. Actually, clone is the
duplication of single antibody to multiple antibodies (Coello
and Cortes 2002; Gong et al. 2008; Shang et al. 2012), which
can achieve the self-adapting expansion of antibodies. Con-
sidering this advantage, the clonal proliferation operation of
new algorithm improves the performance of the solutions by
appropriately increasing the scale of obtained Pareto optimal
solutions. Particularly, we assume that the size of the pop-
ulation P is n, P = (x1, x2, . . . , xn), the implementation
procedure of clonal proliferation operation is as follows:

P
′ = T C

c (P) = T C
c {x1, x2, . . . , xn}

= T C
c {x1} + T C

c {x2} + · · · + T C
c {xn}

= {x1
1, x2

1, . . . , xq
1} + {x1

2, x2
2, . . . , xq

2}
+ · · · + {x1

n, x2
n, . . . , xq

n} (5)

where T C
c is the clonal proliferation operation, q is the clonal

proportion, in QICCA, q = 6.

3.2.2 Clonal selection operation

The clonal selection is the contrary operation of clonal prolif-
eration operation, which can select better antibodies to form
a new population from the sub-population. Different from
other selection operation of general evolutionary computing,
in AIS, clonal selection means the process that selecting the
better antibodies from offsprings which have been immune
clonal proliferated from the antibodies and the correlative
parents to generate new population (Coello and Cortes 2002;
Shang et al. 2012). The implementation procedure of clonal
selection operation is as follows:

P
′′ = T C

S (P
′
) = T C

S ({x1
′

1 , x2
′

1 , . . . , xq
′

1 }
+ · · · + {x1

′
n , x2

′
n , . . . , xq

′
n })

= T C
S ({x1

′
1 , x2

′
1 , . . . , xq

′
1 , . . . , x1

′
n , x2

′
n , . . . , xq

′
n })

= {x
′
1, x

′
2, . . . , x

′
n} (6)

where T C
S is the clonal selection operation. QICCA divides

the antibodies into dominated ones and nondominated ones.
An antibody is selected or not depends on whether it is a non-
dominated solution, and only the non-dominated antibodies
are selected in the antibody population (Shang et al. 2005).

In QICCA, for any antibody x j ′
i ∈ P

′
, i ∈ {1, 2, . . . , n}, j ∈

{1, 2, . . . , q}, x j ′
i , is called a non-dominated antibody in the

current iteration iff:

¬∃x p′
r �= x j ′

i ∈ P
′
, r ∈ {1, 2, . . . , n} ,

p ∈ {1, 2, . . . , q} : x p′
r � x j ′

i (7)

Otherwise, x j ′
i is called a dominated antibody.

Based on Eq. (7), the antibodies in P
′
are divided into two

parts: P
′
non with Nnon non-dominated antibodies and P

′
dom

with Ndom dominated antibodies. Note that Nnon + Ndom =
q ∗ n. In QICCA, If Nnon > n, then select n antibodies
according to the antibody population updating (APU) strat-
egy proposed by Shang et al. (2012). If Nnon < n, then select
n − Nnon antibodies in P

′
non randomly to compose a popu-

lation denoted by P
′
n−Nnon

and P
′′ = P

′
non ∪ P

′
n−Nnon

.

3.3 Quantum updating operation

In order to improve the search ability of the algorithm, we
design a new operation called quantum updating operation,
which can attain global detection and local exploitation abil-
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ity. This ability can achieve the intelligence when implement-
ing the searching ability, that is, the operation can decide to
choose global detection or local exploitation when running
the program. Currently we consider the population evolutes
forward under the operation of the evolutionary algorithm.
Therefore, the algorithm is designed to take local exploitation
operation after the global detection operation.

As a result of the implementation of the basic functions
of immune clone mechanism in QICCA, the real coding is
adopted to design quantum updating operation. At first, the
control variable is mapped to the unit interval. Afterwards, we
will calculate the rotation angle and the direction of the rota-
tion. Finally, the variables are mapped to the original interval.
Generally, the expressive form of the quantum rotation gate
(Pulmannnova 2001; Yu et al. 2010; Li et al. 2012a,b) is:

G(ϕ) =
[

cos(ϕ) − sin(ϕ)

sin(ϕ) cos(ϕ)

]
(8)

where ϕ is the rotation angle of G(ϕ).
Through the implement of G(ϕ), for some quantum bit[

αi

β i

]
, the new quantum bit will be changed into:

[
αi ′

β i ′

]
=

[
cos(ϕ) − sin(ϕ)

sin(ϕ) cos(ϕ)

]
×

[
αi

β i

]
(9)

In this paper, the rotation angle of the quantum updating
operation is designed as:

ϕ = λ × d(i, j) (10)

where, d(i, j) ∈ {−1, 0, 1} is the searching direction of the
rotation, which changes randomly. d(i, j) = 1 represents the
anticlockwise searching direction, d(i, j) = −1 indicates the
clockwise searching direction and d(i, j) = 0 means there
is no changes. The illustration is shown in Fig. 2.

In Fig. 2, λ is the self-adapting step size, which determines
the searching precision of the algorithm. We implement the

Fig. 2 The quantum updating operation

strategy that adjusting the step size dynamically near the bet-
ter solutions to strengthen the searching ability of the algo-
rithm. U (. , .) is the uniform random number. Particularly,
we define the λ as follows:

λ = U
(

k × b
it−1

g max −1 , b
it−1

g max −1

)
(11)

In this formula, it is the current iteration number, while
gmax is the total iteration number, both it and gmax determine
the searching range of λ. When it is quite small, the self-
adapting step size will be very large, and the operation can
achieve a comprehensive fast global search, of which the
searching range is [0, k]; when it gradually increases to gmax,
the self-adapting step size will reduce to a small value and
the operation can realize the improvement of local searching
ability by reducing the step size near better antibodies. The
searching range of local search is [0, b].

Due to the real coding applied in the new algorithm, the
practical form of the quantum rotation gate in QICCA is:

G(ϕ) =
[

cos(ϕ) − sin(ϕ)

0 0

]
(12)

Based on the analysis above, we can get the procedure of
quantum updating operation as follows:

Algorithm 1: Quantum updating operation
For a decision variable x = (x1, x2, . . . , xn), where xi ∈

[lower, upper], i = 1, 2, . . ., n.
Step 1: Every xi is mapped into [0, 1] to get xi[0,1] =

xi −lower
upper−lower , i = 1, 2, . . . , n.

Step 2: Implement quantum real coding to get: x′ =(
x1[0,1] x2[0,1] · · · xn[0,1]√

1 − (x1[0,1])2
√

1 − (x2[0,1])2 · · · √
1 − (xn[0,1])2

)
.

Step 3: For some bit i of x′, we implement quantum
rotation operation, i.e., computing the rotation angle ϕ =
λ × d(i, j) and the random rotation direction d(i, j) to get:
x ′

i[0,1] = cos(ϕ) × xi[0,1] − sin(ϕ) × √
1 − (xi[0,1])2, thus

x′will be updated into x′′.
Step 4: If the updated bit is out of [0, 1], revise it by

dichotomy to get: x′
i[0,1] = (x ′

i[0,1]+xi[0,1])
2 , repeat the opera-

tion until the bit is within [0, 1].
Step 5: The updated antibody x′′ will be mapped into

[lower, upper] by computing x′′′
i = x′′

i ×(upper −lower)+
lower . After this step, we will get the final updated x′′′.

As a consequence, we can see that the quantum rotation
angle of the quantum rotation gate can update by the dynamic
change of the self-adapting step size.

3.4 Coevolutionary operation

The resource in nature is very limited; therefore, the worse
populations will be obsoleted via competition, while the bet-
ter populations will be conserved for evolution. In addition,
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there is another relationship among different populations,
which is called the cooperation relationship. Although the
individuals of various populations are quite different, the
environment of the populations is similar. Thus, the con-
sideration of the cooperation for diverse populations is nec-
essary, which can contribute to the evolution for all popula-
tions. Nevertheless, most evolutionary algorithms only con-
sider one population, which will overemphasize the evolu-
tion of the antibodies within the population that the Pareto
optimal solutions could not spread on the Pareto front. On
behalf of avoiding the loss of the diversity of the Pareto opti-
mal solutions, QICCA employs the coevolutionary operation
to maintain its performance. Co-evolution is based on the
mutual restrictive, interdependent and mutual coordinated
relationship of different populations (Jiao et al. 2006). In
coevolutionary operation, the operations take advantage of
the competitive and cooperative relationship among multiple
populations. In QICCA, the difference of the performance for
different populations is taken into account to realize coevo-
lutionary operation. In this operation, we have implemented
two operations: competitive operation and cooperative oper-
ation. The competitive operation is designed to improve the
uniformity of the algorithm, while the cooperative operation
is designed to improve the diversity of the algorithm. The
details of two operations are shown in Sects. 3.4.1 and 3.4.2
respectively.

3.4.1 Coevolutionary competitive operation

For the sake of improving the performance of the optimal
solutions for the population, we design a coevolutionary com-
petitive operator which uses the U -measure in Wang and
Dang (2008) as the criterion. U -measure tests the unifor-
mity of the Pareto optimal solution distribution. U -measure
is stated in Table 1.

As the U -measure value of the population stands for
the uniformity and the spread of the Pareto optimal solu-
tions, thus the less value means that the distribution of the
solutions is more uniform and more extensive. In QICCA,
we use the difference between the U -measure values of
two populations as the criterion which determines the selec-

tion of the operation, i.e., when the absolute value of the
difference (|Um1 − Um2|) is greater than a proper value
θ , there is a clear difference of the uniformity between
two populations and we will implement coevolutionary
competitive operation, otherwise coevolutionary cooperative
operation.

Assume that there are j independently evolved popula-
tions P1, P2, …, P j , the U -measure of the ith population
P i is denoted as Umi . The coevolutionary competitive oper-
ation is formulated as:

Pnew = P t , Umt = min
2≤i≤ j

Umi , t ∈ {2, 3, . . . , j} (13)

where Pnew is the new population, P t is the population with
the smallest U -measure value among P1, P2, . . . , P j .

Note that the new population is the population with bet-
ter uniformity and spread after the annexation operation, the
coevolutionary competitive operation can select better pop-
ulation and enhance the performance of the Pareto optimal
solutions.

3.4.2 Coevolutionary cooperative operation

According to what is stated above, when the absolute value
of the difference (|Um1 − Um2|) is less than a proper value θ ,
we will implement coevolutionary cooperative operation
(Jiao et al. 2006). With the consideration of the absolutely
independent evolvement of the two populations P1 and
P2, QICCA makes use of the search in different regions
in decision space to realize the coevolutionary coopera-
tive operation. Particularly, the new population Pnew =
( y1, y2, . . . , yn) generated from the cooperative operation
is designed as:

yi = ( y1
i + y2

i )

2
i = 1, 2, . . . , n (14)

where y1
i = r2

i +U (−1, 1) ·(r2
i −x1

i ), y2
i = r1

i +U (−1, 1) ·
(r1

i − x2
i ), U (. , .) is the uniform random numbers, x1

i and
x2

i are the random antibodies of P1 and P2. r1
i and r2

i are the
antibodies randomly chosen from X p1(t) and X p2(t).

With the coevolutionary cooperative operation, two pop-
ulations can exchange information and enlarge the search

Table 1 U -measure

Problem Two objectives problem M objectives problem

U-measure (Um) Um = dstd =
√

1
N

N∑
i=0

(
di,i+1 − dmean

)2
Um = dstd =

√
1

2M N−1

∑
g∈T

2M∑
r=1

(dr − dmean)2

where dmean = 1
N+1

N∑
i=0

di,i+1 where dmean = 1
2M N

∑
g∈T

M∑
r=1

(d2r−1 − d2r )

where di,i+1 is the distance of every pair of adjacent points and dmean is the mean distance. T is a set of Pareto solutions in the objective space,
each point g ∈ T, r ∈ [1, M] and dr is the distance of this point to its neighbors. Um can measure the uniformity and spread for the points in T .
For a more detailed description the interested reader is referred to Leung and Wang (2003) and Wang and Dang (2008)
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region of the algorithm, which makes the most of the differ-
ence between various populations to increase the diversity of
the population.

Based on the principles introduced above, the procedure
of coevolutionary operation is shown as follows:

Algorithm 2: Coevolutionary operation
Given two populations P1 and P2 and get the Pareto opti-

mal solutions P O S1 for P1 and P O S2 for P2; an empty
population P3; parameter θ ; the number of the antibodies
randomly chosen for Pareto neighborhood k; i = 1.

Step 1: Select two antibodies randomly from P1 and P2,
denoted by x1

i and x2
i and select two antibodies optimal

solutions randomly from P O S1 and P O S2, denoted by r1
i

and r2
i ;

Step 2: Calculate the U-measure values of P1 and P2,
denoted as Um1 and Um2;

Step 3: If |Um1 −Um2| ≥ θ turn to Step 4; otherwise, turn
to Step 5

Step 4: If Um1 ≤ Um2, P3 = P1; otherwise, P3 = P2;
Step 5: Calculate y1

i = r2
i + U (−1, 1) · (r2

i − x1
i ) and

y2
i = r1

i + U (−1, 1) · (r1
i − x2

i ) and get yi = ( y1
i + y2

i )

2 ;
Step 6: If i = k, P3 = {

y1, y2, . . . , yk

}
; otherwise, i =

i + 1 and turn to Step 1.
As shown in Algorithm 2, when the difference between the

U-measure values for two populations is greater than θ , the
algorithm implements coevolutionary competitive operation
and the new population P3 is determined by the parent with
less U-measure value. Forasmuch as the new population has
better uniformity and spread, the quality of the solutions in
the objective space is improved, while when the difference is
less than θ , the algorithm will choose coevolutionary coop-
erative operation. Therefore, with the cooperative operation
the populations will exchange their information to expend
the search area of the algorithm. Hence, making the most of
the difference between different populations can improve the
uniformity.

3.5 The QICCA algorithm

On the basis of the designed operations above, the procedure
of QICCA is followed.

Algorithm 3: Main loop for QICCA
Step 1: Initial iteration number it := 0, t := 0, the maxi-

mum iteration is gmax, the maximum time step is T . Initialize
two populations A and B with a size of N .

Step 2: If t < T , go to Step 3; otherwise, stop.
Step 3: Calculate the fitness value of each antibody

and select Y f (t) for A and B, denoted as A0 and B0

respectively.
Step 4: Implement immune clonal operation on A0 and

B0 to generate two new populations A1 and B1.

Step 5: Implement quantum updating operation on A1 and
B1 and select the nondominated solutions of each population.
Afterwards, reload the solutions into A1 and B1.

Step 6: Test A1 and B1 with U -measure and acquire the
measure values Um1 and Um2.

Step 7: If |Um1 − Um2| > θ , implement coevolutionary
competitive operation; Otherwise, implement coevolutionary
cooperative operation.

Step 8: If it < gmax, it := it + 1, go to Step 3; other-
wise, output the resulting population at time step t and go to
Step 9.

Step 9: t := t + 1, it := 0, go to Step 2.

4 Experiment results and discussion

In this paper, the test problems are taken from Farina et al.
(2004). Furthermore, we select two algorithms to compare
with QICCA, especially the uniformity, the diversity and
the convergence performance of the solutions distribution:
(1) Direction-based method (DBM), which is an immediate
extension of the static direction-based search method and the
multiobjective search algorithm is run in the time between
one time-dependent change to another (Farina et al. 2004). (2)
Immune clonal coevolutionary algorithm for dynamic mul-
tiobjective optimization (ICADMO), the one that improves
the existing clonal strategies to take entire cloning and divide
the antibody populations into dominated antibodies and non-
dominated antibodies by Pareto-dominance strategy. Next,
we present the box plots (Chambers et al. 1983) on the met-
ric S, MS and GD on 30 independent runs for these two
algorithms. In addition, we give the results with different
component of QICCA, which proves the feasibility of their
function and contribution.

4.1 Performance metrics

At every moment, the DMO problem is a standard multi-
objective optimization problem. Generally, a multiobjective
optimization problem is evaluated by the uniformity metric,
the diversity metric and the convergence metric. As a result,
we select three metrics to test the performance of the new
algorithm: space metric (S), most spread metric (MS) and
generation distance metric (GD).

4.1.1 Uniformity test: space metric (spacing, S (Van
Veldhuizen and Lamont 2000)

Space metric is to measure the uniformity of the distribution
of the Pareto optimal solutions. Formally:

S =
√√√√ 1

n − 1

n∑
i=1

(d̄ − di )2 (15)
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where di = min j (| f i
2 (x) − f j

1 (x)| + | f i
2 (x) − f j

2 (x)|),
i, j = 1, . . . , n, d̄ is the mean value of di . n is the number
of the antibodies on Pareto-front.

It can be seen from Eq. (15) that the smaller the metric
is, the more uniform the distribution of the Pareto optimal
solution will be. When S = 0, the Pareto optimal solution is
the most uniform.

4.1.2 Diversity test: most spread metric (MS (Goh and Tan
2007))

Most spread metric is to measure how well the true Pareto-
front (P Ftrue) is covered by the evolved Pareto-front
(P Fknown). Formally:

M S =
√√√√ 1

M

M∑
i=1

min((P Ftrue)i , (P Fknown)i ) − max((P Ftrue)i , (P Fknown)i )

(P Ftrue)i − (P Ftrue)i

(16)

where (P Fknown)i denotes the maximum of the i th objective
function on P Fknown , while (P Fknown)

i
is the minimum of

the i th objective function on P Fknown . Similarly, (P Ftrue)i

and (P Ftrue)i
is the maximum and the minimum of the i th

objective function on P Ftrue respectively.
It can be seen from Eq. (16) that the higher the metric

is, the larger the coverage area will be and the better the
diversity of the solutions will be. The value MS = 1 means
that the coverage area of the evolved Pareto-front over the
true Pareto-front is 100 %.

4.1.3 Approximation property test: generational distance
metric (GD (Van Veldhuizen and Lamont 2000))

Generational distance metric provides a good measure of the
distance between the evolved Pareto-front (P Fknown) and the
true Pareto-front (P Ftrue). Mathematically, this metric is a
function of antibody distance given as:

G D = 1

n

(
n∑

i=1

d p
i

)1/p

(17)

where p = 2, n is the number of antibodies. di is the Euclid-
ean distance between the objective function vector of the i th
antibody on P Fknown and the nearest antibody on P Ftrue.

Equation (17) suggests that a smaller value of the met-
ric reflects a better convergence performance of the evolved
Pareto-front to the true Pareto-front will be.

4.2 Parameter settings

On all test problems, the parameter values of QICCA are
as follows: The size of the population: N = 300. Over-
all iteration number: gmax = 150; The expected number

of nondominated antibody population Nn is related to the
test problem. The cloning proportion: Nc = 6. In every test
DMO problem, we define a fixed maximum runtime T . On
these settings, the new algorithm can achieve relatively good
results.

4.3 Results and comparisons

4.3.1 FDA1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min F1(xI) = x1

min F2(xI, xII) = g(xII) · h(F1, g)

where, g(xII) = 1 + ∑
xi ∈xII

(xi − G(t))2

h(F1, g) = 1 −
√

F1
g , G(t) = sin(0.5π t), t = 1

nτ

⌊
τ
τT

⌋
(18)

where x I = (x1) ∈ [0, 1], x I I = (x2, . . . , xn) ∈ [−1, 1],
n = 20, τT = 5, nt = 10. In this problem, G(t) changes
over time, hence X p(t) will change over time as well, while
Y p(t) remains invariant. The Y p(t) is F2 = 1 − √

F1 at any
time. The Pareto optimal solutions of each algorithm and
Pareto-fronts are shown in Fig. 3.

For this problem, QICCA has shown an overall advan-
tage over other algorithms. Particularly, it can be seen from
Fig. 3 that the proposed algorithm has attained a better dis-
tribution of solutions than DBM and ICADMO. DBM fails
to acquire the Pareto optimal solutions in the upper left of
the Pareto-fronts, while ICADMO does not have a good
uniformity.

The box plots of the metrics in Fig. 4 show that the
QICCA has better metric statistical results than ICADMO
on every moment. On one side, the minimum, mean value
and maximum of metric S for QICCA are all smaller
than those of ICADMO. On the other side, although the
minimum of metric MS for QICCA on some moments
is smaller than the corresponding value of ICADMO,
the maximum and mean value of the proposed algorithm
are both the larger ones. In addition, it is obvious that
the new algorithm reaches a better result on convergence
of the population, which shows the improvement of the
convergence.

4.3.2 FDA2

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min F(x I ) = x1

min F(xI, xII) = g(xII) · h(xIII, F1, g)

where, g(xII) = 1 + ∑
xi ∈xI I

x2
i

h(xIII, F1, g) = 1 −
(

F1
g

)(H(t)+∑
xi ∈xII

(xi −H(t))2)

,

H(t) = 0.75 + 0.7 sin(0.5π t), t = 1
nτ

⌊
τ
τ T

⌋
(19)
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(a) Results of DBM (b) Results of ICADMO (c) Results of QICCA

Fig. 3 The Yp(t) of FDA1 and results of each algorithm

Fig. 4 Box plots of each metric

Fig. 5 The Y p(t) of FDA2 and results of each algorithm

where xI = (x1) ∈ [0, 1], xII, xIII ∈ [−1, 1], |xII| =
|xIII| = 15, n = 31, τT = 5, nt = 10. In FDA2, Y p(t)
swings from a convex shape to a non-convex shape with
the change of H(t), while X p(t) remains invariant. In every

moment, the Y p(t) of FDA2 is F2 = 1 − F H(t)+15(1+H(t))2

1 .
Figure 5 gives the Pareto optimal solutions of each algorithm
and Pareto-fronts of FDA2.

The test results shown in Fig. 5 suggest that DBM and
ICADMO fail to maintain good uniformity and diversity on

FDA2. Moreover, the results of DBM tend to have difficulty
on convergence, while the distribution of the Pareto optimal
solutions on the first moment and on the second moment
of ICADMO is much worse than expectation. Furthermore,
ICADMO does not preserve the uniformity and the con-
vergence that there is a large distance between the attained
solutions and the true Pareto-front. QICCADOM guarantees
better performance on every metric and reaches a broader
spread, which achieves a successful improvement.
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Fig. 6 Box plots of each metric
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Fig. 7 The Yp(t) of FDA3 and results of each algorithm

Fig. 8 Box plots of each metric

The box plots depicted in Fig. 6 indicate that QICCA
provides similar behavior on every moment for both met-
ric S and metric MS. The value of metric S on the first
moment of the new algorithm is much smaller than the
value of ICADMO and the test values on other moments
are all quite small. The value of metric MS of ICADMO
is between 0–0.1 on the first moment, the points gener-
ated by ICADMO cover a quite small percentage of the
true Pareto-front. Additionally, the solutions of ICADMO
fail to converge to the Pareto-fronts on every moment,
while QICCA shows better convergence. The results sug-

gest that the new algorithm performs better than ICADMO
on FDA2.

4.3.3 FDA3

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min F1(xI) = ∑
xi ∈xI

x F(t)
i

min F2(xI, xII) = g(xII) · h(F1, g)

where, g(xII) = 1 + G(x) + ∑
xi ∈xII

(xi − G(t))2

h(F1, g) = 1 −
√

F1
g , G(t) = sin(0.5π t),

F(t) = 102 sin(0.5π t), t = 1
nτ

⌊
τ
τT

⌋
(20)
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Fig. 9 The Y p(t) of FDA4 and results of each algorithm

where xI ∈ [0, 1], xII ∈ [−1, 1], n = 31, τT = 5, nt =
10, |x I | = 5, |xII| = 25. In this test problem, both X p(t)
and Y p(t) change over time, and the solutions density of
Y p(t) varies over time as well. In any time, the Y p(t) is F2 =
(1+G(t))×(1−√

F1). The Pareto optimal solutions of each
algorithm and Pareto-fronts of FDA3 are shown in Fig. 7.

It can be seen from Fig. 7 that QICCA provides a bet-
ter distribution of points than other two algorithms. On the
forth moment, DBM fails to find the Pareto optimal solutions.
ICADMO seems to have difficulties to preserve the balance
of uniformity and the diversity. Figure 7 also shows a better
convergence performance of QICCA.
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Fig. 10 Box plots of each metric

Comparisons with each measure in Fig. 8 clearly sug-
gest that the ICADMO does not have good results on each
metric on the first moment, and could not maintain good
performance on other moments. In contrast, the value of
metric S for the new algorithm is between 0–0.05, which
is much smaller than ICADMO. The value of metric MS for
QICCA is greater than 0.9 on every moment, while the value
for ICADMO is just 0.6–0.85. The conclusion shows that
QICCA has improved a lot on every aspect.

4.3.4 FDA4

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

minx F1(x) = (1 + g(xII))
∏M−1

i=1 cos
( xi π

2

)
minx F2(x) = (1+g(xII))

(∏M−2
i=1 cos

( xi π
2

))
sin

( xM−1π
2

)
minx FM (x) = (1 + g(xII)) sin

( x1π
2

)
where, g(xII) = ∑

xi ∈xI I
(xi − G(t))2,

k = 2 : M − 1, G(t) = | sin(0.5π t)|, t = 1
nτ

⌊
τ
τT

⌋
(21)

where xII = (xM , . . . , xn), xi ∈ [0, 1](i = 1 : n), n =
12, τT = 5, nt = 10, |xII| = 10. In FDA4, the X p(t)
changes with t , while Y p(t) preserves unchanged. The Y p(t)
is

∑M
i=1 (F∗

i )2 = 1. The Pareto optimal solutions of each
algorithm and Pareto-fronts of FDA4 are shown in Fig. 9.
We have selected four moments of the test results for each
algorithm.

For this three objectives problem, with the changing time,
DBM tends to have difficulties on preserving a good diver-
sity and a broad spread. It is also observed that the attained
solutions of ICADMO fail to maintain the uniformity of pop-
ulation. The proposed QICCA shows better performance on
every moment.

In Fig. 10, the box plots of every metric show the clear
advantages of QICCA. The test result of metric S provided
by Fig. 10a presents a value of 0.5–0.6 for metric S of the
proposed algorithm, while the value of ICADMO is greater
than 0.9. In Fig. 10b, the MS value of QICCA is between 0.8–
0.9, which is greater than ICADMO. Moreover, the value

of GD of the new algorithm is between 0.6–0.7, while the
maximum, mean value and minimum of ICADMO are all
greater than QICCA.

4.3.5 FDA5

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minx F1(x) = (1+g(xII))
∏M−1

i=1 cos
( yi π

2

)
minx F2(x)=(1+g(xII))

(∏M−2
i=1 cos

( yi π
2

))
sin

( y1π
2

)
minx FM (x) = (1+g(xII)) sin

( y1π
2

)
where, g(xII) = G(t) + ∑

xi ∈xII
(xi − G(t))2;

G(t) = | sin(0.5π t)|; F(t) = 1 + 100 sin4(0.5π t)

yi = x F(t)
i , f or i = 1 : M − 1; t = 1

nτ

⌊
τ
τT

⌋
(22)

where xII = (xM , . . . , xn), xi ∈ [0, 1](i = 1 : n), n =
12, τT = 5, nt = 10, |xII| = 10. For FDA5, the Y p(t)
is three-dimensional. Both X p(t) and Y p(t) change with
time, and the density of the solutions on Y p(t) varies with
time. In any time, the Y p(t) is.

∑M
i=1 (F∗

i )2 = 1 + G(t).
The Pareto optimal solutions of each algorithm and Pareto-
fronts of FDA5 are shown in Fig. 11. We have selected four
moments of the test results for each algorithm.

In this test problem, the solutions of ICADMO and
QICCA show better diversity of DBM. However, QICCA has
improved the uniformity of ICADMO, which can be seen on
every moment.

In Fig. 12, the minimum, mean value and maximum
of metric S for QICCA are all smaller than the results of
ICADMO. In addition, the metric MS and GD of QICCA
show better result than ICADMO. Therefore, QICCA has
achieved better performance on FDA5.

4.4 Results with different operations

In order to illustrate the necessity and function of every oper-
ation, we choose FDA2 to test .The results with different
operations are shown in Fig. 13.

From Fig. 13a we can see that the algorithm which only
employs clonal operations has the worst performance. The
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Fig. 11 The Yp(t) of FDA5 and results of each algorithm

clonal operations have the ability to preserve Pareto optimal
solutions on the last four moments, but they fail to converge
to the true Pareto front on the first moment and the second
moment. Moreover, the algorithm with only clonal opera-
tions does not have good uniformity and diversity. It is shown

in Fig. 13b that the population has improved its convergence
through both clonal operation and quantum updating oper-
ation. However, the solutions of the algorithm are not well
distributed, especially on the first moment. It is clearly illus-
trated in Fig. 13c that the algorithm with clonal operations,
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Fig. 12 Box plots of each metric

Fig. 13 Results with different operations on FDA2. a Result with clonal operations, b result with clonal operations and quantum operation, c result
with clonal operations, quantum updating operation and coevolutionary operations

quantum updating operation and coevolutionary operations,
namely QICCA has the best performance which has attained
a well distributed solutions. In addition, the required solu-
tions are all converged to their true Pareto front on every
moment.

As a consequence of the experimental results discussed
above, it is proved that QICCA has a better performance that
the clonal operations attain better optimal ability, while the
quantum updating operation effectively improves the con-
vergence of the algorithm. Furthermore, the coevolutionary
operations make the solutions more uniform and diverse.

5 Conclusion

In this paper, we have proposed QICCA, an improved
dynamic multiobjective optimization algorithm that com-
bines Immune Clonal Algorithm with the coevolutionary
strategy and employed the theory of quantum immune com-
puting. The new algorithm has designed a quantum updat-
ing operation, a coevolutionary competitive operation and a
coevolutionary cooperative operation. In addition, we have
revised the operations in immune clonal operation and pre-
sented an improved strategy of the performance of the pop-

ulation. Extensive numerical comparisons of QICCA with
DBM and ICADMO have been carried on five different
benchmark problems borrowed from the literature.

The key experimental results are:

• QICCA shows the best performance overall.
• DBM has good uniformity, but has difficulties to attain

the boundary solutions on some problems.
• QICCA performs better than ICADMO on spacing met-

ric, most spread metric and generation distance metric
and has overwhelming advantage over DBM.

• Every component of QICCA contributes to the algorithm.
The clonal operations make the algorithm attain better
optimal ability, the quantum updating operation improves
the searching ability and preserve the convergence of the
population, and the coevolutionary operations performs
better uniformity and diversity.

Furthermore, the future work is expected to concentrate
on the improvement of the speed of the convergence and put
the algorithm into practical optimization problem.
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